Systems Engineering

- Designing, implementing and installing systems which include hardware, software and people

Objectives

- To introduce concepts of system engineering to software engineers
- To discuss system engineering difficulties
- To describe the system procurement and system engineering processes
- To discuss reliability in a system context
Topics covered

- Systems and their environment
- System procurement
- The system engineering process
- System architecture modelling
- Human factors
- System reliability engineering

What is a system?

- A set of inter-related components working together towards some common objective. The system may include software, mechanical, electrical and electronic hardware and be operated by people.
- System components are dependent on other system components
- The properties and behaviour of system components are inextricably inter-mingled
Problems of systems engineering

- Large systems are usually designed to solve 'wicked' problems
- Systems engineering requires a great deal of co-ordination across disciplines
 - Almost infinite possibilities for design trade-offs across components
 - Mutual distrust and lack of understanding across engineering disciplines
- Systems must be designed to last many years in a changing environment

Software and systems engineering

- Proportion of software in systems is increasing. Software-driven general purpose electronics is replacing special-purpose systems
- Problems of systems engineering are similar to problems of software engineering
- Software is (unfortunately) seen as a problem in systems engineering. Many large system projects have been delayed because of software problems
Systems and their environment

- Systems are not independent but exist in an environment
- System’s function may be to change its environment
- Environment affects the functioning of the system
e.g. system may require electrical supply from its environment
- Organizational as well as physical environment may be important

System hierarchies

```
Town
  Street
    Building
      Heating system  Power system  Water system
      Security system  Lighting system  Waste system
```
System procurement

- Acquiring a system for an organization to meet some need
- Some system specification and architectural design is usually necessary before procurement
 - You need a specification to let a contract for system development
 - The specification may allow you to buy a commercial off-the-shelf (COTS) system. Almost always cheaper than developing a system from scratch

Contractors and sub-contractors

- The procurement of large hardware/software systems is usually based around some principal contractor
- Sub-contracts are issued to other suppliers to supply parts of the system
- Customer communicates with the principal contractor and does not deal directly with sub-contractors
Contractor/Sub-contractor model

- System customer
- Principal contractor
- Sub-contractor 1
- Sub-contractor 2
- Sub-contractor 3

The system procurement process

1. Off-the-shelf system available
2. Survey market for existing systems
3. Bespoke system required

- Adapt requirements
- Choose system
- Issue request for bids
- Let contract for development
- Choose supplier
- Select tender
- Negotiate contract
The system engineering process

- Inevitably involves engineers from different disciplines who must work together
 - Much scope for misunderstanding here. Different disciplines use a different vocabulary and much negotiation is required. Engineers may have personal agendas to fulfil
- Usually follows a ‘waterfall’ model because of the need for parallel development of different parts of the system
 - Little scope for iteration between phases because hardware changes are very expensive. Software may have to compensate for hardware problems
Inter-disciplinary involvement

- Software engineering
- Electronic engineering
- Mechanical engineering
- Structural engineering
- ATC systems engineering
- User interface design
- Civil engineering
- Electrical engineering
- Architecture

System requirements definition

- Three types of requirement defined at this stage
 - Coarse-grain functional requirements. System functions are defined in an abstract way
 - System properties. Non-functional requirements for the system in general are defined
 - Undesirable characteristics. Unacceptable system behaviour is specified
- Should also define overall organisational objectives for the system
System objectives

- **Functional objectives**
 - To provide a fire and intruder alarm system for the building which will provide internal and external warning of fire or unauthorized intrusion

- **Organisational objectives**
 - To ensure that the normal functioning of work carried out in the building is not seriously disrupted by events such as fire and unauthorized intrusion

System requirements problems

- Changing as the system is being specified
- Must anticipate hardware/communications developments over the lifetime of the system
- Hard to define non-functional requirements (particularly) without an impression of component structure of the system.
The system design process

- Partition requirements
 - Organise requirements into related groups
- Identify sub-systems
 - Identify a set of sub-systems which collectively can meet the system requirements
- Assign requirements to sub-systems
 - Causes particular problems when COTS are integrated
- Specify sub-system functionality
- Define sub-system interfaces
 - Critical activity for parallel sub-system development
System design problems

- Requirements partitioning to hardware, software and human components may involve a lot of negotiation
- Difficult design problems are often assumed to be readily solved using software
- Hardware platforms may be inappropriate for software requirements so software must compensate for this

Sub-system development

- Typically parallel projects developing the hardware, software and communications
- May involve some COTS procurement
- Lack of communication across implementation teams
- Bureaucratic and slow mechanism for proposing system changes means that the development schedule may be extended because of the need for rework
System integration

- The process of putting hardware, software and people together to make a system
- Should be tackled incrementally so that sub-systems are integrated one at a time
- Interface problems between sub-systems are usually found at this stage
- May be problems with uncoordinated deliveries of system components

System installation

- Environmental assumptions may be incorrect
- May be human resistance to the introduction of a new system
- System may have to coexist with alternative systems for some time
- May be physical installation problems (e.g. cabling problems)
- Operator training has to be identified
System operation

- Will bring unforeseen requirements to light
- Users may use the system in a way which is not anticipated by system designers
- May reveal problems in the interaction with other systems
 - Physical problems of incompatibility
 - Data conversion problems
 - Increased operator error rate because of inconsistent interfaces

System evolution

- Large systems have a long lifetime. They must evolve to meet changing requirements
- Evolution is inherently costly
 - Changes must be analysed from a technical and business perspective
 - Sub-systems interact so unanticipated problems can arise
 - There is rarely a rationale for original design decisions
 - System structure is corrupted as changes are made to it
- Existing systems which must be maintained are called legacy systems
System decommissioning

- Taking the system out of service after its useful lifetime
- May require removal of materials (e.g. dangerous chemicals) which pollute the environment
 - Should be planned for in the system design by encapsulation
- May require data to be restructured and converted to be used in some other system

System architecture modelling

- An architectural model presents an abstract view of the sub-systems making up a system
- May include major information flows between sub-systems
- Usually presented as a block diagram
- May identify different types of functional component in the model
System functional components

- Sensor components
- Actuator components
- Computation components
- Communication components
- Co-ordination components
- Interface components
System components

- **Sensor components**
 - Collect information from the system’s environment e.g. radars in an air traffic control system

- **Actuator components**
 - Cause some change in the system’s environment e.g. valves in a process control system which increase or decrease material flow in a pipe

- **Computation components**
 - Carry out some computations on an input to produce an output e.g. a floating point processor in a computer system

- **Communication components**
 - Allow system components to communicate with each other e.g. network linking distributed computers

- **Co-ordination components**
 - Co-ordinate the interactions of other system components e.g. scheduler in a real-time system

- **Interface components**
 - Facilitate the interactions of other system components e.g. operator interface

- All components are now usually software controlled
Intruder alarm system

- Movement sensors
- Door sensors
- Alarm controller
- Siren
- Voice synthesizer
- Telephone caller
- External control centre

Component types in alarm system

- **Sensor**
 - Movement sensor, door sensor
- **Actuator**
 - Siren
- **Communication**
 - Telephone caller
- **Co-ordination**
 - Alarm controller
- **Interface**
 - Voice synthesizer
Human factors

- All systems have human users and are used in a social and organisational context
- An appropriate user interface is essential for effective system operation
- Human factors are often the most important factor in determining the success or otherwise of a system

Other human factors

- Changes to work processes in the system’s environment
 - May be resisted by users if jobs are lost
- De-skilling of users
 - May be resented by professionals
- Changes to organisation power structure
 - Managers don’t like to lose control
- Work changes
 - Some changes to work practice may be unacceptable
System reliability engineering

- Because of component inter-dependencies, faults can be propagated through the system
- System failures often occur because of unforeseen inter-relationships between components
- It is probably impossible to anticipate all possible component relationships
- Software reliability measures may give a false picture of the system reliability

Reliability assessment

- Has to be formulated at a systems level and not just at a software level
- Hardware engineers have good (but limited) reliability models and can't understand the problems of software reliability
- Operational profile depends on the way in which the system is used.
System resilience

- What degree of resilience should be built into the system to allow for component availability?
- What components need be duplicated to ensure adequate service
- What alternative ways of providing a service can be devised

Interface engineering

- User interface determines what system facilities are used. If the interface to some facilities is better than others, they will be more heavily used
- Some reliability problems are actually user interface problems
- User interfaces should be designed to minimise operator error
User interface engineering problems

- What is a mistake?
- How can these mistakes be eliminated?
 - Error avoidance - don't allow the operator to do something that is incorrect
 - Error detection - detect an incorrect action and report it to the operator
- What degree of operator over-riding should be allowed?

Conclusion

- Systems engineering is hard! There will never be an easy answer to the problems of complex system development
- Software engineers do not have all the answers but are often better at taking a systems viewpoint
- Disciplines need to recognise each others strengths and actively rather than reluctantly cooperate in the systems engineering process
Key points

- System engineering involves input from a range of disciplines
- COTS systems are cheapest. However, most large systems require some tailored sub-systems
- Software may act as ‘glue’ between COTS systems from different suppliers
- Systems engineering process is usually a waterfall model

Key points

- System architectural models should show major sub-systems and inter-connections. They are usually described using block diagrams
- System component types are sensor, actuator, computation, co-ordination, communication and interface
- System reliability depends on hardware, software and operator reliability