
Automated Program Behavior Analysis

Stacy Prowell

sprowell@cs.utk.edu

March 2005

SQRL / SEI

SQRL: Prowell FX

Motivation: Semantics

Development: Most engineering designs are subjected to
extensive analysis; software is typically not.

Testing: Testing focuses heavily on flaws in the design, not on
incorrect assumptions during design.

Analysis: The function of existing systems is not known with
sufficient fidelity to make engineering decisions.

SQRL: Prowell FX

Motivation: Complexity

Large programs contain a huge number of execution paths,
some of which may violate security or safety properties.
Programmers cannot understand them all; they typically
understand the main flow of the program and a few exceptional
cases.

TOP

BYPASS

4

2 7

3

12 14 15

1

3

2

4

5 6 7
0

SQRL: Prowell FX

Motivation: Exploit Structure

Every program is composed of a finite collection of structures,
each of which implements a function from inputs to outputs.

4
3

2
1

7
4

12
5

g
1

L := 6

2

3’

SQRL: Prowell FX

Motivation: Exploit Structure

The function of each structure can be determined (extracted)
based on rules for the particular structure (its functional
semantics). These can be composed in a stepwise fashion to
determine the overall program function.

SQRL: Prowell FX

Motivation: Expose Behavior

It is even hard to understand simple but “clever” programs.

void do_blink() {

if (*BLINK) {

*BLINK--;
if (*BLINK <= 0) {

*BLINK = 10;
*SPEED_DISPLAY = 0xFF;
return;

} else if (*BLINK <= 5) return;

}
*SPEED_DISPLAY = *SPEED;

}

SQRL: Prowell FX

Motivation: Expose Behavior

The extracted function reveals what is happening.

(b = 1 =⇒ b, s:=10, 0xFF
|1 < b ≤ 6 =⇒ b, s:=b − 1, s
|b > 6 =⇒ b, s:=b − 1, S
|b = 0 =⇒ b, s:=b, S).

When *BLINK is one, the display is blanked and *BLINK is set
to ten. Now, with *BLINK set to ten, the b > 6 rule takes over
the next time through, and the display is immediately set to the
speed. Thus the display is blanked for only 1/10 of a second, not
for 1/2 of a second, as desired.

SQRL: Prowell FX

Basic Idea

Given an arbitrary program, generate the program function
via function extraction.

Program → Program Function

Transform one specification (procedure) into another
(procedure-free).

Perform this transformation in a way which is:

Mathematically correct; avoid approximations
Interactive; rely on knowledgeable users
Extensible; provide ways to improve the extractor output

Even if the task is only partially successful, useful information is
obtained.

Provide a platform for analysts and developers to use which
supports reasoning about program function in a mathematically
correct way.

SQRL: Prowell FX

Architecture of the System

SQRL: Prowell FX

Example: Source

(From Pleszkoch and Linger
2004.)

SQRL: Prowell FX

Example: Behavior Catalog

SQRL: Prowell FX

Example: Exploited Code

SQRL: Prowell FX

Components

Deobfuscation

Structuring

Function
Extraction

Simplification

SQRL: Prowell FX

Deobfuscation

Idea

Rewrite the program flow to eliminate computed addresses
(starpoints); transform these into case statements.

Combine precondition / postcondition analysis with execution
chart analysis (H-Chart). Very similar to value set analysis.

Detect false computed jumps, dead code, and computed
constants.

Transform computed jumps into case statements.

Benefit

Eliminate unreachable code, simplify program flow, expose
indirect references.

SQRL: Prowell FX

Deobfuscation: Pointers

Pointers are typically not used arbitrarily; often they are
initialized and never changed.

It may be possible to determine that a pointer is bounded
in some way; a given range, or given strides.

Where possible, convert pointers to case statements.

SQRL: Prowell FX

Structuring

Idea

Rewrite arbitrary program flow as structured program flow,
using while, if-then-else, and sequence.

Rewrite program flow, possibly using label-structures where
necessary.

Benefit

Provide a structured view of the program (annotated with or
linked to the original source) through which analysts can
navigate. This will be the central interface to the system.

SQRL: Prowell FX

Extraction

Idea

For each structure allowed by program structuring, determine
the program function.

Use function composition to generate overall function from
component function.

Limited number of structures simplifies the problem.

Benefit

Structures in the program can be annotated with program
functions. The resulting program function can be put in the
database or queried via a theorem prover or model checker.

SQRL: Prowell FX

Extraction: Loops

There is no general theory for loop abstraction.

It is believed that a large number of loops can be
recognized by pattern: count up, count down, copy
memory, clear memory, search, etc. New patterns can be
added based on analysis of programs.

In some cases loop functions can be deduced by using
quantifiers and rewrite rules.

Discover loop function by iteratively guessing the loop
invariant.

If none of these works, write the loop as a recursive
expression; perhaps the user will recognize and add the
pattern to the database.

SQRL: Prowell FX

Simplification

Idea

Rewrite the extracted functions in referentially-transparent ways
to simplify their presentation to the user, or to reduce the work
done during extraction and composition.

Term rewriting system

Dedicated simplifiers (arithmetic, BDD)

Library of known functions

Benefit

Users can add patterns which are specific to the domain of the
program being studied.

SQRL: Prowell FX

Simplification: Other Tools

Theorem provers (ACL2, PVS, ...)

Model checkers

Binary decision diagrams

General term rewriting systems (Omega, Maude, ...)

Computer algebra systems (Maple, Axiom, ...)

SQRL: Prowell FX

Abstraction

Idea

Hide details of inputs and outputs.

A “banking system” has certain characteristics which can be
abstracted in a referentially-transparent manner, such as
deposit, withdrawal, overdraft, etc. These have slightly different
implementations in different programs.

Benefit

Further simplification.

SQRL: Prowell FX

Use Patterns

Discovery:

Given a program, does the program’s behavior catalog
reveal any malicious activity?

Does the program correctly implement the stated function?

Maintenance:

Are two implementations the same after refactoring?

Does a maintenance change preserve the function modulo
the change?

SQRL: Prowell FX

Status

The basic decompilation, deobfuscation, structuring, extraction,
and simplification systems have been developed and are being
tested now for Intel bytecodes.

Work is underway now on loop recognition and extraction.

SQRL: Prowell FX

Collaboration

The problem of discovering “close matches” in the known
function library.

The problem of comparing behavioral specifications.

Using supercomputers to attack the comparison problem,
or divide the extraction.

Applying pattern matching techniques to the simplification
problem.

...

SQRL: Prowell FX

