APPENDIX A

CSP-TO-PETRI NET CANONICAL TRANSLATION DIAGRAMS
In this appendix a complete collection of standard translations from classic CSP and P-CSP to Petri nets is provided. The CSP primitives include STOP, SKIP (not included in CSP), recursion, parallel, deterministic and nondeterministic choice, hiding and sequential compositions. The arrow (→) is also shown in various compositions.

Figure A-1 shows STOP which performs no action and never terminates (like deadlock) and SKIP which performs no action and terminates are shown at the top. In the center of Figure A-1 simple recursion is presented (note that P-CSP incurs an extra dummy transition which is an immediate non-timed transition). In the bottom, a parallel composition is shown and P-CSP uses two dummy transitions.

Figure A-2 shows DC (deterministic choice) where P-CSP employs three dummy transitions. In the center NDC (nondeterministic choice) is shown which also uses three dummy transitions. Note that the sdt1 and sdt2 dummy transitions are given as such because associated with each is a (by definition) probability. In the bottom of this figure, a sequential composition using the arrow is shown. The CSP translation for hiding is also shown (there is no P-CSP equivalent at this time).

Figure A-3 shows Mu.X (recursion where "X" can be any character). Compare the various configurations and notice that the translations are comparable to those of Figure 13 which defines the way CSPN translates P-CSP. Figure A-3 provides equivalent but reduced translations. The top half shows tail recursion and the bottom show a variation of such which cuts the tail recursion. Recursion using the CSP prefix notation is desirable because it describes the entire behavior of a process that eventually stops. For example, it would be tedious to write the full behavior of some systems which cycle over and over (e.g., a train crossing or vending machine). Recursion is useful for describing repetitive behavior patterns using much shorter notations. Such systems should not require a prior decision on the length of life of an object in order to permit the description of objects that continue to act and interact with their environment indefinitely.
Figure A.4 shows two varieties of synchronization. The first (top half) is blocking send and receive. This forces synchronization to occur while preventing either participant from moving forward until the other catches up. The CSPN tool has adopted this method because the interpretation of chnl!msg combined with chnl?msg was more natural (i.e., closer to the

<table>
<thead>
<tr>
<th>STOP</th>
<th>SKIP (not defined in CSP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic CSP: STOP</td>
<td>P-CSP: or STOP</td>
</tr>
<tr>
<td>Performs no action and never terminates!</td>
<td>Performs no action and terminates.</td>
</tr>
<tr>
<td></td>
<td>P-CSP: SKIP</td>
</tr>
<tr>
<td></td>
<td>or SKIP</td>
</tr>
</tbody>
</table>

Recursion

<table>
<thead>
<tr>
<th>Classic CSP: μX. (b → X)</th>
<th>P-CSP: Mu.X{b()}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

Parallel Composition

| Classic CSP: a || b | P-CSP: PAR{a(), b()} |
|---------------------|---------------------|
| dt1 | dt2 |

Figure A.1 Translations for (top) STOP / SKIP, (center) recursion and (bottom) PAR.
Figure A.2 Translations for (top) DC, (center) NDC and (bottom) arrow and hiding.
The two recursive translations shown here (top and bottom) are the same translations as those shown in Figure 13 except those shown here are reduced. In the top figure, there are two fewer transitions and one less place. In the bottom figure, there are also two fewer transitions and two fewer places.

Figure A.3 Translation of recursive compositions in a reduced format.
Synchronization using input and output actions

Classic CSP:
Train=
(InTransit);
(Chnl!arrive → AtIntersect);
(Chnl!depart → Train);

Gate=
(Chnl?arrive → Close);
(Chnl?depart → Open → Gate);

Synchronization is syntactically the same for both CSP and P-CSP. There are 2 possible translations that could be used. In the Petri net fragments shown, the train sends and the gate is receives. The actual synchronizing action (dt:arrive) is an immediate transition and its firing is necessary before either process can proceed. In the bottom of the figure the sending process (Train) is not blocked and can proceed (this 2nd type of synchronization is not used by the CSPN tool).

Figure A.4 Translations showing blocked and non-blocked send synchronization.
Parallel and sequential composition

Classic CSP:

\[(a \rightarrow b \rightarrow c) \parallel (d \rightarrow b \rightarrow e)\]

![Diagram of parallel and sequential composition in Classic CSP]

P-CSP:

\[
\text{PAR}\{\text{SEQ}\{a, c\}, \\
\text{SEQ}\{d, e\}\}\{b\};
\]

![Diagram of parallel and sequential composition in P-CSP]

Above: \(a()\) must actually be \(\text{ch}\!\!\!b\), and \(d()\) must actually be \(\text{ch}\!\!\!b\) to be correct using CSPN

Parallel and Nondeterministic choice composition

Classic CSP:

\[a \rightarrow (b \sqcap c) \parallel (b \sqcap c) \rightarrow a\]

![Diagram of parallel and nondeterministic choice composition in Classic CSP]

P-CSP:

\[
\text{PAR}\{\{a \rightarrow \text{NDC}\{b, c\}\}, \\
\text{NDC}\{b, c\} \rightarrow a\};
\]

![Diagram of parallel and nondeterministic choice composition in P-CSP]

Figure A.5 Combined translations for parallel, sequential and nondeterministic choice.
inherently synchronous semantics of CSP) and more readable. Also, using the notion of hiding in CSP, both actions (input and output) can be replaced by tau (like "b" in Figure A.2 bottom). In the bottom half (of Figure A-4) a message is output (on channel "Chnl") while processing continues (a token is distributed to place \(p_k \)) for the sending process independent of whether the message is received. On the receiving end, the transition that models the activity of message input (on the channel "Chnl" in this case) fires only after both places \(p_k \) and \(p_j \) have tokens. The interpretation of this type of communication is that the receiver must wait for the message from the sending process (the Train in this case). This is known as a blocking receive.

Finally, in Figure A-5 a number of larger compositions are collected to illustrate a combined parallel and sequential composition that has synchronization (blocking send and receive). The CSP translation uses 5 transitions and 8 places while the P-CSP translation uses 7 transitions and 10 places. In the bottom half of Figure A-5 two nondeterministic choice constructs are composed in parallel with an action "a" prefixed to the one and an action "a" suffixed to the other. Notice that the direct CSP translation only uses 6 transitions and seven places while the P-CSP translation uses 12 transitions and 12 places!
APPENDIX B

THE LEX AND YACC SPECIFICATION OF THE PARSEABLE CSP

(GRAMMAR GIVEN IN BACKUS NORMAL FORM)
B.1 Lex regular expressions

delimiter [\t\n]
white_space {delimiter}+
letter [A-Za-z_+-%@]
digit [0-9]
identifier {letter}{{letter}|{digit}}*
integer {digit}+
comment "--".*$

B.2 Yacc grammar specification

1. System production (start symbol = "system").

 system: Identifier Equals processdeclist processlist1 Dot;

2. Processdec used to declare process names.

 processdec: PROCESS Identifier Equals processlist1 Semicolon;

3. Processdeclist for listing multiple declarations under system.

 processdeclist: EmptyList | processdeclist processdec;

4. Process definitions

 process:

 | STOP
 | LeftBrace stmtlist RightBrace
 | PAR LeftBrace processlist2 synclist RightBrace
 | SEQ LeftBrace processlist1 RightBrace
 | NDC LeftBrace processlist3 RightBrace
 | DC LeftBrace guardedprocist RightBrace
 | Mu Dot Identifier LeftBrace processlist1 RightBrace
 | processcall;

5. Failable describes the format of an annotation (rate or probability).

 failable:

 | FAIL LeftParen rEquals Real RightParen
 | FAIL LeftParen pEquals Real RightParen;

6. Probable describes the format of a probability annotation.

 probable:

 | PROB LeftParen pEquals Real RightParen

7. Servable describes the format of a service rate annotation.

 servable:

 | SERV LeftParen rEquals Real RightParen

8. Biprocess distinguishes an annotated process and permit such on any process.

 biprocess:

 | process | process Colon failable
 | process Colon probable
 | process Colon servable

9. Processlist1 permits one or more processes in a list.

 processlist1: biprocess | processlist1 Comma biprocess;
10. Processlist2 permits no less than two processes in a list.
 \[
 \text{processlist2:}
 \begin{align*}
 &\text{biprocess Comma biprocess} \mid
 &\text{processlist2 Comma biprocess};
 \end{align*}
 \]

11. Processlist3 permits no less than two processes in a list and specialized for NDC.
 \[
 \text{processlist3:}
 \begin{align*}
 &\text{biprocess Comma biprocess} \mid
 &\text{processlist3 Comma biprocess};
 \end{align*}
 \]

12. Synclist used with PAR to indicate synchronization messages.
 \[
 \text{synclist: EmptyList} \mid
 \text{LeftParen anyvarlist RightParen;}
 \]

13. Anyvar used to permit concise grammar of the rule for lists.
 \[
 \text{anyvar: booleanvar} \mid
 \text{variable;}
 \]

14. Anyvarlist specifies an arbitrary number of anyvar in a list.
 \[
 \text{anyvarlist: anyvar} \mid
 \text{anyvarlist Comma anyvar;}
 \]

15. Statement list allows an arbitrary number of statements to be listed.
 \[
 \text{stmtlist: stmt} \mid
 \text{stmtlist Comma stmt;}
 \]

16. Statements can compose a process.
 \[
 \text{stmt:}
 \begin{align*}
 &\text{implication} \\
 &\text{expression} \\
 &\text{input} \\
 &\text{output} \\
 &\text{SKIP;}
 \end{align*}
 \]

17. Implication (a statement event -> action [for P->Q use SEQ{P(),Q()}].
 \[
 \text{implication:}
 \begin{align*}
 &\text{stmt Arrow consequent} \mid
 &\text{variable Arrow consequent} \mid
 &\text{biprocess;}
 \end{align*}
 \]

18. Consequent belongs to the right hand side of an arrow.
 \[
 \text{consequent: variable} \mid
 \text{biprocess;}
 \]

19. Processcall is an instance of a declared PROCESS and is simply set to Identifier().
 \[
 \text{processcall: Identifier LeftParen RightParen;}
 \]

20. Assignment is covered by expression in integer

21. Input
 \[
 \text{input: channel InSym variable;}
 \]

22. Output (note an operand is an integer or boolean expression).
 \[
 \text{output: channel OutSym operand;}
 \]

23. Guarded process is defined for use in the guarded process list.
 \[
 \text{guardedprocess: guard biprocess;}
 \]

24. Guarded process list
 \[
 \text{guardedproclst:}
 \begin{align*}
 &\text{guardedprocess} \mid
 &\text{guardedproclst Comma guardedprocess;}
 \end{align*}
 \]
25. Guard us used to provide for choosing an alternate in a deterministic choice (DC).

   ```
   guard: input
       booleanexpr AND input
       booleanexpr AND SKIP;
   ```

26. Recursive definition is defined in the definition of processes (see Mu).

27. Channel is matched by paring a input message with an output message.

   ```
   channel: Identifier;
   ```

28. Variable

   ```
   variable: Identifier;
   ```

29. Boolean variable (AtSym to distinguish a variable from a boolean variable).

   ```
   booleanvar: AtSym Identifier;
   ```

30. Expression

   ```
   expression: integerexpr | booleanexpr | relationalexpr;
   ```

31. Boolean expression.

   ```
   booleanexpr:
       booleanvar
       TRUE
       FALSE
       booleanexpr AND booleanexpr
       booleanexpr OR booleanexpr
       NOT booleanexpr
       booleanvar VarAsgn booleanexpr;
   ```

32. Relational expression.

   ```
   relationalexpr:
       operand LESym operand
       operand LTSym operand
       operand EQSym operand
       operand NESym operand
       operand GESym operand
       operand GTSym operand;
   ```

33. Integer expression.

   ```
   integerexpr:
       operand Plus operand
       operand Minus operand
       operand Star operand
       operand Slash operand
       operand VarAsgn operand
       Minus operand;
   ```

34. Operand.

   ```
   operand:
       Integer
       variable
       integerexpr
       relationalexpr;
   ```
35. Monadic operand (never used).
36. Dyadic operand (never used).
37. Integer is defined in lexer.
38. Digits are defined in lexer.
39. Digit is defined in lexer.
40. Declaration (never used).
41. Type (never used).
42. Selection (never used).
43. Conditional (never used).
44. Option (never used).
45. Loop (never used).
46. Relational operator (never used).
47. Timer (never used).
48. Hide (never used).
APPENDIX C

CO-MATRIX EXPANSION ALGORITHMS
This appendix presents five algorithms. The first chooses one of three methods of expansion (Section C.1), the 3 expansion methods (Section C.2-4), and 'expand' which combines two matrices into one (Section C.5). First, the variable definitions are presented immediately below: Note, the user defined types are found at the end of Appendix C.

```c
/* Three matrices are involved: C = A <- B where "<-" means 
"is inserted into by." So A is the original matrix, B is 
the matrix which is poured and C is the new matrix that 
holds both combined. */
int orA, rA, /* orA x ocA is size of A (original)*/
ocA, cA, /* rA x cA is size of C (new) */
rB, cB, /* rB x cB is size of B (pored) */
rlb, rub, /* B row lower and upper bounds in C*/
clb, cub, /* B column lower and upper bounds in C*/
rlbA, rubA, /* A row lower and upper bounds in C*/
clbA, cubA; /* A column lower and upper bounds in C*/
curLnkIndx = 0, /* Current link index */
rowMark = 0,
colMarkRht = 0,
colMarkLft = 0,
Bflag = FALSE_,
Aflag = FALSE_,
p_matrix A = NULL,
B = NULL,
C = NULL;
FILE *epn;
void prtExpn(FILE *epn); /* Prototype */
void expand(FILE *epn, int rm); /* Prototype */
char *synclink(FILE *epn, entryptr s); /* Prototype */
void expn(FILE *epn, int cpi, netNodeptr nnptr)
{
    int e,f,i,j,row,col,link,
k, /* k number of nodes in this list */
typ =0,
thinA =FALSE_,
symthere =0; /* Boolean: Is symbol there? */
nodeptr p =NULL,
cur_p =NULL,
q =NULL;
entryptr s0 =NULL,
s1 =NULL;
char *call =NULL;
```
C.1 Algorithm for choosing the correct expansion method

```c
k = (nnptr ->numNodes);                  /* k is now 1 more than needed */
while (((p=(nnptr ->net[--k])) != NULL) && (k > -1)) {
    s0 = look (p ->n_name, &symthere);
    if (symthere < 1) {
        fprintf(epn,  "\nExpn: Symbol %s not found!",p->n_name); exit(1);
        }
    fprintf(epn,  "\nSearching links of net[%d], symbol: %s", k, s0 ->name);
    DisplayProcessList(epn, 0, s0->p_pl);
    cur_p = p; /* Skip over the head node (a pnode) */
    if ((p=p->link) == NULL) fprintf(epn,"\nExpn: No sibs for this pnode!");
    else {
        curLnkIndx=0;
        for (q = p; q != NULL; q = q -> link) {
            curLnkIndx++;
            fprintf(epn,"\n%d. Symbol: %s, Type: %d",curLnkIndx, q->n_name,typ );
            /* There are three cases where an expansion is appropriate:
               (1) Node type is 5-9 (PAR, SEQ, NDC, DC, MU)
               (2) Node type is 10 and cpi=0 (cpi is current process index)
               * Node type 10 indicates an instance of a previously defined
               * process known as a process call.
               (3) Node type 11 is really type 10 except it was 1st encountered
               * in "PROCESS symbol =", thus was marked as type 11.
               */
            if (((typ > SKIP_PROC) && (typ < PROC_CALL)) || (typ == STMT_LIST) ||
                ((typ == PROC_CALL) && (cpi == 0)) || (typ == PROCESS_DEC)) {
                s1 = look (q ->n_name, &symthere);
                if (symthere < 1) {
                    fprintf(epn,"\nSymb %s not found in symbol table!",q ->n_name);
                    }
                else { /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
                    rA = s0 ->rsize;        /* Row size of A */
                    cA = s0 ->csize;        /* Col size of A */
                    orA= rA;                /* Save the original Rsize of A */
                    ocA= cA;                /* Save the original Csize of A */
                    rB = s1 ->rsize;        /* Row size of B */
                    cB = s1 ->csize;        /* Col size or B */
                    /* Check if the B Matrix is null and if so abort the expansion. */
                    if ((rB == 0) || (cB == 0) || (s1->p_prm == NULL)) {
                        fprintf(stderr,"\nIn expn[B]: %s has null matrix!",q->n_name);
                        fprintf(stderr,"\n%s may have not been declared!\n",q->n_name);
                        fprintf(stderr,"\nExpansion must be aborted ...
\n\n");
                        exit(1);
                        }
                    /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
                    * Rem: B is inserted into A (A<-B (or A is expanded by B)
                    * Thus the following logic sets the stage for an expansion: */
```
fprintf(epn,\"\n\nExpansion includes the following:\")

A = s0 ->p_prm;
fprintf(epn,\"\n\nA: %s\", s0->name);
DisplayProcessList(epn, 0, s0->p_pl);
print_prm(epn,A,s0->rsize,s0->csize);

B = s1 ->p_prm;
fprintf(epn,\"\n\nB: %s\", q->n_name);
DisplayProcessList(epn, 0, s1->p_pl);
print_prm(epn,B,s1->rsize,s1->csize);

/* *
* Calc size of the new C matrix (unless B matrix is null)
*/
thinA = FALSE_;
ra = ra+(rB-1);
if (A[orA-1].p_row[ocA-1] > 0)
 ca = ca+(cB-2);
else
 if (A[orA-1].p_row[ocA-1] < 0) {
 ca = ca+(cB-2);
 thinA = TRUE_;
 }
else
 fprintf(stderr,\"\nA[orA][ocA] = 0! Aborting expansion ...\");

/* *
* Create the new matrix C that A and B will be combined into.
* ---
*/
C = pmatrix(ra,ca);
fprintf(epn,\"\n\nC: A<-B is a new (%dx%d) Matrix\", ra,ca);

/* *
* Determine the rowMark where expansion begins. The rowMark
* tracks the place in A that will be replaced. s0->p_pl is the
* process list of A, q->name is the process who will be replaced.
* Determine where that is in the co-matrix (0 =1st position).
*/
rowMark=procPosition(s0->p_pl, q->n_name);
if (rowMark == -1) {
 fprintf(stderr,\"\nrowMark undetermined!\")
 exit(1);
}

/* - <<1>> - - - - - - - - - - - - - */
/* *
* Use Method I if B goes into Upper Left corner of C.
* *
if (rowMark == 0) {
 fprintf(epn,\"\n\nRunning Method 1:
-----------------\")

SEE SECTION C.2 FOR METHOD 1 LOGIC

} /*fi use Method 1 */
else {
 /* - - - - - - - - - - - - - -<<2>>- - - - - - - - - - - - */
 /* */
 /* Use Method II if B goes into Lower Right corner of C. */
 /* A goes into Upper left corner of C. */
 /* */
 if (rowMark == (orA-1)) {
 fprintf(epn, "\n\nRunning Method 2:\n-----------------\n");
 SEE SECTION C.3 FOR METHOD 2 LOGIC
 } /*fi use Method II */
else {
 /* - - - - - - - - - - - - - -<<3>>- - - - - - - - - - - - - */
 /* */
 /* Method III: all other cases B goes in center of C. */
 /* */
 fprintf(epn, "\n\nRunning Method 3:\n-----------------\n");
 SEE SECTION C.4 FOR METHOD 3 LOGIC
}} /* ese in all other cases */
} /* esle */
/* */
/* CLEAN UP: Free the old prmatrix to conserve memory. */
/* */
for (i = 0; i < s0 ->rsize; i++) {
 free(A[i].p_row);
 free(A);
}
/* */
/* Update the symbol table entry for this pnode */
/*
 s0 ->rsize = rA; s0 ->csize = cA; s0 ->p_prm = C;
 /* */
 /* replProc takes a process list and replaces a process name */
 /* known to exist in the list by another process list of */
 /* one or more process names. */
 /* */
 call= replProc (&(s0 ->p_pl), s1 ->name , &(s1 ->p_pl));
 if (call == NULL) {
 fprintf(stderr,"\nExpn: ReplProc failed update %s",s0 ->name);
 exit(1);
 }
 /* */
 /* Adjust the link index to comply with the prior expansion */
 /*
 curLnkIndx=curLnkIndx+rB-1;
 */
} /*esle*/
} /*fi (typ...*/
} /*rof*/
} /*esle*/
} /*elihw*/
fprintf(epn,"\nCompleted expansion!\n");
}/*npxe*/
C.2 Algorithm for expansion method 1 (upper LH corner)

```c
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* Determine indexes for B whose size is rB x cB (C <- B). */
/* rlb = row lower bound, rub = row upper bound */
/* clb = col lower bound, cub = col upper bound */
*/
rlb = curLnkIndx - 1;  rub = rlb + rB - 1;
clb = 0;               cub = clb + cB - 1;
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
/* Expand A (3x4) with B (5x6) into C (7x8). */
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* C: 0 - b b b b b 0 0   A: 0 -|+ a a <-a's put in C, *
* 1 b b b b b b 0 0       1 y g g g   begin at C[4,6]. *
* 2 b b b b b b 0 0       2 y g g g *
* 3 b b b b b b 0 0       /    \
* 4 b b b b b + a a       /    Rows 1 and 2: *
* 5 y 0 0 0 0 g g g       /    put g's in C,
* 6 y 0 0 0 0 g g g       /    start at C[5,5].
*                       / *
* Rows 1 and 2: put y's *
in C start at C[5,0]. *
* *-----------------------------------------------------------------*/
/* In C above, 0's are constant (i.e., not x-fered from A or */
/* B into C). Also note that the "-" and "+" paired in A are */
/* now seperated as shown in C. */
* *-----------------------------------------------------------------*/
/* Determine indexes for A whose size is orA x ocA (C <- A). */
*/
rlbA = rA - (orA -1);  rubA = rA - rlb - 1;
clbA = cA - (ocA -1);  cubA = cA - clb - 1;
(void)expand(epn, ZERO);
/* *-----------------------------------------------------------------*/

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* In Method I, finish copying the y's (if any) from A to C. */
*/
if (orA > 1) {
    fprintf(epn,\"\nMethod I exception!\n\n\nmethod I exception!");
    i = rB;
    for (j = 1; j < orA; j++) {
        C[i].p_row[0] = A[j].p_row[0];
        i++;
    }
}
```

C.3 Algorithm for expansion method 2 (lower RH corner)

```c
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* Determine indexes for B whose size is rB x cB (C <- B). */
/* rlb = row lower bound, rub = row upper bound */
/* clb = col lower bound, cub = col upper bound */
*/
rlb = rowMark;
rub = rlb + rB - 1;
```
if (!thinA) clb = cA - cB;
else clb = cA - cB + 1;
cub = cA - 1;
/* *
* Determine indexes for A whose size is orA x ocA (C <- A).
* *--*/
*/
rlbA = 0;
rubA = orA - 2;
clbA = 0;
cubA = ocA - 1;

/*-*/
* Case: 1
* (orA x ocA) (rB x cB) (rA x cA)
* 1 2 3 4 5 1 2 3 4 1 2 3 4 5 6 7
*A: 1 a a a a z + B: 1 - + b b --> C: 1 a a a a 0 0 z
* 2 a a a a z 2 b b b b 2 a a a a 0 0 z
* 3 a a a a z 3 b b b b 3 a a a a 0 0 z
* 4 a a a a z 4 b b b b 4 a a a a 0 0 z
* 5 y y y - + 5 0 0 0 - + b b
*/
*/
* Case 2:
* If A[5,5]="-" => C(8x6). 8 y y y b b b b
*/
*/
* Here (in case 1), A(5x5) + B(4x4) => C(8x7).
* There is one variation (Case 2) occurs when the "-" is
* in the last column (e.g., occurs with Mu recursion). In
* this case, A(5x5) + B(4x4) => C(8x6).
*/
*/
* For e.g., (remember rowMark=row to replace [exactly]):
*/
*/
* Case 1: C(8x7) Case 2: C(8x8)
* rlb = 4 (counting from 0) 4
* rub = 7 = 4 + 4 - 1 7
* clb = 3 = 7 - 4 3 = 6 - 4 + 1 (test)
* cub = 6 = 7 - 1 5 = 6 - 1
* rlbA= 0 0
* rubA= 3 = 5 - 2 3
* clbA= 0 0
* cubA= 4 = 5 - 1 4
*/
* For case 1 (where C[5,5] = "+") the z's in A are moved
* to the last col of C ONLY if "+" otherwise, they stay
* put (this is handled in the method 2a exceptions below).
* Similarly, in either case 1 or case 2, the y's in A are
* moved to the last row in C ONLY if "+" otherwise they
* stay put (this is handled in the method IIb exceptions).
* If a "z" or a "y" is moved it must be replaced by a "0".
*/
--/
*/
(void)expand(epn,ZERO);
/ * * * <<< Method IIa Exception >>> * * * * * * * * * * *
* Catch all the ones (+'s) in last column which are to be *
* moved to the new last column. These +'s are outputs *
* from transitions to the last place in A so now they *
* must be connected to the new last place (test cases are *
* t2, t10 and wgood). Only consider rows above rowMark. *
* -- */
if (!thinA) {
 i = rowMark;
 for (i=rowMark-1; i>=0; i--) {
 if (A[i].p_row[cubA] > 0) {
 C[i].p_row[cubA] = 0;
 fprintf(epn, "\nMethod IIa expn (linked last place)!");
 }
 }
}
/* * * * <<< Method IIb Exception >>> * * * * * * * * * * *
* Moving the y's form the marked row if they are "+".
* -- */
for (j=clbA; j < clb; j++) {
 if (A[rlb].p_row[j] > 0) {
 C[rlb].p_row[j] = 0;
 fprintf(epn, "\nMethod IIb expn (linked recursive loop)!");
 }
}
C.4 Algorithm for expansion method 3 (centrally located)
/* Determine indexes for B whose size is rB x cB. *
* rlb = row lower bound, rub = row upper bound *
* clb = col lower bound, cub = col upper bound *
* Remember: A<- expanded by <-B *
*/
rlbA = 0;
rubA = rowMark -1;
clbA = 0;
rlb = rowMark;
rub = rlb + rB -1;
/* *
* Find point in A for expanding B (1st '-' in marked row) *
*/
j = 0;
while (A[rowMark].p_row[j] >= 0) j++;
clb = j;
cubA = clb + ONE;
cub = clb + cB -1;
/* *
* Mark the RHS of A to be pushed right past B *
* Mark the LHS of A to be replacement starting point. *
*/
colMarkRht = cubA;
colMarkLft = clb;
for (j = 0; j < clb; j++) C[rowMark].p_row[j] = A[rowMark].p_row[j];

(void)expand(epn, ZERO);

clbA = colMarkRht +1;
cubA = ocA -1;
rlbA = 0;
rubA = rowMark -1;
clb = cA - (cubA - clbA) -1;
cub = cA - 1;
rlb = 0;
rub = rowMark -1;

for (i = rlbA; i <= rubA; i++) {
 f = clb;
 for (j = clbA; j <= cubA; j++) {
 if (!(f>cub)){f++;
 }else {
 fprintf(stderr,\"\n1-Method III error(clb)!
\n");
 exit(1);
 }
}
 if (!(e>rub)){e++;
}else {
 fprintf(stderr,\"\n2-Method III error(rlb)!
\n");
 exit(1);
 }
}
/*-*
* colMarkRht is the clb + 1 replacement point
* Finish update for the lower part of A (LHS or x's)
* A: d d d d d "-" is replaced by B
* d - d d d Put x's ---> C
* x y y y y
*/
e = rowMark + rB;
for (i = rowMark + 1; i < orA; i++) {
 for (j = 0; j < colMarkLft; j++)
e++;
}
/*-*
* colMarkRht is the clb+1 replacement point (delta =ca-ocA)
* Finish update for the lower part of A (RHS or y's)
* colMarkLft is the col 2 in fig below where the minus is
* (which is the same as the clb).
* 1 2 3 4 5
* A: 1 t t t t t t's & e's are put using above code
* 2 e - d d d "-" is replaced by B (d's are handled
* 3 x y y y y as exceptions below).
* 4 x y y y y Put y's ---> C
*/
e = rowMark + rB;
for (i = rowMark + 1; i < orA; i++) {
 f = cA - 1;
 for (j = ocA - 1; j >= colMarkLft; j--)
 C[e].p_row[f--] = A[i].p_row[j];
e++;
}
/*-*
* The output from the transition being expanded must go to
* the same place it was before. Check the rest of the row
* right of the intersection of A[rowMark][colLftMark] for
* plusses (+1). Place them in the last row of the B matrix
* inside of C. The same distance from the last col in C
* as they are in from the last col in A.
* 1 2 3 4 5
* A: 1 t t t t t t's, e's, x's are put using above code
* 2 e - d d d "-" is replaced by B (d's are handled
* 3 x y y y y as exceptions below).
* 4 x y y y y Put d's ---> C
* The idea is to connect the output from the transition being expanded
* to the same place as it originally was connected to in A (a place
* basically). Note the following code assumes that the last row of B has
* a plus (i.e., that its actually connected as it was in the higher
* level abstraction to another place.
* */
A case where this is not true: SEQ(P1(), P2(), STOP). Until you know exactly what's in the transition being expanded you cannot decide to eliminate the connection. Here the STOP doesn't have an O/P place! This case is assumed not to occur. First print some diagnostics:

```c
if (s0->type == NDC_PROC){
    fprintf(epn,"\nMethod III exception!\n");
    prtExpn(epn);
    print_prm(epn, C, rA, cA);  fprintf(epn,"\n");
    zeroGapEnds = colMarkRht + (cA - ocA);

    /* Zero out the columns starting with the column ColMarkRht
       making sure to stay above the rowMark
    */
    for (i = 0; i < rowMark; i++)
        for (j = colMarkRht; j < zeroGapEnds; j++)
            C[i].p_row[j] = 0;

    /* C <- A for the values on the right of the zeroGap
       column(s) and above the rowMark. Rem... the colMarkRht
       defines the boundary in A (not C) where the expansion
       occurs (just one col to the left of the colMarkRht column).
    */
    zeroGap = cA - ocA;
    for (i = 0; i < rowMark; i++)
        for (j = colMarkRht; j < ocA; j++)
        for (j=colMarkRht; j< ocA; j++)
            C[rowMark+rB-1].p_row[cA-(ocA-j)] = A[rowMark].p_row[j];
}
```

C.5 Expand algorithm for combining co-matrices

/* Expand copies the old matrices (A, B) to the new one (C). */
void expand(FILE *epn, int rm) {
 int i, j, e, f, m, n; /* Miscellaneous indices */
 e = rm; m = 0;
 for (i = 0; i < rA; i++) { /*rof*/
 f = 0; n = 0;
 for (j = 0; j < cA; j++) {
 if ((i>=rlb) && (i<=rub) && (j>=clb) && (j<=cub)) {
 C[i].p_row[j] = B[m].p_row[n++];
 Bflag=TRUE_;
 } else {
 if ((i>=rlbA) && (i<=rubA) && (j>=clbA) && (j<=cubA)) {
 Aflag=TRUE_;
 }
 }
 } /*rof*/
 if (Bflag) {Bflag=FALSE_; m++;
 } else {
 if (Aflag) {Aflag=FALSE_; e++;
 }
 } /*rof*/
 }
}
C.6 User defined data types

/* Integer array of pointers to the rows in the matrix called the Process
 * Relation Table (prm) which is dynamically allocated (2-D array matrix).
 */
typedef struct int_array
{
 int *p_row;
} IArray;
typedef IArray *p_matrix;

typedef struct entrydef /* Symbol Table entry definition */
{
 char *name; /* Symbol name */
 short type; /* Sym type (assume < 32,767 impl dpndt) */
 short uid; /* Unique id number (process id or pid) */
 char *frate; /* Failure Rate in ASCII */
 char *fprob; /* Failure probability in ASCII */
 char *sprob; /* Service Probability in ASCII */
 char *srate; /* Service Rate in ASCII */
 char *p_pl; /* Process list ptr (can be diff types) */
 short rsize; /* Number of rows in PR Matrix */
 short csize; /* Number of cols in PR Matrix */
 p_matrix p_prm; /* Process Relation (PR) Matrix */
 struct entrydef *next; /* Link to next ENTRY */
} ENTRY;
typedef ENTRY *entryptr;

typedef struct nodedef /* Ptr to the node/symbol name */
{
 char *n_name; /* NULL if no fail rate/prob spec'd */
 char *n_fail; /* Boolean: legal vals (-1, 0, 1) */
 short israte; /* Node type consistent w/ symbols */
 short n_type; /* System level unique identifier */
 short uid; /* Ptr to next node, if any */
} NODE;
typedef NODE *nodeptr; /* Ptr to a NODE structure */
APPENDIX D

RAILROAD CROSSING USING A MONITOR
D.1 Overview of the multiple train / monitor problem

This appendix describes a solution to: (1) the race (safety) hazard (described in §5.5) and, (2) controlling passage of multiple trains using a monitor to arbitrate the trains and the gate. Figure E.1 shows the monitor's finite state machine. We assume that trains cannot arrive simultaneously but that they do arrive in close enough succession that it would be dangerous for the gate to be opened if another train is pending. The Petri net of Figure E.2 is a translation of the CSP in Figure E.2. Table E.1 describes the markings and failure states.

\[
\text{CSP for Monitor:}
\begin{align*}
\text{If not(T2? a).} \\
\text{If not(T1? a).} \\
\text{If Gate is open.} \\
\text{If Gate is open.} \\
\text{After Gate is finished closing.} \\
\text{After Gate is finished opening.}
\end{align*}
\]

\[
\text{FSM for Monitor:}
\begin{align*}
\text{(1) If Gate is closed.} \\
\text{(2) If T1 is approaching.} \\
\text{(3) if T2 is approaching.}
\end{align*}
\]

Figure D.1 Finite sate machine and CSP for the monitor.

Figure D.2 Petri Net for the monitor (controller) to handle multiples trains.
Improving the system's performability is accomplished using more "slack" time for the Gate process to finish its task. Requiring the Train to send the arriving "a" signal sooner effectively increases the slack. Thus we have analyzed the Performability of the system by changing the slack time. The Stochastic Petri net of Figure D.2 is analyzed for reliability of the system under various failure modes. In this case, the Petri net elucidated the need for additional synchronization (so as to avoid a safety-critical failure). Accordingly, this is facilitated by translating CSP specifications into Stochastic Petri nets.

TABLE D.1

FAILURE MODES AND MARKINGS FOR THE RR-MONITOR

<table>
<thead>
<tr>
<th>Mrkng</th>
<th>Monitor</th>
<th>Trains</th>
<th>Gate</th>
<th>Possible Failure Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Status = open</td>
<td>Both in transit</td>
<td>Open</td>
<td>Assume failure is not possible</td>
</tr>
<tr>
<td>M2</td>
<td>Status = open</td>
<td>TxCh ! a</td>
<td>Open</td>
<td>Critical communication failure</td>
</tr>
<tr>
<td>M3</td>
<td>TxCh ? a</td>
<td>Tx approaching</td>
<td>Open</td>
<td>Critical communication failure</td>
</tr>
<tr>
<td>M4</td>
<td>Status=pending train & GateCh!close</td>
<td>Tx approaching</td>
<td>Open</td>
<td>Critical communication failure</td>
</tr>
<tr>
<td>M5</td>
<td>Status = wait</td>
<td>Tx approaching</td>
<td>GateCh!close</td>
<td>Critical communication failure</td>
</tr>
<tr>
<td>M6</td>
<td>Status = wait</td>
<td>Tx approaching</td>
<td>Closing</td>
<td>Critical mechanical failure</td>
</tr>
<tr>
<td>M7</td>
<td>Status = closed</td>
<td>Tx at crossing</td>
<td>Closed</td>
<td>Assume failure not possible</td>
</tr>
<tr>
<td>M8</td>
<td>Tx ? a</td>
<td>Tx at crossing</td>
<td>Closed</td>
<td>Critical communication failure</td>
</tr>
<tr>
<td>M9</td>
<td>Status = closed</td>
<td>TxCh ! d</td>
<td>Closed</td>
<td>Non-critical communication failure</td>
</tr>
<tr>
<td>M10</td>
<td>Status= pending train and TxCh ? d</td>
<td>Tx approaching + one in transit</td>
<td>Closed</td>
<td>Non-critical communication or critical system failure (of monitor) possible.</td>
</tr>
<tr>
<td>M11</td>
<td>Status= not pending train and closed</td>
<td>One at crossing, one in transit</td>
<td>Closed</td>
<td>Assume failure is not possible</td>
</tr>
<tr>
<td>M12</td>
<td>TxCh ? d</td>
<td>Both in transit</td>
<td>Closed</td>
<td>Non-critical communication failure</td>
</tr>
<tr>
<td>M13</td>
<td>GateCh ! open</td>
<td>Both in transit</td>
<td>Closed</td>
<td>Non-critical communication failure</td>
</tr>
<tr>
<td>M14</td>
<td>Status = wait</td>
<td>Both in transit</td>
<td>GateCh!open</td>
<td>Non-critical communication failure</td>
</tr>
<tr>
<td>M15</td>
<td>Status = wait</td>
<td>Both in transit</td>
<td>Opening</td>
<td>Non-critical mechanical failure</td>
</tr>
<tr>
<td>FM16</td>
<td>Mcf and Mnfc</td>
<td></td>
<td></td>
<td>Communication failures</td>
</tr>
<tr>
<td>FM17</td>
<td>Mcf and Mnfc</td>
<td></td>
<td></td>
<td>Mechanical failure (of gate)</td>
</tr>
<tr>
<td>FM18</td>
<td>Mcsf</td>
<td></td>
<td></td>
<td>System failure (of gate)</td>
</tr>
<tr>
<td>FM19</td>
<td>Mt</td>
<td></td>
<td></td>
<td>Timing failure (of gate)</td>
</tr>
</tbody>
</table>

Communication failures possible (Key: a → approaching, d → departing):
1) Failure when train sends message. 3) Failure when monitor sends message.
2) Failure when monitor receives message. 4) Failure when gate receives message.
In the Petri net of Figure D.2, we assume that all transitions can fail. The failure modes associated with transitions can be translated into failure modes of their corresponding CSP actions. When interpreting the failures of these actions, the user should identify critical failures. Improbable failures are easily identified in the Petri net (i.e., some transitions may not realistically fail or can be reasonably tolerated). Such evaluations can lead to an augmentation of the system model such as that of the multi-train/monitor system shown in Figure D.2. The markings in Table D.1 are based on the feasible states that trace the natural (and familiar) process: (M1) an idle state, (M2-5) communication transactions between the train, monitor, gate and status = pending train, (M6) gate begins to close, (Mtf) timing failure if train arrives before the gate is closed, (M7-9) process of a new train arriving while the current train is passing, (M10) monitor has to decide not to open the gate when the current train departs since there is a pending train, (McSf) safety critical failure of the monitor, (M11) the current train starts the departing process and no trains are pending, and (M12-15) involve the actions necessary to restore the system to the idle state.

Figure D.3 State transitions [CTMC] for the trains-monitor-gate.
Figure D.3 shows the formalized flow of events and actions (i.e., CTMC) which include two failure states: \((M_{cf}) \) safety critical failures involving gate closure, and \((M_{ncf}) \) non-critical failures involving gate opening. Markings FM16-19 enumerate all failure categories. Realistically, one should account for the transitions which take the system from anywhere trains are being received (or are passing by) to new arrivals without having to visit the idle state. Admittedly this diagram is simplified, yet it incorporates all states necessary for receiving subsequent trains (assuming arrivals are not simultaneous).

Markings M6 and M7 are (safety) critical markings because the slow firing transitions \((TG?close [t_5]) \) and \((Closed [t_6]) \) make it possible for the train to enter the intersection before the gate has properly (or completely) closed. Similarly, non-critical conditions occur when the train departs the intersection but the gate stays closed resulting from the slow firing of transitions \((TG?open [t_7]) \) and \((Open [t_8]) \).\(^1\)

The CSP specification (and the corresponding Petri net) can be refined or augmented to state how such hazards could be avoided or handled. For example, communication failures can be handled using time-out and re-transmit techniques. Gate closing failures can be handled by sounding an alarm. Tolerance to time-related failures can be improved by requiring more slack time. In Figure D.3 the only critical deadline, is the one that requires the gate to close before the train arrives (i.e., gate closure must complete in a time less than:

\[
\text{(distance to the gate when "arriving" signal was sent)} \over \text{(the speed of the train)}
\]

A failure mode resulting from incorrect (both logical and timing) operation of the monitor is modeled. The monitor must track all approaching trains, and command the safe operation of the gate. In controlling the gate, the monitor prevents the gate from opening when a train departs if another is too close down the line that opening the gate would endanger other traffic since the next train could arrive before the gate could again be closed.

\(^1\)Note: Waiting in M7 is assumed so that the gate has time to close (the end of the delay is the event that allows the next state transition to occur. Considering M11 we see that no waiting is necessary since the gate is already closed (i.e., a pervious train just passed trough).
D.2 Stochastic analysis

Using conventional techniques (i.e., SPNP's Markov solvers), discrete and/or continuous analyses can be performed. *Mathematica*® was used to compute the reliability of the railroad crossing system with different failure rates (or probabilities) and service rates (e.g., speed of the train, gate closing/opening rates etc.). The sensitivity of the system to variations in train speed (μ_7) and the gate closure rates (μ_6) were evaluated. The system's performability was studies to determine how reliably the gate closes before the train arrives with and without hardware and communication failures (i.e., mechanical gate failures [λ_5, λ_{13} superscript 'm'] and communication failures [$\lambda_{1,2,3,4,7,}$ and $\lambda_{8,10,11,12,13}$ superscript 'c'])). *The values used (and hence the results of the analysis) are only for illustrating the approach (i.e., do not attach empirical significance to the failure rates or MTTFs obtained.* This type analysis is useful in exploring different fault-handling mechanisms and the cost of providing fault-tolerance. The discrete analysis was not performed.

D.2.1 Continuous analysis

The results shown in Figures D.4 through D.7 predict reliability over the same operational life: up to 10,000 time units (tus) on the x-axis (each unit is further divided into 1000 sub-tus). The sensitivity of the a system to different transition rates (i.e., μ_6 and μ_7 for the various train speeds and the speed of the gate closing) are presented in Figure D.4. Note, the "rel" stands for reliability and is the instantaneous reliability of the data point at 10,000 tus. However, since the reliability was so close to zero the plotter stopped at the position indicated by the arrow head. The predicted mean time to failure is also provided (MTTF). In Figure D.5 the effect of varying the timing failure rate, in the presence of timing failures [including σ_9 failures caused by software or hardware or timing problems]) is shown.

2More elaborate fault-handling and fault-recovery mechanisms should be used to tolerate or prevent safety critical failures, while less attention may be paid to non-safety critical failures. Failure to open the gate may anger people waiting at the crossing but such failures can be handled inexpensively by providing a mechanism to manually open the gate. On the other hand, failure to close the gate is more severe, so traffic at the crossing should be alerted reliably and automatically.
Figure D.4 Performability for different train and gate speeds (based on CTMC).

Figure D.5 Performability for different timing failure and monitor failure rates.
Figure D.6 Performability for different train speeds and gate closing speeds.

Figure D.7 Performability for different train speeds and gate closing speeds.

- *Time units: each tick on the x-axis is 1000 tus. If a tu is a second then there are ~16mins/tic, and 10,000 ticks is ~2778hrs (full range of data).
 - $1/\mu_7 = 90\%$ of the time the train takes at most 500 tus to reach the gate crossing.
 - $1/\mu_6 = 80\%$ of the time the gate takes at most 100, 200 and 500 tus to close.
Figure D.6 shows the relation between the time needed for the train to reach the intersection \((1/\mu_7) \), the time needed for the gate to close \((1/\mu_6) \), and the timing failure rate \((\tau_6) \). These parameters are negatively correlated (i.e., as the slack time \([1/\mu_7 - 1/\mu_6]\) gets smaller \(\tau_6 \) increases). The differences between rates associated with the train and the gate transitions were taken as a factor of 10, 5, and 2 for runs 1 - 3 while the \(\tau_6 \) timing failure rate varied from 0.00000908 by a factor of 2 and 5 for runs 1 - 3 respectively. As can be seen from the graphs, the performability of the system decreases dramatically as the slack time decreases.

In order to study the effect of the timing critical transition rates on the predefined failure rates Figure D.7 is included. Compared this figure to Figure D.5. All of the parameters are the same except that instead of assuming large transition rates for \(\mu_6 \) and \(\mu_7 \) (i.e., 0.1 and 0.01 respectively) smaller rates were assumed (i.e., 0.002 and 0.0002).

D.3 Summary

The results show that the model is fairly sensitive to small changes in the rate assignments. There is less of an impact to the performability caused by the inherent failure rates of the subsystems when the transition rates are small. For example, comparing the difference between the best and the worst MTTF in each of the three runs of Figure D.5, we find a difference of a factor of 10, whereas that same comparison in Figure D.7 yields only a difference factor of 0.5 (approximately). Once again, do not attach any significance to the actual numbers. These numbers only illustrate the usefulness of these analyses in designing real-time systems with sufficient slack times and fault-tolerance to achieve a desired level of performability.