Real-time Systems Design

Designing embedded software systems whose behaviour is subject to timing constraints

Objectives

- To show why real-time systems are usually designed as a set of cooperating concurrent processes
- To show the usefulness of state models in real-time systems design
- To describe the platform support required by real-time systems
- To introduce generic architectures for some types of real-time system
Topics covered

- Systems design
- State machine modelling
- Real-time executives
- Monitoring and control systems
- Data acquisition systems

Real-time systems

- Systems which monitor and control their environment
- Inevitably associated with hardware devices
 - Sensors: Collect data from the system environment
 - Actuators: Change (in some way) the system’s environment
- Time is critical. Real-time systems MUST respond within specified times
Definition

- A real-time system is a software system where the correct functioning of the system depends on the results produced by the system and the time at which these results are produced.
- A ‘soft’ real-time system is a system whose operation is degraded if results are not produced according to the specified timing requirements.
- A ‘hard’ real-time system is a system whose operation is incorrect if results are not produced according to the timing specification.

Stimulus/Response Systems

- Given a stimulus, the system must produce a response within a specified time.
- Periodic stimuli. Stimuli which occur at predictable time intervals:
 - For example, a temperature sensor may be polled 10 times per second.
- Aperiodic stimuli. Stimuli which occur at unpredictable times:
 - For example, a system power failure may trigger an interrupt which must be processed by the system.
Architectural considerations

- Because of the need to respond to timing demands made by different stimuli/responses, the system architecture must allow for fast switching between stimulus handlers.
- Timing demands of different stimuli are different so a simple sequential loop is not usually adequate.
- Real-time systems are usually designed as cooperating processes with a real-time executive controlling these processes.

A real-time system model
System elements

- **Sensors control processes**
 - Collect information from sensors. May buffer information collected in response to a sensor stimulus

- **Data processor**
 - Carries out processing of collected information and computes the system response

- **Actuator control**
 - Generates control signals for the actuator

Sensor/actuator processes
System design

- Design both the hardware and the software associated with system. Partition functions to either hardware or software
- Design decisions should be made on the basis on non-functional system requirements
- Hardware delivers better performance but potentially longer development and less scope for change

Hardware and software design

1. Establish system requirements
2. Partition requirements
 - Software requirements
 - Hardware requirements
3. Software design
4. Hardware design
R-T systems design process

- Identify the stimuli to be processed and the required responses to these stimuli
- For each stimulus and response, identify the timing constraints
- Aggregate the stimulus and response processing into concurrent processes. A process may be associated with each class of stimulus and response

R-T systems design process

- Design algorithms to process each class of stimulus and response. These must meet the given timing requirements
- Design a scheduling system which will ensure that processes are started in time to meet their deadlines
- Integrate using a real-time executive or operating system
Timing constraints

- May require extensive simulation and experiment to ensure that these are met by the system.
- May mean that certain design strategies such as object-oriented design cannot be used because of the additional overhead involved.
- May mean that low-level programming language features have to be used for performance reasons.

State machine modelling

- The effect of a stimulus in a real-time system may trigger a transition from one state to another.
- Finite state machines can be used for modelling real-time systems.
- However, FSM models lack structure. Even simple systems can have a complex model.
- Thread diagrams which show an event sequence are a means of managing the complexity in state machine models.
Microwave oven state machine

Microwave oven states

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half power on</td>
<td>The oven power is set to 300 watts</td>
</tr>
<tr>
<td>Full power on</td>
<td>The oven power is set to 600 watts</td>
</tr>
<tr>
<td>Set time</td>
<td>The cooking time is set to the user’s input value</td>
</tr>
<tr>
<td>Operation disabled</td>
<td>Oven operation is disabled for safety. Interior oven light is on</td>
</tr>
<tr>
<td>Operation enabled</td>
<td>Oven operation is enabled. Interior oven light is off</td>
</tr>
<tr>
<td>Timed operation</td>
<td>Oven in operation. Interior oven light is on. Timer is counting down.</td>
</tr>
<tr>
<td>Cooking complete</td>
<td>Timer has counted down to zero. Audible alarm signal is on. Oven light is off</td>
</tr>
</tbody>
</table>
Microwave oven stimuli

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half power</td>
<td>The user has pressed the half power button</td>
</tr>
<tr>
<td>Full power</td>
<td>The user has pressed the full power button</td>
</tr>
<tr>
<td>Timer</td>
<td>The user has pressed one of the timer buttons</td>
</tr>
<tr>
<td>Door open</td>
<td>The oven door switch is not closed</td>
</tr>
<tr>
<td>Door closed</td>
<td>The oven door switch is closed</td>
</tr>
<tr>
<td>Start</td>
<td>The user has pressed the start button</td>
</tr>
<tr>
<td>Timeout</td>
<td>Timer signal indicating that set cooking time is finished</td>
</tr>
</tbody>
</table>

Thread diagrams

- Used to structure and present state model information
- Show the end-to-end processing of a specific set of stimuli
- Thread diagrams should be produced for message combinations. This means for systems with multiple stimuli, this approach may be impractical
Thread diagram - full power

Real-time executives

- Real-time executives are specialised operating systems which manage the processes in the RTS
- Responsible for process management and resource (processor and memory) allocation
- May be based on a standard RTE kernel which is used unchanged or modified for a particular application
- Does not include facilities such as file management
Executive components

- Real-time clock
 - Provides information for process scheduling.
- Interrupt handler
 - Manages aperiodic requests for service.
- Scheduler
 - Chooses the next process to be run.
- Resource manager
 - Allocates memory and processor resources.
- Dispatcher
 - Starts process execution.

Non-stop system components

- Configuration manager
 - Responsible for the dynamic reconfiguration of the system software and hardware. Hardware modules may be replaced and software upgraded without stopping the systems.
- Fault manager
 - Responsible for detecting software and hardware faults and taking appropriate actions (e.g. switching to backup disks) to ensure that the system continues in operation.
Real-time executive components

- Replace with portrait slide

Process priority

- The processing of some types of stimuli must sometimes take priority
- Interrupt level priority. Highest priority which is allocated to processes requiring a very fast response
- Clock level priority. Allocated to periodic processes
- Within these, further levels of priority may be assigned
Interrupt servicing

- Control is transferred automatically to a pre-determined memory location
- This location contains an instruction to jump to an interrupt service routine
- Further interrupts are disabled, the interrupt serviced and control returned to the interrupted process
- Interrupt service routines MUST be short, simple and fast

Periodic process servicing

- In most real-time systems, there will be several classes of periodic process, each with different periods (the time between executions), execution times and deadlines (the time by which processing must be completed)
- The real-time clock ticks periodically and each tick causes an interrupt which schedules the process manager for periodic processes
- The process manager selects a process which is ready for execution
RTE process management

- **Scheduler**: Choose process for execution
- **Resource manager**: Allocate memory and processor
- **Despatcher**: Start execution on an available processor

Process switching

- The scheduler chooses the next process to be executed by the processor. This depends on a scheduling strategy which may take the process priority into account.
- The resource manager allocates memory and a processor for the process to be executed.
- Despatcher takes process from ready list, loads it onto a processor and starts execution.
Monitoring and control systems

- Important class of real-time systems
- Continuously check sensors and take actions depending on sensor values
- Monitoring systems examine sensors and report their results
- Control systems take sensor values and control hardware actuators

Intruder alarm system

- System is required to monitor sensors on doors and windows to detect the presence of intruders in a building
- When a sensor indicates a break-in, system switches on lights around the area and calls police automatically
- Includes provision for operation without a mains power supply
Intruder alarm system

- **Sensors**
 - Movement detectors, window sensors, door sensors.
 - 50 window sensors, 30 door sensors and 200 movement detectors.

- **Actions**
 - When an intruder is detected, police are called automatically.
 - Lights are switched on in rooms with active sensors.
 - An audible alarm is switched on.

- The system switches automatically to backup power when a voltage drop is detected.

The R-T system design process

- Identify stimuli and associated responses
- Define the timing constraints associated with each stimulus and response
- Allocate system functions to concurrent processes
- Design algorithms for stimulus processing and response generation
- Design a scheduling system which ensures that processes will always be scheduled to meet their deadlines
Stimuli to be processed

- **Power failure**
 - Generated aperiodically by a circuit monitor. When received, the system must switch to backup power within 50 ms

- **Intruder alarm**
 - Stimulus generated by system sensors. Response is to call the police, switch on building lights and the audible alarm

Timing requirements

<table>
<thead>
<tr>
<th>Stimulus/Response</th>
<th>Timing requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power fail interrupt</td>
<td>The switch to backup power must be completed within a deadline of 50 ms.</td>
</tr>
<tr>
<td>Door alarm</td>
<td>Each door alarm should be polled twice per second.</td>
</tr>
<tr>
<td>Window alarm</td>
<td>Each window alarm should be polled twice per second.</td>
</tr>
<tr>
<td>Movement detector</td>
<td>Each movement detector should be polled twice per second.</td>
</tr>
<tr>
<td>Audible alarm</td>
<td>The audible alarm should be switched on within 1/2 second of an alarm being raised by a sensor</td>
</tr>
<tr>
<td>Lights switch</td>
<td>The lights should be switched on within 1/2 second of an alarm being raised by a sensor</td>
</tr>
<tr>
<td>Communications</td>
<td>The call to the police should be started within 2 seconds of an alarm being raised by a sensor</td>
</tr>
<tr>
<td>Voice synthesiser</td>
<td>A synthesised message should be available within 4 seconds of an alarm being raised by a sensor</td>
</tr>
</tbody>
</table>
Process architecture

Replace with portrait slide

Building_monitor process

Replace with portrait slides
Control systems

- Burglar alarm system is primarily a monitoring system. Collects data from sensors but no real-time actuator control.
- Control systems are similar because, in response to sensor values, the system sends control signals to actuators.
- Example of a monitoring and control system is a system which monitors temperature and switches heaters on and off.

A temperature control system
Data acquisition systems

- Collect data from sensors for subsequent processing and analysis.
- Data collection processes and processing processes may have different periods and deadlines.
- Data collection may be faster than processing e.g. collecting information about an explosion.
- Circular or ring buffers are a mechanism for smoothing speed differences.

Reactor data collection

- System collects data from a set of sensors monitoring the neutron flux from a nuclear reactor.
- Flux data is placed in a ring buffer for later processing.
- The ring buffer is itself implemented as a concurrent process so that the collection and processing processes may be synchronized.
Reactor flux monitoring

Sensors (each data flow is a sensor value)

Sensor process → Sensor data buffer → Process data → Display

A ring buffer

Producer process → Consumer process
Mutual exclusion

- Producer processes collect data and add it to the buffer. Consumer processes take data from the buffer and make elements available.
- Producer and consumer processes must be mutually excluded from accessing the same element.
- The buffer must stop producer processes adding information to a full buffer and consumer processes trying to take information from an empty buffer.

Sensor data buffer - task specification

```
task Sensor_data_buffer is
  -- Get and Put are like procedures which may
  -- execute in parallel. They are the only interface to the buffer.
  entry Put ( Val: SENSOR_RECORD ) ;
  entry Get ( Val: in out SENSOR_RECORD ) ;
end Sensor_data_buffer ;
```
Sensor data buffer

- Replace with portrait slide

Key points

- Real-time system correctness depends not just on what the system does but also on how fast it reacts
- Delay partitioning of functions to hardware and software until as late as possible in the design process
- Real-time systems are usually designed as a number of concurrent processes
Key points

- A R-T system model may associate processes with each class of sensor and actuator.
- Real-time executives are responsible for process and resource management.
- Monitoring and control systems poll sensors and send control signal to actuators.
- Data acquisition systems are usually organised according to a producer consumer model.