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Abstract

This report details the findings and recommendations of the DOE ASCR Exascale Mathematics
Working Group that was chartered to identify mathematics and algorithms research opportunities
that will enable scientific applications to harness the potential of exascale computing. The working
group organized a workshop, held August 21-22, 2013 in Washington, D.C., to solicit input from
over seventy members of the applied mathematics community. Research gaps, approaches, and
directions across the breadth of applied mathematics were discussed, and this report synthesizes
these perspectives into an integrated outlook on the applied mathematics research necessary to
achieve scientific breakthroughs using exascale systems.
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Executive Summary

High fidelity modeling and simulation of physical systems is a critical enabling technology area
for the U.S. Department of Energy (DOE), required for addressing some of the most challenging
problems in energy, the environment and national security. The importance of continued advances
in this area cannot be overstated. As a result, DOE is aggressively pursuing an exascale com-
puting program that includes applied mathematics research focused on the unique challenges and
opportunities present at this scale.

Exascale capabilities promise unprecedented potential for high fidelity, high confidence, and
optimal solutions to complex multiscale, multiphysics problems at the heart of DOE’s mission.
Unlocking the potential of exascale computing requires the development of the next generation of
computational models in order to satisfy the accuracy and fidelity needs for targeted problems.
Specifically, more complex physical models must be developed to account for more aspects of the
physical phenomena being modeled. Furthermore, for the physical models being used, increases in
the resolution of the system variables are needed in order to improve simulation accuracy, which in
turn places higher demands on computational hardware and software.

In order to meet DOE’s science, design, and decision support needs, the computational capa-
bility of the fastest supercomputers must continue to grow. However, the transition from current
sub-petascale and petascale computing to exascale computing will be at least as disruptive as the
transition from vector to parallel computing in the 1990s. Driven mostly by power constraints,
exascale-class machines (capable of 1018 floating-point operations per second or more) will see a
massive increase in the number of computing units (into the millions), in the form of homogeneous
cores or heterogeneous mixtures of multipurpose CPUs and specialized processing units. Memory
and bandwidth will not increase as quickly as core count, and data transfer latencies will be further
exposed. The shear number of components increases the potential for more frequent faults and
failures.

In preparation for exascale systems, the DOE Office of Science Advance Scientific Computing
Research (ASCR) program has sponsored a series of workshops leading to comprehensive reports on
many of the challenges and opportunities. Nevertheless, the role of applied mathematics in the ex-
ascale computing effort has not been sufficiently explored. It is widely recognized that, historically,
numerical algorithms and libraries have contributed as much to increases in computational simu-
lation capability as have improvements in hardware. Mathematics permeates simulation; and the
expected developments in computer systems will require a holistic reconsideration of all aspects of
solving a problem, including formulation, discretization, scalable solvers, analysis, and software. In
addition, applied mathematics has a role to play in exascale system software, providing algorithms
and models for capabilities such as dynamic resource allocation.

This report details the findings and recommendations of the DOE ASCR Exascale Mathematics
Working Group that was chartered to identify mathematics and algorithms research opportunities
that will enable scientific applications to harness the potential of exascale computing. The working
group organized a workshop, held August 21-22, 2013, in Washington, D.C., to solicit input from
over seventy members of the applied mathematics community. Research gaps, approaches, and
directions across the breadth of applied mathematics were discussed. This report synthesizes these
perspectives into an integrated outlook on the applied mathematics research necessary to achieve
scientific breakthroughs using exascale systems.

Concisely, the DOE Advanced Scientific Computing Research Program needs to take action
to build a more explicit research program in applied mathematics for exascale computing. The
necessary actions are summarized in five key recommendations:
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1. DOE ASCR should proceed expeditiously and with high priority with an exascale mathe-
matics initiative so that DOE continues to lead in using extreme-scale computing to meet
important national needs.

2. A significant new investment in research and development of new models, discretizations,
and algorithms implemented in new science application codes is required in order to fully
leverage the significant advances in computational capability that will be available at the
exascale. Many existing algorithms and implementations that have relied on steady clock
speed improvements cannot exploit the performance trends of future systems.

3. Not all problems require exascale computation, and yet these problems will continue to require
applied mathematics research. Thus, a balance is needed in the DOE Applied Mathemat-
ics Research portfolio that provides sufficient resources to realize the potential of exascale
simulation while preserving a healthy base research program.

4. An intensive co-design effort is essential for success, where computer scientists, applied mathe-
maticians, and application scientists work closely together to produce a computational science
discovery environment able to exploit the computational resources that will be available at
the exascale.

5. DOE ASCR must make investments to increase the pool of computational scientists and
mathematicians trained in both applied mathematics and high-performance computing.

The majority of this report makes the case for these recommendations, based on a detailed ex-
planation of the role of applied mathematics in scientific simulation and the associated research
challenges motivated by the drive toward exascale computing.

Applied mathematics research is a critical component of the overall exascale computing enter-
prise in DOE. Enhancing the national capabilities in advanced mathematical modeling, numerical
algorithms, and software will have a major impact on our future national research capacity and
an international impact in the ever-increasing number of domains within which high-performance
computing is, or is set to become, a core activity. It is essential that DOE make strategic invest-
ments now in high-performance computing algorithms and software in order to enable successful
use of exascale resources in support of its mission and to safeguard our ability to continue to lead
the world in this field.
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1 Introduction

The U.S. Department of Energy (DOE) is tasked with addressing some of the most challenging
problems in energy, the environment, and national security. Addressing these challenges requires
simulation of complex multiscale, multiphysics phenomena and may also involve mathematical
optimization and uncertainty quantification to answer broader design and decision questions. How-
ever, even with today’s mathematical algorithms and petaflop supercomputers, many extreme-scale
science problems are still intractable.

A science-based case for investment in exascale computing has been established [30]. Over the
past five years, the Scientific Grand Challenge Workshop Series has produced a string of reports
on the open research questions in climate science [22], high energy physics [21], nuclear physics [29]
and energy [28], fusion energy [26], materials science and chemistry [23], biology [25], and national
security [27]. Advancing science in these key areas requires the development of the next-generation
computational models to satisfy the accuracy and fidelity needs of targeted problems. The potential
impact of these models on computational science is twofold. First, scientists will be able to account
for more aspects of the physical phenomena being modeled. Second, increases in the resolution of
the system variables, such as the number of spatial zones, time steps, or particles, will improve
simulation accuracy. Both of these impacts will place higher demands on computational hardware
and software.

To meet these science needs, the computational capability of the fastest supercomputers must
continue to grow. However, the transition from current sub-petascale and petascale computing to
exascale computing will be at least as disruptive as the transition from vector to parallel computing
in the 1990s. Driven mostly by power constraints, exascale-class machines will see a massive
increase in the number of computing units, whether homogeneous cores or heterogeneous mixtures
of multipurpose CPUs and specialized processing units. Memory and bandwidth will not increase
as quickly as core count, and data transfer latencies will be exposed further. The shear number of
components—for instance, millions of cores—increases the potential for more frequent faults and
failures. The proposed exascale architectures will present significant challenges for scalable software
development and deployment.

Accordingly, the DOE Office of Science Advance Scientific Computing Research Program (ASCR)
has started to prepare for the exascale computing challenges. Workshops have been held and reports
have been written on many of the computer science challenges, including architectures [24, 32], oper-
ating and runtime systems [37], programming challenges [34], fault management [36], development
and performance measurement tools [35], data management and analysis [33], and performance
modeling and simulation [38]. The 2010 Advanced Scientific Computing Advisory Committee (AS-
CAC) Exascale Report [30] found that an integrated “co-design” effort will be essential for success,
where system architects, application software designers, applied mathematicians, and computer sci-
entists work closely together to produce a computational science discovery environment that fully
leverages the significant advances in computational capability that will be available at the exascale.

Nevertheless, the role of applied mathematics in the exascale computing effort has not been
sufficiently explored in and of itself. It is widely recognized that, historically, numerical algorithms
and libraries have contributed as much to increases in computational simulation capability as have
improvements in hardware. The expected developments in computer systems will place an even
greater focus on algorithms as a means of increasing our computational capability. Significant
new model development, algorithm redesign, and science application code reimplementation will
be required in order to exploit effectively the power of exascale architectures. Some of these issues
have been identified in previous reports [31, 33, 39], but, to date, no assessment has focused solely on
the challenges and opportunities for research in applied mathematics for exascale simulation. This
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report addresses this deficiency by examining the role of applied mathematics research throughout
the modeling and simulation process and by identifying important topics in need of more research.

1.1 Charter and Goals

In January 2013, ASCR formed an Exascale Mathematics Working Group (EMWG) to identify
mathematics and algorithms research opportunities that will enable scientific applications to harness
the potential of exascale computing.

The EMWG charter, written by the working group and approved by ASCR, was to do the
following:

• Analyze potential gaps in current thinking about applied mathematics for the exascale;

• Identify new algorithmic approaches that address exascale challenges;

• Identify mathematics to address new scientific questions accessible at exascale, especially
through integration across applied mathematics subdisciplines;

• Identify a holistic, co-design approach for applied mathematics exascale research that more
directly involves a dialogue with application scientists and computer scientists; and

• Submit a report of the findings to the DOE Office of Science.

This charter reflected the desire of the working group to consider the breadth of applied mathematics
activities necessary for extreme-scale science, from mathematical modeling through discretization
and solvers to analysis and decisions.

1.2 Membership

The EMWG comprised ten research scientists from the DOE national laboratories:

Name Affiliation

John Bell Lawrence Berkeley National Laboratory
Luis Chacón Los Alamos National Laboratory
Jack Dongarra∗ Oak Ridge National Laboratory
Rob Falgout Lawrence Livermore National Laboratory
Michael Heroux Sandia National Laboratories
Jeff Hittinger∗ Lawrence Livermore National Laboratory
Paul Hovland Argonne National Laboratory
Esmond Ng Lawrence Berkeley National Laboratory
Clayton Webster Oak Ridge National Laboratory
Stefan Wild Argonne National Laboratory

*co-chairs

Karen Pao, an ASCR program manager for the applied mathematics subprogram, also participated
as the ASCR point of contact for the working group.

1.3 History and Timeline

The EMWG was formed in early January 2013 at the request of William Harrod, director of the
ASCR Division of Computational Science Research and Partnerships. The initial meeting of the

2 Applied Mathematics Research for Exascale Computing



working group occurred in late January via teleconference; the initial effort was to define a charter
and to plan a course for gathering information. Most meetings were held as teleconferences, but the
first face-to-face meeting of the working group occurred at the SIAM Conference on Computational
Science and Engineering in late February 2013. To obtain information, the working group decided
to solicit white papers from the applied mathematics community and to host a workshop to engage
the community further. In addition, the EMWG decided to engage in a series of fact-finding
teleconferences with domain sciences from Office of Science areas; these teleconferences occurred
from April through June. Position papers were selected in May 2013; and the workshop, organized
around these papers, was held August 21–22, 2013, in Washington, D.C. This report was written
during the fall of 2013 and submitted to ASCR in February 2014.

1.4 Fact-Finding Meetings

Solvers and solver libraries are a mainstay of scientific computing and justifiably a core emphasis of
applied mathematics research. However, mathematics plays a pervasive role extending “upsteam”
in the modeling process. The mathematical formulation of the problem and its discretization are
also important steps in simulation that impose constraints and challenges on the “downstream”
linear and nonlinear solvers. Thus, the EMWG decided to investigate model formulation within
the context of the problems facing DOE science application areas. The goal was to better under-
stand the science needs—the open questions different science domains are trying to answer through
simulation—driving the push to exascale, without limiting consideration to current practices. Many
previous grand challenge reports focus heavily on building from the current state of the art without
questioning whether that state is an artifact of the evolution of the field. The push to exascale not
only may be an opportunity to change this but also may benefit from a fundamental rethinking of
how the problems are posed.

The EMWG hosted six teleconference presentations by scientists representing the following
areas:

Topic Speaker Affiliation

Nuclear (Fission) Energy Marvin Adams Texas A&M University

Atmospheric Science William Collins LBNL

Correlated Electron Systems Thomas Maier ORNL

Fusion Energy Martin Greenwald MIT

Biofuels Jeremy Smith ORNL

Materials Science Paul Kent ORNL

Perspectives formed from these discussions are the basis of Section 2 of this report.

1.5 Workshop

To stimulate a dialogue with the greater applied mathematics community, in May 2013, the EMWG
issued a call for position papers on exascale computing research challenges in applied mathemat-
ics. Seventy-five position papers were received, and from these forty were selected for presen-
tation. Workshop details, including the position papers, agenda, and attendees, are provided
in the appendices. Electronic versions of the position papers are available for download from
https://collab.mcs.anl.gov/display/examath.

The EMWG’s Exascale Mathematics Workshop was held August 21–22, 2013, in Washington,
D.C., with over seventy DOE laboratory researchers, academics, and government program managers
participating. Several members of the European applied mathematics community were also present.
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Position papers addressed topics such as scalable mesh and geometry generation, multiphysics and
multiscale algorithms, in situ data analysis, adaptive precision, asynchronous algorithms, optimiza-
tion, uncertainty quantification, and resilience. Each position paper was allotted ten minutes for
presentation, and a substantial amount of time was devoted to group discussions about the ideas
and issues raised by the presenters. After the workshop, a web-based survey was created to obtain
additional feedback from the workshop attendees.

1.6 Report Organization

In the following section, we consider three motivating examples of the types of extreme-scale sci-
ence problems that exascale computing may enable researchers to address; these exemplar science
needs represent the forces from above that will affect the mathematics involved in scientific sim-
ulation codes. In Section 3, we briefly review the challenges of exascale computing as imposed
by the expected changes in computational hardware; these challenges represent the forces from
below on the mathematics involved in scientific simulation codes. We use a top-down analysis in
Section 4 to identify research opportunities in applied and computational mathematics for exascale
computing. The interdependencies between mathematics research and other exascale computing
research activities are discussed in Section 5. The report concludes in Section 6 with findings and
recommendations. Information on the workshop that informed this report, including the submitted
white papers, workshop attendees, and workshop agenda, are provided in the appendices.

2 Motivating Science and the Role of Applied Mathematics

The science challenges that motivate the need for exascale-class computing resources have been
well-documented [21–23, 25–29]. Two common themes of these science challenges are the extreme
ranges of temporal and spatial scales and the complex nonlinear interactions of multiple physical
processes. Predictive simulation capabilities are the goal, so that computational results can be used
not only to increase scientific knowledge and understanding but also for design and decision. For
context, we briefly review three such science areas of relevance to the DOE—combustion, climate,
and materials—and highlight the associated mathematical challenges within each area.

2.1 Combustion

One area where exascale computing can make significant impact is the design of next-generation
combustion systems such as high-efficiency, low-emission diesel engines that can burn new biodiesel
fuels. On the surface, modeling the combustion process in a diesel engine involves the simulation
of high-pressure turbulent reacting flow in a complex moving geometry. While this is certainly a
requirement, a number of additional physical processes need to be modeled in order to simulate
a diesel engine. Fuel is injected into the engine in a high-pressure, high-velocity liquid jet. The
dynamics of this jet, which plays a critical role in engine performance, is a complex multiphase
phenomenon where extremely fine-scale effects play a key role in the breakup and atomization of the
fuel. The combustion process forms particulate soot as an intermediary in the combustion process.
The formation and subsequent burnout of soot are other multiphase effects in which molecular-level
processes govern the behavior of the system. Because soot is optically thick, radiative processes
enter into the picture as well, combining with conductive heat transfer to the walls to define the
thermal environment within the cylinder. High-fidelity simulation of this type of system is beyond
the capability of current petascale systems.
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These elements represent one aspect of diesel engine simulation; however, a number of other
issues also play a critical role in predictive simulation of an engine. Diesel fuels are complex hydro-
carbons whose chemical, thermodynamic, and transport properties are needed to perform a simula-
tion. Reaction kinetics and thermodynamic properties for these types of complex molecules are not
well known. Furthermore, even if the kinetics were fully understood, simulations with a comprehen-
sive chemical mechanism would be infeasible. Transport properties are also not well understood,
particularly in the high-pressure environment associated with diesel combustion. Quantifying the
fidelity of a diesel engine simulation will require detailed uncertainty quantification to elucidate the
uncertainty in predictions resulting from uncertainties in the fluid properties used in the simulation.
These issues are further complicated by the need to model a variety of candidate biodiesel fuels
in addition to traditional diesel fuel. Ensembles of simulations will be required in order to link
experimental data to fuel properties and improve the predictive capability of simulations.

The simulation of a diesel engine is a complex multiphysics problem that needs to incorporate
the effect of uncertainty across a range of different submodels and establish linkages between models
and experimental data. However, the ability to perform simulations of a diesel engine with quan-
tified uncertainty is only one step toward the actual goal, which is the design of a better engine.
Designers would like to find optimal designs for fuel injectors and their placement in the cylinder,
the shape of the cylinder bowl, and the placement and geometry of valves. These design problems
are multiobjective: they need to balance fuel efficiency with emissions across a range of potential
fuels and operating conditions. In addition, there are inherently stochastic because of cycle-to-cycle
variability in the engine and of variations in the fuel characteristics. Solving these optimization
problems will require methodologies for constructing rich hierarchies of models of quantified fidelity,
combined with optimization algorithms that can utilize models of varying fidelity during the opti-
mization process. The issues in diesel engine design are not simply computational power. A rich
set of new mathematical tools is needed to enable the design of next-generation engines.

2.2 Climate

Climate modeling is another application where exascale computing has the potential to make sig-
nificant impact. At a basic level the goal of climate modeling is to estimate the response of global
temperature to increases in greenhouse gases. The full complexity of the problem becomes manifest
when one tries to quantify how the climate system would respond to an increase in temperature.
Climate scientists would like to answer questions such as what temperature rise is required to trig-
ger a major climatic event (e.g., melting of the Antarctic ice cap or an irreversible shift in ocean
circulation); how extreme weather patterns will change; and how large stores of carbon will respond
to global warming.

As with combustion, answering these questions is not just a matter of harnessing more computer
cycles; substantive mathematical advances are needed to address these problems. Climate models
are complex multiphysics problems. They combine models for atmospheres, oceans, ice sheets, land
surfaces, and the biosphere. Each of these models poses a challenging mathematical problem in its
own right. In many cases, asymptotic convergence of the models has not been established. Further-
more, important questions arise about how to couple these models computationally. What are the
key requirements to ensure that the combined model produces a stable and accurate prediction?
How do errors in one model impact the fidelity of other components of the model? How accurately
must each component be treated to ensure the fidelity of climate predictions?

Of equal if not greater importance is the multiscale character of many of the models used for
climate simulation. In many cases, the basic physical processes are understood at small scales, but
reliable techniques for representing those processes are larger scales are not known. For example,
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the fundamental processes for moisture physics in clouds are well understood, but it is not known
how to represent ensembles of clouds at the scales required for climate simulation. There is no
analog of statistical mechanics for clouds. Currently, it has proven challenging to link models
of processes operating at the scale of climate models to benchmark models and measurements of
these same processes operating at their native scales. The lack of systematic methodology for
deriving representations of key processes as a function of scale is a fundamental barrier to progress.
Developing the mathematical tools to address these types of scale-dependent models will require
significant advances. Many of the processes that need to be modeled are highly nonlinear, and
there is often no clear scale separation. Consequently, models based on a Markovian assumption
will not be adequate. Models that can represent the physics across a range of scales are likely to
be stochastic and include memory effects.

Another mathematical challenge in climate modeling is how to most effectively utilize observa-
tional data to improve predictions. Can we develop data assimilation schemes that improve model
performance? What does a given set of observations tell us about the underlying physical pro-
cess? What are the most effective quantities to measure to understand the connections amongst
the different components of an earth system model? Answering these questions will require the
development of new ideas at the interface of Bayesian statistical analysis, sampling methodologies,
and optimization.

Climate models are not only used for basic scientific studies; they are also used for assessments
needed by policy makers. However, precise deterministic prediction of long-term climatic trends
is not feasible. In this type of setting, a single computation is not sufficient. Rather, climate
scientists need to quantify the potential range of possible behaviors. In some cases, the goal is not
an estimation of mean behavior but an assessment of the possibility of rare but catastrophic events.
Obviously, these types of studies need to include estimates of uncertainties in the predictions.

2.3 Materials Science

The development of new novel materials plays a key role in solving technological challenges in
areas such as artificial light harvesting to produce liquid fuels, energy storage in next-generation
battery technologies, metal organic frameworks, zeolites, and organic photovoltaics. Advances in
computational materials approaches are making inroads predicting material properties, identifying
novel and potentially useful materials, and guiding the functional materials design process at an
atomistic scale using petascale-computing resources. The need for exascale within computational
materials sciences is driven by the need to predict and understand the behavior of new materials
from the atomistic scale to the device level itself. Computational materials science at exascale will
be key to enable advances in high-tech materials that will move us toward a sustainable, safe, and
renewable energy future.

Predicting the behavior of heterogeneous materials with significant structural disorder and
chemical complexity in macroscopic devices requires the modeling of emergent (mesoscale) proper-
ties and processes that bridge the many length (nanometer to microns) and time (femtoseconds to
minutes) scales. Modeling the emergent properties and the multiphysics nature of various processes
of complex systems at disparate length and time scales calls for a multiscale approach that can
describe transport of ions and electrons, synthetic self-assembly of structures, electrochemical re-
actions at interfaces, heat generation and transfer, and structural deformation and stress. In order
to bridge various length scales, it is essential to link continuum and other microscale models with
atomistic and even electronic descriptions by providing correct up-scaling of interactions for coarse
graining as well as down-scaling to perturb nanoscale and electronic environments.

Furthermore, in order to predict the transient behavior of materials, such as their structure
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and electrical, chemical, and thermal properties, it is essential to understand their behavior under
real-world conditions. For example, modeling the behavior of lithium from the nanoscale to the
microscale during the charging and discharging cycles of lithium-ion batteries can provide insight
into the modes of failure and degradation of battery materials and can drive the design of better
batteries. charge carrier diffusion, crack formation, and significantly longer timescales. Although
a number of mathematical models have been developed to accomplish these goals, the numerical
solution of the underlying equations in these models remains challenging.

Accurate approaches for describing the large, complex, heterogeneous nature of materials and
the physical processes at the mesoscale are expected to be a truly exascale computing challenge [23].
To capture mescoscale properties of complex materials requires scientists to study systems consisting
of millions of atoms. Another driving force in computational materials science requiring exascale
resources is the enormous size of the search space from which optimal materials can be chosen. If
one considers hundreds of thousands of potential materials that each need to be modeled accurately
using teraflop or sub-petaflop simulations, the need for exascale becomes clear. The many-body
nature of microscopic models makes the complexity of the computation grow rapidly with respect
to the number of degrees of freedom. For ground state calculations, approaches based on density
functional theory typically scale cubically with respect to the number of atoms, n. The scaling
for wavefunction methods, such as the coupled cluster method, is even higher. For excited states
calculations, methods for both extended systems and molecules have at least O(n4) complexity and
in many cases can go up to O(n6). For n = 1, 000, which is still relatively small, this complexity
amounts to O(1018) operations for a single calculation.

As an example of the many mathematical issues that enter into these multiscale, multiphysics
materials problems, consider coupling a microscopic model to an atomistic or continuum model
using a microscopic simulation to fit or estimate parameters contained in a higher-level model. The
estimation process may require solving a system of tightly coupled nonlinear differential/integral
equations iteratively. It may also require collecting information from multiple instances of micro-
scopic simulations that can be carried out in parallel. Furthermore, uncertainty quantification and
sensitivity analysis are important tools that could be brought to bear for tuning model parameters
and making them adaptive to configuration and environment changes. Iterative solver accelera-
tion techniques that can take advantage of physics-motivated preconditioner are highly desirable
for solving both the coupling equations and nonlinear equations used in a microscopic model. In
order to elucidate the dynamic behavior of the material, efficient and stable time-evolution schemes
are necessary. In order to bridge the gap among different scales, multiresolution and multiscale
methods based on asymptotic expansion, coarse graining, and statistical sampling are frequently
used. All these mathematical techniques must be able to take advantage of the vast amount of
computational resources and extreme concurrency available at the exascale.

3 Challenges at Exascale

Exascale will provide the computational power needed to address the important science challenges
in DOE’s mission, but that capability will come at an expense of a dramatic change in architectures.
Numerous reports over the past five years have documented the technical challenges and the non-
viability of the existing computer designs to reach exascale [24, 32, 58]. For context, we briefly
summarize these challenges here.

Power: Power is the driving force behind the changes in supercomputer architecture. In
some sense, exascale computing should really be thought of more as “low-power, high-performance
computing.” To continue to design supercomputers using standard commodity technologies is not
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sustainable; the power requirements of such a machine rapidly become prohibitive [58]. The goal
has therefore been set to achieve exaflop performance with a power limit of 20 MW. This restriction
has direct implications for the structure and organization of the hardware components as well as
algorithms. It is conceivable that the energy used by a simulation may replace the CPU time as
the cost metric for supercomputer use; hence, numerical algorithms may need to become more
power-aware.

Extreme Concurrency: From hand-held devices to supercomputers, processor clock speeds
have stagnated because of power density limitations. Instead, increased performance is being
obtained by increasing the number of processing elements on a chip (multiple cores) and supporting
threading. It is estimated that exascale machines will have two to three orders of magnitude of
parallelism over petascale computer levels, with much greater parallelism on nodes than is available
today. The bulk-synchronous execution models that dominate today’s parallel applications will
not scale to this level of parallelism. New algorithms need to be developed that identify and
leverage more concurrency and that reduce synchronization and communication. One approach
will be through dynamically scheduled task parallelism; but this will introduce a new challenge,
reproducibility, that will make determinations of code correctness more difficult.

Limited Memory: Without a significant change in technology, memory density is not expected
to increase at the same rate as the number of processing units. Again, power is a limiting factor;
current volatile RAM technology, for example, consumes a great deal of power to maintain its state.
Thus, while the amount of memory per node will increase, the amount of memory per core will
decrease. Many current algorithms will thus be memory constrained and will need to be redesigned
to minimize memory usage.

Data Locality: Similarly, memory bandwidth is not expected to increase at the same rate
as the number of processing units. Consequently, on-node memory bandwidth will increase, but
the bandwidth per core will actually decrease. Interconnect transfer rates are also not expected to
increase at the same rate as the number of cores. In addition, the energy used for a double-precision
flop is expected to decrease by roughly an order of magnitude, which will expose differences in the
energy cost not just of off-chip data motion but of on-chip transfers as well. Future systems may
use a variety of different memory technologies including nonvolatile memory, stacked memory,
scratchpad memory, processor-in-memory, and deep cache hierarchies to try to ameliorate some of
these challenges. Algorithms will need to be more aware of data locality and seek to minimize data
motion, since this will be a more significant energy cost than will computation.

Resilience: Because of the shear number of components, hardware failures are expected to
increase on exascale computers. Traditional checkpoint-restart recovery mechanisms are too ex-
pensive in terms of both the time and energy with bulk synchronization and I/O with the file
system. Such global recoveries could conceivably take more time than the mean time between
failures. Local recovery mechanisms are required that leverage the mathematical properties of
the algorithms in the application. In addition, efforts to reduce power by computing with lower
threshold voltages and other environmental disturbances may lead to more soft errors that may
not be caught by the hardware. Increased fault rates will affect all hardware in the stack, but
in particular applications may need to be fault-aware and use algorithms to make them tolerant
to certain types of faults. The nondeterministic nature of failure and recovery, if occurrences are
sufficiently frequent, will lead to nonreproducibility and make code correctness difficult to assess.

These are the key architectural changes expected to be necessary to build an exascale machine.
Such architectural changes will force changes throughout the software stack in ways that can-
not be completely hidden from the application and its associated numerical algorithms. Through
model and algorithm development and design, mathematicians will need to address the new con-
straints these changes will affect. Particular constraints include the presence of distinct comput-
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ing/architectural layers, leading to multiple levels of parallelism; severe penalization of data motion
across architectural layers; the lack of hardware resiliency (in the form of both soft and hard errors)
in some or all of the computing layers; the maximum exploitation of asynchrony in the implemen-
tation; the utilization of mixed-precision floating-point operations; and the maximization of the
operational intensity.

4 Current and Future Research Directions

Several scientific applications within the DOE mission space require resources at the exascale (and
potentially beyond). As demonstrated by the examples in Section 2, some of these needs arise
from the desire to solve on larger-scale simulation domains, to solve for longer simulation times,
or to solve with greater accuracy or resolution of finer spatial scales. Other needs stem from the
desire to add additional or more detailed physical phenomena to increase the physical fidelity. Still
other requirements stem from the need for meta-analyses such as sensitivity analysis, uncertainty
quantification, and mathematical optimization.

What must be recognized, however, is that mathematics permeates the activities from the
formulation of the problem to the analysis of the results (and, in fact, beyond). The realm of math-
ematical research necessary to make exascale computing a successful endeavor is not merely isolated
to numerical solvers as implemented in software libraries. Computers do not “solve physics”; after
all, computers fundamentally perform only a small set of logical operations.

Physical principles and problems are first expressed as mathematical models that are not, in
general, in a suitably discrete algebraic form. Thus, these models must be discretized, typically
leading to coupled nonlinear algebraic systems of equations, which then require robust numerical
solvers. Efficient analysis of the resulting discrete solutions and verifying their correctness both
require the application of additional mathematical techniques. Thus, analogous to the concept of
the software stack, there is effectively a mathematics stack for simulation:

• Problem Formulation, or Defining the question(s) to be answered

• Mathematical Modeling, or Expressing the problem mathematically

• Discretization, or Expressing the mathematical model discretely

• Scalable Solvers, or Solving the discrete system

• Data Analysis, or Understanding the results

• Resilience and Correctness, or Trusting the results

In addition, there are common operations required for system management, such as dynamic re-
source allocation, that can be posed mathematically, for example, as optimization problems.

We will use this framework to organize our discussion of potential research directions for exascale
computing. We emphasize that models and associated algorithms are not selected in isolation but
must be evaluated in the context of the intended computer hardware environment. Specifically,
we will discuss each of the above topics, the ways in which the challenges introduced by exascale
architectures hardware (Section 3) will need to modify the current approaches to each, and some
promising ideas that can address some or all of the exascale challenges.
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4.1 Problem Formulation

Forward	  Analysis	  

Accurate	  &	  Efficient	  Forward	  Analysis	  

Robust	  Analysis	  with	  Parameter	  Sensi;vi;es	  

Op;miza;on	  of	  Design/System	  

Quan;fy	  Uncertain;es/Systems	  Margins	  

Op;miza;on	  under	  Uncertainty	  

Systems	  of	  Systems	  

Figure 1: One depiction of the relationship between simulation
capabilities. Each stage requires greater performance and error
control of prior stages.

Exascale computers offer a dramatic po-
tential to change the questions we ask, im-
proving our simulation capabilities from
providing a single solution for a given set
of boundary and initial conditions to pro-
viding an optimal solution with error bars.
Future leadership-class computers will of-
fer several orders of magnitude in poten-
tial performance improvement. How to
best use this increased capability varies
greatly across problem domains of inter-
est to DOE. In some areas, the entire
exascale system can be consumed by in-
creased fidelity of a single forward simu-
lation, whether that is through increased
resolution (e.g., DNS of turbulent flows)
or through more physically accurate (and
complex) models that perhaps were previously considered infeasible. In other areas, forward sim-
ulations are already efficient and high-fidelity, leading naturally to the next simulation maturity
levels [64] of optimization and uncertainty quantification (UQ), as depicted in Figure 1. Because of
the new challenges and opportunities provided by these latter use cases, we choose to discuss them
in more detail; higher-fidelity forward simulations will still represent a significant component of the
workload on exascale machines, requiring very fast turnaround and support for new formulations,
but this use case is better understood.

Mathematical optimization and UQ will increasingly be used in the exascale era, especially
formulations in which these broader problems are tightly coupled to the underlying forward simu-
lation model. Instead of UQ and optimization implemented as outer loops around the traditional
forward simulation, techniques more tightly coupled to the forward solution strategy could provide
opportunities for reuse, communication hiding, and even vectorization across multiple solutions.
However, such formulations demand more from the underlying forward problem solvers, for exam-
ple, leading to problems with multiple, simultaneous right-hand sides or to families of related linear
systems with similar structure and spectral properties. In order to impact future codes, research
is required now to develop, explore, and understand the myriad algorithmic design trade-offs.

4.2 Mathematical Modeling

With the goals of simulation well-defined, the first challenge is the mathematical formulation of the
problem. In the context of scientific simulation, this necessitates the formulation of one or more
mathematical models of the physical processes that dictate the physical system behavior. These
physical laws and phenomena are expressed as well-posed systems of equations. In many simple
cases, these equations are well-established (e.g., Navier-Stokes, Maxwell’s equations); in more com-
plex problems, a suitable mathematical model may be an open research question. As highlighted in
Section 4.1, exascale will also bring increased scope for optimization and uncertainty quantification
and mathematical formulations of the questions asked in optimization and uncertainty quantifica-
tion. Selecting the appropriate mathematical model of the physics for and the level of coupling
with these higher-level algorithmic demands is itself a modeling challenge.
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4.2.1 Modeling Physical Processes

Within the DOE mission space, mathematical models often involve coupled physical phenomena—
they are inherently multiphysics. In addition, there are many potential levels of description from
the atomic up to cosmological scales. The level of fine-grained physical fidelity in models depends
on the importance of the details of the finest-scale processes on the macroscopic time and length
scales, but it is often limited by the available computational resources.

In the DOE applications that drive the need for exascale computing, nonequilibrium effects
at the atomic scale and microscale (e.g., non-Maxwellian distributions of particles in plasmas, or
cracks and voids in materials) are important. Fundamentally, we have classical and quantum mod-
els of atoms and molecules and could, in principle, attempt to simulate from this scale. However,
such a model is an N-body problem with far too many degrees of freedom to simulate at macro-
scopic (engineering) scales, even with exascale resources. To manage the level of complexity and
scale disparity of first-principles models, one must resort to dividing and conquering the scales by
formulating reduced (or coarse-grained) models that target the appropriate level of description for
a given set of dynamics. This approach naturally leads to multiscale or scale-bridging models, in
which a coupled hierarchy of models is considered. Coarser-grained representations can be coupled
sequentially or concurrently with finer-grained ones. Many approaches are available to derive such
coarse-grained descriptions; we provide examples later in this section.

The advent of exascale computing is an opportunity to rethink the formulation and implementa-
tion of mathematical models to simulate physical systems. Exascale resources will make realizable
the use of some models that were previously considered intractable (i.e., more complex, but more
physically correct models). Systematic techniques that can construct coarse-grained models when
such models are unknown can lead to stochastic partial differential equations, a field in which
many opportunities exist for numerical algorithms research. Multiscale models that incorporate
and couple descriptions across scales will also become more prevalent. Such multiscale models may
provide novel opportunities for accelerating numerical solution by leveraging the many levels of
description. We will discuss in more detail these topics, as well as the trade-offs between particle
and continuum representations. Before proceeding, however, we comment on the limitations on
mathematical models imposed by physical constraints.

Models must respect the physics. The mathematical properties of the models that make
them difficult to solve numerically and in parallel most often derive from the physics. Hence, when
considering a suite of model formulations for a given physical problem in the context of exascale
computing, one must be careful not to trade physical relevance for parallel expediency. For instance,
the propagation of information through a system is dictated by the underlying physics. If the details
of this propagation are important, they must be resolved. If the details are unimportant, other
mathematical models or numerical techniques can be used, but these models still capture the correct
physical asymptotics.

A classic example is conductive heat transfer, which is typically described macroscopically by
the parabolic heat equation. In a parabolic model, information propagates with apparent infinite
speed. Numerically, the discrete system is globally coupled. Of course, this is an asymptotic
approximation. Physically, the information propagates at a finite speed, but it appears effectively
infinite over the scales considered. Alternative hyperbolic-relaxation models exist; but in order to
take advantage of their locality (which benefits their parallel implementation), either the very fast
time scales would need to be resolved (an expensive proposition) or a clever asymptotic-preserving
scheme would be required to step over these fast time scales (generally a nontrivial exercise).

Alternative models may have advantages over those commonly used today, but the trade-offs
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need to be considered carefully. In the end, important physical processes must be respected, a
requirement that constrains the behavior of the solutions to the mathematical models and ultimately
the numerical techniques used to approximate these solutions.

Scale-bridging models. A class of mathematical models particularly suitable for exascale
computing is scale-bridging algorithms. Such algorithms attempt to bridge disparate time and
length scales in various ways, while at the same time avoiding a brute-force approach that would
render the problem unmanageable. By nature, these scale-bridging algorithms exploit the sepa-
ration of scales to devise optimal formulations at different levels of description of the problem.
This naturally leads to a layered or hierarchical problem description, which can be beneficial when
matched with the expected hierarchical nature of upcoming exascale computing architectures.

Hierarchical algorithms exploit nested levels of description (or layers) for solving multiscale
problems. These layers may correspond to different description levels of the same physical system
or to descriptions of different (but coupled) physical systems. Furthermore, the hierarchy of models
may be applied globally across the simulation domain or locally, as in adaptive mesh and algorithm
refinement, to restrict consideration of the finest scale to only those regions where such a description
is important. The benefits of a layered algorithmic arrangement for exascale computing originate
in the expected layered architectural arrangement of upcoming exascale computers. Often, differ-
ent layers of a hierarchical algorithm will require vastly different computational resources. This
requirement, in turn, allows one to target those levels of architectural parallelism that are most
suitable for the description of interest.

From a solver standpoint, exascale computing will demand as much asynchrony as available.
This, in turn, will demand both fine partitioning of the algorithm into simple tasks or kernels and
taking full advantage of modern task-scheduling approaches such as directed acyclic graphs, which
can automatically and on the fly schedule tasks according to prespecified dependencies among
different tasks. In the context of hierarchical scale-bridging algorithms, however, partitioning and
asynchrony as key organizational principles for the implementation of any given algorithm are not
necessarily in conflict with a tight-coupling solution strategy. In particular, the layered arrangement
of hierarchical algorithms, together with careful orchestration of the nonlinear solution strategy
via nonlinear enslavement, allows the consideration of each layer as a separate entity from an
implementation standpoint.

In general, the choice for the less computationally intensive layers in the algorithm will be fairly
unconstrained by exascale architectures, since these will not be dominating the overall performance
of the algorithm. However, the constraints imposed by exascale architectures will strongly influ-
ence the choice of representation for fine-scale physical models, which will represent the bulk of
the computational work. As before, the general principles to consider are the ability to achieve
fine-grained parallelism, resiliency (to both soft and hard faults), asynchrony, and floating-point
precision. Based on these considerations, a general design principle for the representation of fine-
scale physical models is minimum coupling between degrees of freedom.

Coarse graining. Hierarchical scale-bridging models require a method for coarse graining to
arrive at a systematic hierarchy of models. In some cases, we know how to derive such a hierarchy;
in other cases, the scale-bridging is more ad hoc and potentially prone to errors and inconsistencies
between the levels of the description. More research on systematic techniques is required for well-
posed hierarchical models. However, the need for coarse graining is more fundamental and needed
for a wider range of problems.

Coarse graining is ubiquitous in numerical modeling and will continue to play an important role
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at the exascale. Whenever it is impossible to represent all of the degrees of freedom in a problem, one
must resort to a coarse-graining approach. Classical partial differential equations describing fluid
flow, solid mechanics, plasmas, and a variety of other problems are coarse-grained representations
of particle systems. When these systems are solved numerically, one imposes another form of coarse
graining, namely, the representation of continuous fields with finite-dimensional approximations.
Analogous forms of coarse graining arise when modeling particle systems where it is infeasible to
model all the particles needed to represent the system.

Another form of coarse graining arises when representing fine-scale behavior in terms of a coarse-
grained representation. Examples of this type include mesoscopic models for fluids at micro-scales,
models for crack propagation in solids, and models for clouds in climate models. The impact of
unresolved degrees of freedom on the overall dynamics is the key question in these types of settings.
In some cases, such as linear problems, a Galerkin-type approximation in which one simply truncates
the effect of unresolved degrees of freedom is appropriate. However, this is not the case in general.

Many approaches to coarse graining have been developed, including averaging, homogeniza-
tion, moment-based coarsening, renormalization group methods, and the Mori-Zwanzig formalism.
While continued research is needed in general, we focus on two approaches that are particularly
relevant to DOE: moment-based coarsening, which is intimately related to kinetic models, and the
Mori-Zwanzig formalism, which is a more general strategy that often leads to macroscopic models
expressed as stochastic partial differential equations.

Moment-based coarsening. In moment-based coarsening, coarse physics models are gener-
ated from a fine-scale model by recursive integration over one or several degrees of freedom. As
a result, the coarse model features a reduced dimensionality but remains physically consistent at
all scales. An example of such a process is the derivation of the hydrodynamic equations from the
Boltzmann kinetic transport equation, where the integration is performed over velocity space.

The rigorous moment-based coarsening procedure provides well-defined restriction operators
to communicate across the model hierarchy. Prolongation operators are not needed, since the
fine description coexists with coarse ones. However, this coexistence raises questions regarding the
impact of discrete consistency across the hierarchy, the preservation of conservation laws, and solver
strategies. It also presents challenges in the context of mesh adaptivity: how to deal, for instance,
with creation and destruction of patches in adaptive mesh refinement.

The development of hierarchical algorithms via moment-based model coarsening has many ad-
vantages for exascale computing. Coarse and fine models communicate only via moments, which
live in a much-restricted dimensional space (e.g., 3D vs. 6D in most kinetic transport applications)
and thus offer immediate benefits from the data motion standpoint. Asynchrony may be exploited
in the way coarse and fine models are coupled; for instance, one can predict a fine closure and ad-
vance the coarse problem while computing a closure correction from the fine model. Moment-based
models naturally allow the use of mixed precision, since coarse and fine models can use different
floating-point precision; typically, the fine model is able to use a lower precision without overall loss
of accuracy, since the effects of a lower precision are ameliorated by the moment integration pro-
cedure. Moreover, coarse and fine models may use completely different representations, targeting
the most beneficial aspects of the intended architectural layer.

Stochastic systems. In a more general setting, the Mori-Zwanzig formalism from nonequilib-
rium statistical mechanisms [72] provides insight into the impact of unresolved degrees of freedom
on the resolved dynamics. Within this framework, unresolved degrees of freedom enter the evolu-
tion of the resolved degrees of freedom as noise terms. The importance of these noise terms depends
on the system and the scales being considered. In continuum models for fluids, for example, the
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hydrodynamic variables representing mass, momentum, and energy, which are obtained from the
underlying particle description of the fluid, fluctuate. The amount of fluctuation depends on the
scale being considered. At macroscopic scales, this effect is often negligible and can be ignored;
but at mesoscopic scales, it can have a significant impact on the dynamics. For example, at small
scales, mixing resulting from fluctuations dominates diffusive mixing.

Thus, at a fundamental level, coarse-grained systems are inherently stochastic. Traditionally,
this aspect of the dynamics is either ignored or modeled with a deterministic term that represents
the average of the stochastic behavior. Turbulence models attempt to model the effect of unresolved
eddies with a deterministic diffusion term. Typical Arrhenius models for kinetics are phenomeno-
logical average models of finer-scale behavior. Since exascale enable simulations at higher fidelity,
one must be cognizant of the effects of unresolved dynamics. Capturing the full range of behavior
of the system may require inclusion of stochastic terms in the model. When a clear separation of
scales exists, these stochastic terms can be Markovian; however, in a general case, the noise reflects
a complex interplay with the history of the system.

These issues are particularly important for multiscale or hierarchical algorithms. In such set-
tings, representation of the noise at coarser levels in the hierarchy is essential for accurate coupling
between levels. Failure to capture this coupling can destroy the accuracy of the model at both
coarse and fine scales.

We must allow for models of coarse-grained systems and hybrid multiscale algorithms to con-
tain stochastic terms. These types of coarse-grained models can typically be written formally as
stochastic partial differential equations. Even in fairly simple settings, however, these equations
fall outside the scope of the mathematical theory of stochastic differential equations. Fundamental
work is needed to establish approaches to analyze the basic properties of such systems.

Particle-based versus continuum representations. Two dominant mathematical repre-
sentations of the model degrees of freedom are often used: particle models, where the dynam-
ics of individual or collections of discrete entities in space are followed in a Lagrangian fashion,
and continuum models, where functions on a continuous domain are numerically represented by a
finite-dimensional representation associated with a mesh. There are also hybrid techniques (such
as particle-in-cell methods), where some fields are discretized on a mesh and others by particles.
The particle models are generally more fundamental and often can describe a broader range of
(nonequilibrium) behavior but are noisy and can become prohibitively expensive at macroscopic
scales. Continuum models are not noisy, and their convergence properties are much better under-
stood; but they can become prohibitively expensive if used at microscopic scales (e.g., continuum
representations of kinetic equations such as Boltzmann).

In some ways, particle-based models are well-suited for exascale computing. Particles can be
processed independently until synchronization occurs at the next time-step level, which provides
arbitrarily fine-grained parallelism and allows the exploitation of asynchrony. Because of their
statistical nature, particle models can effectively use single precision, since the accuracy impact
of lower precision is much smaller than the associated statistical noise. The statistical nature
of particles also makes them resilient to both soft and hard faults. With regard to soft faults,
given that particle orbits are independent from one another, one may check for corruption at the
individual particle level and decide a course of action (e.g., rerun the orbit or remove the particle)
independently from other particles in the ensemble. To recover from hard faults, one only needs
to produce a statistically equivalent local reconstruction of the particle distribution, which in turn
allows for significant data compression. Methods in this category include Monte Carlo, smoothed-
particle hydrodynamics, and particle-in-cell techniques.

14 Applied Mathematics Research for Exascale Computing



However, particle models have potential limitations as well. While they can provide high con-
currency, particle methods tend to be low-order accurate and, in explicit algorithms, may fail
to provide sufficient operational intensity (operations per bit transferred) to get beyond the band-
width limitations that prohibit full floating-point utilization of node; this limitation is removed with
modern implicit methods, which allow particle subcycling. In addition, particle methods are not
well-suited for all problems. If the problem is near-equilibrium, for instance, continuum formula-
tions represent an extreme compression of the data and thus are much more efficient at macroscopic
scales; one would not use a particle model where moment equations are sufficient. Furthermore,
the stochastic and interpolation noise may degrade accuracy in long-term simulations, and particle
models make it much harder (but not impossible) to enforce local and global conservation laws. For
these properties, continuum models are best suited. Of course, the latter increase coupling among
degrees of freedom and thus are more constrained with regard to the exascale design principles
previously outlined.

These general considerations suggest that in the context of hierarchical scale-bridging models,
an a priori attractive choice is the use of continuum models for coarse-grained physical descriptions
and of particle models for fine-grained ones. Some well-known methods (such as particle-in-cell)
are formulated in this way by construction. Others, such as Monte Carlo for radiation and neutron
transport, have been recently shown to gain significant accuracy and efficiency when coupled in
this way. This recipe is particularly attractive for a large class of problems of interest to DOE that
require the solution of kinetic transport equations. Kinetic transport models have been successfully
used for years via particle formulations that efficiently represent the high-dimensional kinetic phase
space. Their moment descriptions, however, typically benefit for a continuum treatment. Potential
applications include radiation transport, neutron transport, plasmas (e.g., thermonuclear fusion),
aerosol transport in climate, and combustion.

4.2.2 Uncertainty Quantification

Uncertainty quantification is a broad term for a variety of methodologies, including uncertainty
characterization and propagation, parameter estimation and model calibration, and error estima-
tion. The common goal of these activities is to address a fundamental question, namely how do
the uncertainties ubiquitous in all modeling efforts affect our predictions and understanding of
complex phenomena? Examples include both epistemic (lack of knowledge) and aleatoric (intrinsic
variability) uncertainties, which encompass uncertainty coming from inaccurate physical measure-
ments, bias in mathematical descriptions, as well as errors coming from numerical approximations
of computational simulations. Because it is essential for dealing with realistic experimental data
and assessing the reliability of predictions based on numerical simulations, advanced research in
UQ ultimately aims to address these challenges.

The motivating science applications, described in Section 2, involve systems that describe phys-
ical and biological processes exhibiting highly nonlinear, or even worse, discontinuous or bifurcating
phenomena at a diverse set of length and/or time scales. Hence, simulating the entire complex sys-
tem at the level of resolution necessary to represent this behavior accurately is extremely difficult
for many problems of national interest. Moreover, predictive simulation of these systems requires
significantly more computational effort than do high-fidelity deterministic simulations, particularly
in the case of climate models, where both the subgrid closure approximations and the input data
(coefficients, forcing terms, boundary conditions, geometry, etc.) are affected by large amounts of
uncertainty. Even for these high-dimensional stochastic problems, simulation code and calculation
verification, model calibration, validation and bias correction, and a complete quantification of all
uncertainties are indispensable tasks required to justify a predictive capability in a mathematically
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and scientifically rigorous manner. Figure 2 illustrates how these tasks are tightly connected. Un-
fortunately, current approaches for implementing these processes remain computationally taxing,
making accurate predictive simulation of most complex stochastic systems exceptionally difficult.
Confidence in simulation results is typically founded on a mix of intuition and an extensive sensitiv-
ity analysis. As such, it is critical to organize and design computational simulations and physical
experiments that ensure that the right type of data, and enough of it, is available not only to
quantify uncertainties, but also to understand and ultimately reduce their effect on quantities of
interest (QoIs).
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Figure 2: Illustration of the unprecedented capability of ex-
ascale computing to assimilate predictions from computational
simulations and data from physical experiments.

As the complexity of these systems in-
crease, scientists and engineers are relied
upon to provide expert analysis and to in-
form decision makers about the behavior
of and the risk associated with predictive
simulations. Many UQ approaches have
been developed, including random sam-
pling (see [45] and the references therein),
stochastic polynomial methods, such as
interpolatory collocation approaches [63,
71], and Galerkin projections [6, 47], that
have been extensively utilized on large-
scale applications. However, numerous
changes in scientific computing at extreme
scales are expected to challenge the current
UQ paradigm, wherein the stochastic loop
is typically wrapped around a black-box
simulation. Expected decreases in single-
core performance and memory per core, massive increases in the number of cores, and the emergence
of novel accelerator-based architectures will require the development of new methodologies that in-
tegrate uncertainty analysis into computational simulations [18, 27, 31, 39]. In working toward this
goal, several challenges arise when applying UQ methodologies to the DOE mission science areas.

• Detection and quantification of high-dimensional stochastic QoIs with a specified certainty

• Reducing the computational burden required to perform rigorous UQ

• Efficient strategies for UQ that exploit greater levels of parallelism provided by emerging
many-core architectures

• Systematic assimilation of the uncertainty in measured data for validating and correcting
model bias, calibrating parameter interrelations, and improving confidence in predicted re-
sponses

To address these challenges requires a transition from currently used, nonintrusive algorithms
and standard intrusive implementations to a truly architecture-aware, predictive capability. In what
follows, we highlight several possible UQ research directions related to extreme-scale computing:
adaptive hierarchical methods for high-dimensional approximation; multilevel methods for solution
acceleration and complexity reduction; architecture-aware UQ paradigms; and adaptive and robust
methods for combining computational simulations and experimental data.

Adaptive hierarchical methods for high-dimensional approximation. It is widely rec-
ognized that rigorous uncertainty quantification at the extreme scale will dramatically improve our
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understanding of physical and engineering problems [27, 31]. Indeed, a thousandfold increase in
computing power would facilitate orders of magnitude more simulation realizations. However,
enhancing the accuracy of stochastic QoIs requires the computational simulation to increase the
number of random variables (dimensions), and expend more effort approximating the the solution
in each individual dimension. The resulting explosion in computational effort is a symptom of
the curse of dimensionality. To combat the computational cost, several methods that use sparse
polynomial or sparse grid approximations in high-dimensional parameter, have gained considerable
attention in the past decade (see [18, 49] and the references therein).

However, when the parameter space is truly high-dimensional or when the random solution
exhibits steep gradients, sharp transitions or bifurcations, or jump discontinuities, all stochastic
polynomial-based methods converge slowly or even fail to converge. Also, these approaches attempt
to construct highly accurate, approximate solutions over the entire parameter domain (so that the
approximation achieves the same accuracy everywhere); yet, building such a surrogate in the low-
probability region of a joint probability density function (PDF) (i.e., using samples that contribute
very little to the QoI) dramatically wastes computational resources. An ideal alternative is to
construct solutions whose accuracy decreases as the PDF approaches zero, effectively approximating
the solution only in the high-probability region. Moreover, the a posteriori PDF obtained when
calibrating the input parameters can be highly irregular, not necessarily separable into a product of
one-dimensional PDFs, making it extremely challenging to construct polynomial bases. To address
these difficulties requires the invention of adaptive hierarchical approaches for low-discrepancy
sampling with sufficient volumetric coverage of the input density; interpolation and approximation;
and detection of events, in high-dimensional parameter spaces.

Advanced multilevel methods for solution acceleration and complexity reduction.
In any UQ approach, the dominant cost of quantifying uncertainty in simulations lies in the solution
of the underlying deterministic model. Indeed, many high-fidelity, multiphysics models can exhaust
the resources on the largest machines with a single instantiation and thus are not practical for the
most advanced UQ techniques. Moreover, future increases in computational resources will be
accompanied by continuing demands from application scientists for increased resolution and the
inclusion of additional physics. Consequently, new approaches are needed in order to decrease
simulation computational costs within the UQ context. Such techniques will be required to harness
both the underlying model hierarchy and the stochastic hierarchy.

Acceleration through multilevel methods using model hierarchies. Given the complex-
ity of extreme-scale applications, multilevel surrogates will be needed that simultaneously utilize
a hierarchical approach in both physical and parameter spaces. As opposed to existing work in
principal orthogonal decomposition (POD)-type reduced-order models, more advanced hierarchical
models will be needed involving variational methods for preserving important mathematical struc-
tures of highly resolved solutions; asymptotic expansions that take advantage of scale separation
for highly accurate multiscale; and Mori-Zwanzig formulations, mean-field theory, and moment
methods for high-order closure approximations. These methods can be used to develop multilevel
formulations of the deterministic problem that will be used to elucidate common solution struc-
tures across multiple UQ levels, including structures induced by multiscale dynamics and scale
separation. However, in order to minimize the total cost for the prescribed error, a general strat-
egy must be developed to balance the contributions from approximation error in the stochastic
space with model error in the deterministic space. Such a strategy will require analysis of both the
deterministic model errors and the stochastic polynomial or sampling errors.
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Acceleration through exploitation of the stochastic hierarchy. The bulk of the compu-
tational cost of extreme-scale computer simulations is usually associated with linear or nonlinear
iterative solvers. One possible way in which the convergence of such methods can be dramatically
improved is to “seed” the solver with a good initial starting point. Hierarchical UQ approaches
produce multilevel sequence of approximations (e.g., interpolants), where, at each level, one intro-
duces new sample points. Taking advantage of the hierarchical structure, one can accelerate the
solution of the deterministic system at each level by using the stochastic approximation from the
previous level to determine the new initial iterates. In essence, the iterative solver has to resolve
only the correction at each level, resulting in a significant reduction of the computational burden.
This idea will need to be extended in order to enable the use of existing preconditioners at each
level to inform solvers at the next level of the hierarchy. New preconditioners also will be needed
to accelerate the convergence of additional sampling/collocation points or polynomial bases. In-
corporating these ideas into the multilevel framework, based on model hierarchies described above,
will allow for further reduction in the total computational cost.

Architecture-aware UQ paradigms. Nearly all existing uncertainty propagation method-
ologies wrap around deterministic simulation codes. A typical example is nonintrusive implemen-
tations of traditional sampling-based methods that repeatedly call a deterministic simulation code
for different values of the stochastic model inputs (usually according to a joint PDF). These ap-
proaches have been effective at producing software and algorithms relying on modest numbers of
simulations that scale well on existing petascale architectures. However, future exascale comput-
ers are not likely to provide enough concurrency for a thousandfold increase in petascale sample
evaluations for uncertainty propagation applied in this manner. Power and cooling limitations will
favor compute nodes with dramatically increased floating-point capacity through increased node-
level parallelism rather than increased clock speed or node counts [24]. Thus, increasing concurrent
sample evaluation will require executing each sample on a smaller number of compute nodes or
executing multiple samples simultaneously on each compute node.

In order to leverage the increase in node performance and other likely exascale characteristics,
it may become beneficial to evaluate samples in parallel through a multilevel embedded propagation
scheme whereby collections of samples are executed asynchronously and samples within each col-
lection are propagated simultaneously at the node and processor core levels. The ability to embed
portions of the “uncertainty loop” at the lowest levels of the simulation code requires replacing each
scalar datum in a calculation with an array for the uncertainty representation of that datum, such as
samples in a stochastic collocation-type method or polynomial coefficients in a stochastic Galerkin-
type method. One possible path to accomplish this is to use code transformation techniques based
on automatic differentiation [? ]. Any operations on that datum can then be translated to parallel
operations on the uncertainty array, both improving locality and exposing additional fine-grained
parallelism. Since the messages for multiple realizations are incorporated into one message for
the ensemble, total communication time should be reduced. Moreover, such an approach enables
new algorithms that reuse data and calculations across uncertainty representations to reduce ag-
gregate simulation cost, for example, reuse of mesh calculations that do not depend on uncertain
input data and reuse of solvers and preconditioners across an ensemble. Of course, the concept of
propagating multiple samples simultaneously at the scalar level of the simulation is predicated on
the assumption that the code paths for these samples do not diverge greatly; otherwise no benefit
or possibly a negative result is achieved. Careful research is needed that connects these ideas to
high-level adaptive uncertainty propagation methods that decide when and how to group samples
for co-propagation.
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Adaptive and robust methods for fusing computations with experiments. Exascale
computing will offer an unprecedented ability to assimilate the uncertainty in measured data for
validating mathematical descriptions and correcting model bias, calibrating parameter interrela-
tions, and improving confidence in predicted responses. Computer simulations can be used to
quantify the uncertainties in complex physical systems, and physical experiments can be used to
validate the computer simulations. Innovative adaptive and robust experimental design strategies
are needed that intelligently gather data from both computer simulations and physical experiments
in order to reduce variability in the estimate of the unknown parameters and the uncertainty in
QoIs. However, these approaches must go beyond the standard Gaussian process modeling, or
kriging [67], that require the solution of an inverse covariance matrix, which becomes computa-
tionally intractable as the parameter dimension increases. Possible research directions include the
integration of generalized Bayesian techniques, as well as PDE-constrained parameter identification
approaches, with the paradigms and approaches described previously. Such an integration would
allow efficient generation of surrogate approximations for extreme-scale simulations for use within
the calibration procedure, so as to reduce variability in the estimate of the unknown parameters
and the uncertainty in QoIs. Of course, both approaches rely heavily on numerical optimization,
either to determine the number of significant modes of a distribution or to assist in solving an
adjoint problem. These techniques are discussed in detail in Section 4.2.3 below.

4.2.3 Mathematical Optimization

Mathematical optimization involves finding the best value(s) of an objective function, subject to
constraint functions characterizing the feasible design/decision space. When physical or simulated
phenomena are involved, these constraints necessarily include the space of realizable solutions from
a simulation code. To date, optimization primarily has played the role of a sequential “outer loop,”
and hence research has focused on parallelizing the underlying linear algebraic operations within
an optimization step and/or parallelizing the forward evaluation of objective and/or constraint
functions. For many problems, the exascale will bring an abrupt end to savings based on such
parallelism, especially as scalable evaluation of the objective and constraint functions becomes in-
creasingly complex and difficult. Algorithmic-based approaches to fault tolerance are also expected
to have an increased scope for optimization algorithms at the exascale.

Furthermore, the sustained increase in computational capabilities will enable the solution of
new classes of optimization problems (see, e.g., Section 2) and bring mathematical optimization
to new scientific and engineering domains. In particular, exascale resources open up new possibil-
ities at the intersection of optimization and UQ in areas such as optimization under uncertainty,
robust optimization, and optimization-based model calibration. Exascale computing will begin to
provide the necessary resources to facilitate optimization and UQ for complex multiphysics codes;
however, significant research is needed in order to design algorithms that address the challenges
outlined in Section 3. Here, we consider four exascale research topics in mathematical optimization:
concurrent-point methods; mixed-integer, simulation-based, and global optimization; multifidelity
hierarchies; and robust optimization and optimization under uncertainty. Also considered is the
optimal design and coupling of experiments.

Concurrent-point methods. A fundamental, unresolved challenge for optimization is the
development and analysis of “concurrent-point methods.” Such methods determine multiple, dis-
tinct (but possibly related) design/decision points for concurrent evaluation, where the evaluation
may be done asynchronously or at differing levels of fidelity. Such methods represent a substan-
tial shift from practices in traditional mathematical optimization, where optimization loops are
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inherently sequential, and objective and/or constraint functions (and the corresponding deriva-
tives) are evaluated at a single point per iteration/loop step. Research to date on concurrent
and asynchronous evaluation has focused largely on zero-order (“derivative-free”) methods, which
require more iterations than derivative-based counterparts; techniques are needed for more gen-
eral, derivative-based methods. Analysis should provide approximation bounds for the complex-
ity of these new algorithms, and classes of problems where concurrent-point methods can result
in provable/substantial savings will need to be established. Related work includes s-step and
communication-hiding Krylov methods, which can be viewed as solving a specific form of uncon-
strained optimization problem. Decomposition-based approaches may be a promising avenue (e.g.,
determining points in families of subspaces), provided that global reductions occur infrequently.

Mixed-integer, simulation-based, and global optimization. One example where such
concurrent-point methods may admit excellent scalability is when there exists a combinatorial
structure in the design/decision space. For example, when performing PDE-simulation-based opti-
mization when discrete decisions are also present, relaxations corresponding to PDE-constrained,
continuous optimization solves can be viewed as treelike structures. Disjoint leaves of such trees
provide natural sources of distinct design/decision points for concurrent evaluation, but partition-
ing such combinatorial structures in order to obtain savings from the concurrent evaluations (e.g.,
by grouping related PDE solves and data structures in order to exploit reuse and minimize data
movement) requires substantial algorithmic research.

Grouping related solves, whether optimization subproblems or forward simulations, may also
fundamentally alter the tree structures encountered in global optimization. Finding a global
solution—that is, the best of among all local minimizers—is an NP-hard task in general, but exas-
cale may present new opportunities for global optimization algorithms with theoretical guarantees
for special classes of problems.

Another potential way to reduce the number of iterations in an optimization loop is to exploit
high-order derivatives of the simulation output with respect to the design/decision parameters.
Current practices have focused on matrix-free application of Jacobians or Hessians; but for some
problem structures, increased arithmetic intensity can be achieved by considering higher-order
derivatives. However, research will be needed on scalable computation and/or application of these
derivatives as well as concurrent adjoint calculations based on ensembles of related points. Effi-
ciently exploiting sparsity structures also becomes increasingly critical as ensembles of derivatives
and higher-order derivatives are considered.

Multifidelity hierarchies. As with UQ, research is also needed on optimization algorithms
that can exploit multiple levels of fidelity and algorithmic-based approaches to resiliency. In the
context of optimization, such methods acknowledge and embrace the principle that far from the
solution, one need not perform expensive (e.g., because of high-fidelity or resilience considerations)
evaluations. Optimization algorithms will thus need to select points for evaluation along with
corresponding fidelity levels, possibly informed by knowledge (e.g., architecture-based, performance
model-based) of the expense associated with performing that set of evaluations (due to data motion
or otherwise). Work on multilevel optimization techniques has focused primarily on problems with
an underlying grid structure, and determining appropriate coupling across a complex algorithmic
hierarchy remains an open challenge. Potential adaptivity of the algorithmic hierarchies (e.g., as
the set of active constraints changes or as a result of adaptive refinement) is also expected to present
a challenge to scalable performance.
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Robust optimization and optimization under uncertainty. Many problems of DOE
interest require making decisions whose consequences cannot be fully determined. Uncertainty
in data, parameters, and models can have deleterious effects on “optimal” solutions that do not
account for such uncertainty, especially in nonlinear optimization problems where the constraint or
objective values are highly sensitive to such uncertainty.

Fundamental differences in problems in this area can often be attributed to the way the uncer-
tainty is modeled. In stochastic optimization the uncertainties are captured through distributions,
whereas in robust optimization a min-max approach is followed using a compact uncertainty set.
Determining the proper nesting order and level of coupling for the uncertainty and optimization
(or min and max problem) hierarchies will likely be critical to achieving scalable performance.

Methods for stochastic optimization have natural tie-ins with ensemble-based UQ approaches
and share similar challenges to scalability. For example, evaluating many scenarios concurrently can
mitigate variance and uncertainty, but overall savings may result only if such fidelity is truly useful
and if the scenarios admit scalable/resource-constrained evaluation. Provable guarantees, such as
convergence and error bounds, for stochastic optimization methods using more general forms of
ensembles (e.g., based on performance considerations) are needed. General strategies with looser
dependence on the number of independent scenarios are also needed in order to enable scalable
decision making and design under uncertainty.

Optimal design and coupling of experiments. As experiments become increasingly auto-
mated, operating computational experiments at leadership computing facilities and physical exper-
iments at DOE user facilities in tandem is expected to become more frequent [30]. Such coupling
can be characterized as computation-driven or physical-experiment-driven. Possible computation-
driven scenarios include optimal design and model construction, and possible experiment-driven
scenarios include experiment refinement based on computational analysis.

Currently, optimal design typically assumes a mathematical model for a physical system and
employs numerical optimization on this model to identify an optimal configuration or set of param-
eter values; the resulting design is then validated by a physical experiment. Multifidelity methods
use multiple mathematical models of varying fidelity and computational cost, alternating among
the models to reduce the cost of finding an optimal set of parameters for the high-fidelity model;
but again, validation through physical experiments is performed sequentially. With closer coupling
between computation and physical experiment, we expect promising designs to be evaluated during
the course of the optimization, with the experimental results informing subsequent optimization
iterations. Realizing this capability will require mathematical innovation. It is possible that mul-
tifidelity methods can be adapted to this new context by treating the physical experiments as the
highest-fidelity model, but they will need to be modified in order to account for experimental error
and the typically more limited set of quantities that can be measured in a physical experiment
versus a computational experiment.

In the construction of computational models using data from physical experiments, it is typ-
ically assumed that the physical data is collected and then the model is constructed. At best, a
“design of experiments” methodology is used to determine which physical experiments to perform
in order to provide the most useful data. With close coupling between computation and physical
experiment, however, it becomes possible to take an active learning approach to model construc-
tion and choose which experiments to perform based on their expected impact on the accuracy of
the model. Mathematical research in areas such as optimal sequential design of experiments and
optimal stopping problems, at the intersection of optimization and uncertainty quantification, is
required to facilitate this new paradigm.
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4.2.4 Related Position Papers

Many position papers related to mathematical modeling were submitted to the Exascale Math-
ematics Workshop. These include papers on modeling physical processes [WP1, WP25, WP28,
WP31, WP36], uncertainty quantification and data fusion [WP9, WP10, WP13, WP20, WP21,
WP25, WP26, WP29, WP30, WP32, WP37, WP44, WP47, WP53, WP63, WP72, WP74, WPA1]
and mathematical optimization [WP15, WP51, WP52, WP64, WP65, WP74]. Additional position
papers incorporating these topics include [WP24, WP33, WP54, WP60, WP66, WP69, WP73] and
position papers related to combinatorial and graph-based problems [WP42, WP43, WP48, WP49,
WP67].

4.3 Model Discretization

Typically, the mathematical formulation of the problem cannot be directly solved by a digital
computer, and so the problem must be approximated with a finite-dimensional representation.
Continuous independent variables must be subdivided into discrete mesh points, cells, elements,
time levels, etc. In the case of particle models, the spatial representation is already discrete, but
the temporal independent variable requires discretization. In addition, the physical models, equa-
tions (operators), and dimensions may be split into submodels that are easier to discretize and
solve. Especially in multiphysics applications, such splittings require careful coupling approaches
to preserve temporal accuracy and to respect nonlinear processes. For multiscale models, coupling
procedures are also paramount.

The choices made during the discretization will directly affect the properties of the resulting
algebraic systems and will therefore affect the solvers used to obtain the approximate solution.
Thus, discretization must be considered when addressing the challenges of exascale. Here, we
discuss several of the exascale-relevant topics related to discretization, motivated both by the models
requiring exascale resources and by the challenges posed by exascale architectures. Specifically,
we address issues involved in coupling and partitioning, the advantages of high-order algorithms,
adaptivity of mesh and models, and issues associated with computational geometry and mesh
generation.

4.3.1 Model Coupling and Partitioning

The coupling of physically distinct physical models and/or of multiple scales will be a pervasive
issue in exascale simulation. It is important to note that whether a physical model is weakly
or strongly coupled depends on the time scale of interest. Thus, most physical models can be
considered weakly coupled when fast time scales of the involved physics are respected. However,
if integrating these systems over slower time scales is of interest, the same models may become
strongly (and nonlinearly) coupled.

Accordingly, the solution strategy for multiphysics, multiscale models will depend largely on the
physics of interest or the willingness to respect fundamental scales. Often, when well-verified models
for distinct physical processes or scales have been developed for a particular purpose, computational
scientists seek to reuse and combine these codes or modules in an attempt to model multiphysics or
multiscale effects in a different regime. This type of composite discretization (which, following [57],
we refer to as a loosely coupled solution strategy) is pervasive but can have stability or consistency
problems, particularly in very long simulations. For strongly coupled systems, the particular loosely
coupled solution strategy of choice may be either ill-posed or ill-behaved. Nonlinearly converging
physics modules or models (a tightly coupled solution strategy) usually result in more stable and
robust formulations. However, a global nonlinear solve will in general not be attractive at the
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exascale, and other approaches must be pursued. Furthermore, in scale-bridging applications,
even tight coupling does not guarantee nonlinear stability. For instance, numerical truncation
errors generated at different scales may amplify as these errors propagate through the hierarchy
of models. For a recent survey of multiphysics modeling, associated implementation issues, and
example applications, see [57].

Exascale computing provides an opportunity to rethink and to improve how models should
be coupled across scales and physical processes. Various types of partitioning will be necessary
for exascale simulation of multiphysics, multiscale models, and many opportunities arise for re-
search into partitioning techniques. A critical issue is to develop tightly coupled solution strategies
that ensure nonlinear convergence. Given the complexity of the anticipated exascale computers
and questions about their reliability, verification of coupled models will require a much sounder
theoretical understanding of the stability and accuracy of coupling techniques.

Partitioned algorithms. Partitioning can be geometric, operational, and model-based. In
geometric partitioning, one splits the equations into separate subdomains (e.g., as in fluid-structure
interaction [2]). In operational partitioning, one splits the equations or operators into subsets
applied in some sequential or iterative fashion in (pseudo-)time (e.g., traditional operator splitting).
In model-based partitioning, one segregates different code sets based on the physics model at hand.

Partitioning has the advantage that modular, efficient solvers for each domain or operator can
be applied to that subproblem (e.g., an implicit treatment of a parabolic operator and an explicit
treatment of a hyperbolic operator). In addition, partitioning can provide opportunities for task
parallelism and reduced synchronization. Partitioning does not, however, necessarily imply a loosely
coupled strategy. For instance, one can formulate tightly coupled nonlinear residuals by nonlinearly
eliminating a (partitioned) physics module. If loose coupling is favored, the challenge again is to
couple the subproblems in a way that accurately and stably captures the true nonlinear coupling of
the original governing equations. Suitable compatibility conditions must be determined, whether in
the form of modified boundary conditions or scale-bridging prolongation and restriction operations.

The preferred method of choice will generally be application dependent, where the strength and
nature of the coupling must be considered. Some physical models may be more tightly coupled, and
partitioning those models will require a greater degree of care than has been done previously in more
ad hoc code coupling. Coupling may be volumetric or interfacial ; in the former, the subproblems
coexist in overlapping regions, while the latter couple through (possibly evolving) boundaries.
Similarly, coupling may be global, where all models coexist everywhere in the domain (e.g., MHD),
or localized, where models may be relevant on disjoint spatial (e.g., fluid-structure interactions) or
temporal (e.g., nonlinearly switching models as the solution evolves) domains or on small regions of
overlap (e.g., hybrid models that transition from fluid to kinetic models near material interfaces).
Although the specifics may vary, in all cases the desire is to maintain consistency, accuracy, and
stability while obtaining increased computational efficiency from the splitting. The challenge stems
from the strength of coupling between the models/scales. Failure to respect strong coupling can
lead to numerical difficulties. Proper partitioning is an important area for research as multimodel
(multiphysics/multiscale) codes are designed for the exascale.

One topic, in particular, that deserves further investigation is high-order, partitioned time
integration algorithms suitable for multiscale, multiphysics problems. Broadly, multimethod and
multirate methods are two general approaches to dealing with multiple time scales. Implicit-
explicit (IMEX) integrators, which include the many variants of multistage (e.g., Runge-Kutta),
multistep (e.g., BDF), and hybrid (i.e., generalized linear methods [15, 16]) schemes, are perhaps the
more familiar of the multimethod approaches. There are also multimethod and multirate spectral
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deferred correction (SDC) schemes [40], such as semi-implicit SDC [61] or multi-explicit SDC [12].
An alternative approach to dealing with stiffness introduced by fast time scales is based on the
exponential propagation iterative methods [51, 52]. All of these methods partition the equations,
operators, or spatial domain into subsets, each to be integrated by a time integrator best-suited for
that subset; as such, each plays an important role in multiscale, multiphysics problems. Classically,
for multimethod schemes, an implicit integrator would be used for a numerically stiff subset and
an explicit integrator for the nonstiff part, thus allowing the entire system to be integrated at the
larger, nonstiff time step. Of course, implicit discretizations trade stability for temporal accuracy,
a useful trade-off when the details of evolution of the fast time scales are unimportant. Partitioned
schemes provide systematic means to combine and interleave the results of the subintegrators
to preserve accuracy and stability, including not just implicit-explicit coupling but also explicit
subcycling (in the case of multirate schemes). Partitioned time integrators are and will continue to
be important for solving multiphysics and multiscale problems. By partitioning the original model,
these techniques may provide opportunities for task parallelism and asynchrony; but methods
will need to be designed with minimal memory requirements, data reuse, and resilience in mind.
Accurate long-time integration of multiscale, multiphysics models is another area requiring research.

Trade-offs will arise in the treatment of multiphysics and multiscale coupling; one solution will
not be suitable for all problems. An important paradigm that should be followed, however, is
that all problems should be considered “coupled until proven uncoupled.” In other words, instead
of starting with submodels and trying to patch them together, one should begin by considering
the entire mathematical model and first understand the nature of the coupling within it. Any
partitioned discretization must be consistent with this full model, and understanding the coupling
in the model will help determine whether loosely coupled or tightly coupled solution strategies are
required for different partitionings of the problem. The generation and propagation of numerical
error caused and potentially amplified by operationally partitioning a strongly coupled nonlinear
system must then be understood before using such an approach in an application. For scale-
bridging applications, for example, a tight-coupling strategy is probably essential unless there is
good understanding of the accuracy impact of a more loosely coupled approach. This is not,
however, an unqualified endorsement of tightly coupled approaches. Much more research is needed
into understanding how and when to partition nonlinear, multimodel systems accurately and stably.

Nonlinearly converged strategies. Given the multiscale nature of the problems of interest
at the exascale, it will often be of interest to step over fast time scales to evolve the system on a
slower manifold. This approach will likely lead to strongly coupled nonlinear systems, which will
demand nonlinearly converged solution strategies.

Nonlinearly converged approaches attempt to advance the fully discrete model as a simultaneous
inversion of coupled equations. For time-dependent problems, the discrete model is often implicit
because of numerical stiffness (usually a result of the spatial discretization or fast time scales in the
original problem). The nonlinear implicit system must be iterated to convergence. Done properly,
nonlinear convergence ensures nonlinear consistency among physics components and is the “gold
standard” for solving strongly coupled nonlinear systems.

However, the sheer size of target physics problems at the exascale, combined with the expected
hardware limitations of exascale computing in terms of memory and resiliency, will severely restrict
practical nonlinear solution strategies. For instance, in scale-bridging applications, nonlinear solu-
tion approaches attempting to converge on a nonlinear residual in which all variables of all levels of
the hierarchy are listed explicitly will likely become prohibitive. Nevertheless, the benefits of non-
linear convergence in terms of accuracy and robustness suggest that nonlinear iterative approaches
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will continue to play an important role at the exascale (Section 4.4). In order to meet exascale
needs, further research into nonlinear solvers will be required that limits global communication,
that minimizes memory footprints, and that can take advantage of acceleration via precondition-
ing. One important focus of future nonlinear solver research should be enabling these algorithms
to exploit the benefits of algorithmic partitioning (as described earlier in this section) in terms of
memory frugality, modularity, task parallelism, and asynchrony.

Another important research topic for the exascale is practical preconditioners. The resources
made available by exascale computers provide new directions for preconditioner research. For in-
stance, when multiscale models are globally coupled, the less expensive coarse-grained model can be
used as a preconditioner for the finer-scale problem. An example was demonstrated in the context
of the hierarchy of models obtained through moment-based model coarsening as discussed in Sec-
tion 4.2. The kinetic and moment models can be viewed as a “two-grid” multilevel approach, and
the relatively inexpensive moment model calculations can be used to accelerate the convergence of
the fine-scale solution using well-defined restriction (moment integrals) and well-posed prolonga-
tion (constraining kinetic descriptions by moment quantities) operators. An alternative strategy
that leverages the additional computational power at the exascale may be to use a coarsely parti-
tioned model with correct compatibility constraints (e.g., a partitioned approach to fluid-structure
interactions) as a preconditioner for a better-resolved, fully coupled system.

Stability and consistency. Exascale computing will not change the fundamental tenet that
discrete algorithms must be stable and consistent. Stability and consistency will continue to be
essential for algorithms that couple nonlinearly disparate scales or physical models for exascale
computing.

With regard to stability, one must go beyond linear stability analysis and consider nonlinear
stability as well. Important elements in this regard are the nature of the numerical coupling
(e.g., tight vs. loose), the preservation of conservation laws, the asymptotic well-posedness of the
formulation, and the analysis and characterization of nonlinear stability through the use of nonlinear
analysis tools such as modified equation analysis and variational formulations (when available).
Many of these analysis techniques are related. For instance, variational formulations are intimately
connected to the preservation of conserved quantities, and the latter provide constraints to ensure
nonlinear stability.

With regard to consistency, the constraints of exascale computing will favor high-order, compute-
intensive, and memory-frugal formulations. However, one must ensure not only that design order
of accuracy is obtained for sufficiently small discretization parameters (e.g., time steps and mesh
spacings) but also that the formulations are asymptotic-preserving [55] when these parameters get
large with respect to some characteristic scale in the system (either temporal or spatial), as they
will in scale-bridging applications. In particular, one must ensure that the proper physical asymp-
totic limit is achieved by the discretization of choice when time steps or mesh sizes do not resolve
microscopic physical phenomena. Much work has been done recently in this area, in the context
of both temporal and spatial discretizations. However, asymptotically well-posed discrete formu-
lations often tend to feature low orders of accuracy in resolved scales. Thus, the development of
high-order, asymptotically well-posed numerical formulations will be a key area of mathematical
research in the exascale era.

Another sense of consistency is expected to play a role at the exascale: the discrete preservation
of solution invariants (e.g., conservation laws), at both the local and the global levels. Locally,
such invariants may be useful to detect soft faults. For instance, if one expects a local quantity
to be conserved discretely and it is not after a given computation, the offending operation may be
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repeated. Globally, invariants limit the solution manifold and thus prevent solution drift over long
simulations when exactly satisfied. This property is particularly important for conservation laws
that apply across scales in scale-bridging algorithms. Discrete consistency with solution invariants
must be designed into the discretization if these properties are to be leveraged to ensure correctness.

Particle-based approaches bring challenges in both stability and consistency [9, 19, 69]. Despite
the success of some of these approaches in obtaining first-of-their-kind simulations, there is still
much to be understood about the generation, propagation, and nonlinear interaction of errors due
to interpolation and stochastic noise, as well as the impact of this noise on the overall accuracy
of the simulation for long-time integration. Research on the development of low-noise techniques
that treat collisions and remapping techniques that preserve conservation laws will be important
components of the exascale mathematics portfolio.

Stability and consistency for stochastic systems are difficult questions in general. Numerical
treatment of stochastic systems is not simply a matter of adding stochastic forcing to an existing
method. In some cases, capturing the stochastic structure of the system places stringent demands on
how deterministic terms are discretized. Numerical methods for stochastic systems retain all of the
complexity of methods for deterministic problems and have additional requirements for capturing
the probabilistic structure of the system. Although considerable research has been done in this
area, numerical methods tend to lag behind their deterministic counterparts. A need exists for
both richer classes of algorithms and a deeper understanding of convergence behavior for stochastic
systems.

4.3.2 Parallel-in-Time Discretizations

Since clock speeds are no longer increasing, a significant challenge for the computational science
community on future computer architectures is to overcome the sequential nature of current time
integration methods. At first thought, this seems an impossible task. But development of parallel-
in-time methods actually dates back almost 50 years [62], and significant speedups over traditional
time marching approaches have already been demonstrated. Relative to standard time integration
methods, however, the volume of research and development done in this area is extremely small
and certainly not enough to move us into the exascale era. For most practitioners, the move to a
parallel time integration setting will be a major paradigm shift that will have a huge impact on ex-
isting codes, the algorithms used, and even the way simulations are visualized and computationally
steered.

One way to understand how parallel-in-time algorithms work is to consider the fully discretized
space-time system. Traditionally, the system is solved by marching from one time step to the next,
much as is done in a forward solve for a lower-triangular matrix. This approach is computationally
optimal, but sequential. The idea is to instead solve the same space-time system by computing
multiple time steps at once in an iterative fashion. If the iterative method is also computationally
optimal and exhibits enough concurrency, then additional parallel resources can be used to achieve
a speedup. Note that, in practice, it is not necessary to solve the full space-time system at once,
just one space-time slab at a time.

There are many interpretations of parallel-in-time algorithms that may prove useful in devel-
oping efficient, robust formulations. For instance, methods such as parareal [59] can be viewed as
classical two-level nonlinear multigrid algorithms (even though they were not originally introduced
as such), and recent work has generalized this idea to fully multilevel methods in space and time.
Since multilevel algorithms have been shown to be optimal (see Section 4.4.2) and have a high de-
gree of concurrency, such parallel-in-time approaches are ideal, at least for large enough problems.
Other perspectives treat the method as an extension of multiscale, multiphysics schemes in time or
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as a sophisticated nonlinear iteration for a space-time discretization. Some approaches to parallel-
in-time attempt to be discretization agnostic, while others exploit specific discretization strategies
such as the interesting work done on spectral deferred correction schemes and on first-order system
least squares.

In all cases, one of the main research issues is achieving optimal convergence of the itera-
tion, a major component of which is formulating an appropriate coarse-scale problem. Relatively
straightforward approaches may work in some cases, while in other cases more elaborate ideas may
be needed. For example, three ideas presented at the exascale workshop were the use of a least
squares shadowing problem for solving chaotic systems [WP37], the use of the slow time-scale com-
ponent of the underlying PDE for oscillatory systems [WP1], and the use of different governing
equations on different levels [WP46]. In general, significant research remains to be done.

4.3.3 High-Order Discretizations

Many multiphysics applications in use today use low-order discretizations (first- or second-order).
Higher-order discretizations have been less used for several reasons, but chief among them are
numerical stability, difficulty of implementation, and perceived computational expense. By design,
high-order methods have little implicit numerical dissipation to stabilize the scheme, particularly
at boundaries, and so their implementation requires careful analysis and consideration. High-order
discretizations also require more floating-point operations than do their low-order counterparts;
thus, on the same mesh, high-order methods require more CPU time.

In the exascale realm, however, floating-point operations will effectively be free relative to the
cost of data motion. Furthermore, high-order discretizations use fewer nodes, elements, or cells to
achieve a required level of accuracy, provided that the features to be represented are well-resolved.
This is just an inversion of the definition of a high-order discretization: higher-order methods
asymptotically have a smaller error for a given mesh size. Of course, unless the discretization is
compact, high-order methods have larger stencils or more degrees of freedom within each element,
which can lead to additional data transfer and/or denser linear algebra problems. If properly
managed, there is potentially less data motion for high-order methods than for low-order, which will
have benefits for exascale performance. On node, high-order methods will have higher operational
intensity than low-order methods, that is, will do more operations per byte of data loaded, and so
will be better able to reach the performance limit of the node. In practice, the actual operational
intensity is limited by the implementation details, so research is needed into structuring high-
order algorithms to achieve, as much as possible, the theoretical operational intensity. In contrast,
low-order schemes are typically bandwidth-limited, that is, because there is less computational
work, the floating-point performance is limited by the data transfer speeds, and no amount of
reimplementation will ever reach the maximum on-node performance.

In addition, the move to high-order methods raises further applied mathematics research ques-
tions that require research. Much analysis is needed to devise stable interior and boundary dis-
cretizations. Scalable, high-order temporal discretizations will be needed that avoid global syn-
chronization. Splitting schemes (model partitioning) will need to be coupled in a high-order way,
particularly at boundaries where the compatibility conditions must be respected. High-order meth-
ods lead to more coupled linear algebra problems (denser matrices) that will require suitable solvers.
Moreover, high-order methods will require improvements in techniques to handle high-order com-
putational geometry representations and meshes.
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4.3.4 Adaptivity

Just as in petascale computing, adaptive mesh refinement (AMR [11]) will continue to be an im-
portant algorithmic component at exascale. When solution features are isolated in space, AMR
reduces the amount of data and provides a natural partitioning of the simulation domain into
regions requiring greatest resolution. For semi-structured AMR techniques, the underlying mul-
tilevel structure provides a natural and efficient hierarchy that should be favorable for scalable
algorithms. Thus, AMR promotes concurrency and reduces memory usage. The availability of
more concurrency should help reduce the overhead associated with refinement, regridding, and
interlevel communications. Nevertheless, exascale introduces design constraints, such as limiting
data motion and favoring compute-intensive kernels, that will encourage the consideration of com-
plementary strategies such as local order adaptivity, which introduces different challenges in load
balancing and asynchronous execution.

Model adaptivity, where the model changes locally in a region of the domain, will also play
an important role in exascale computing. In fact, model adaptivity will be most effective when
combined with adaptive mesh and algorithm refinement techniques [46]. These models can de-
scribe the same physics at different levels of fidelity at the same location (e.g., fine-grained models
that replace constitutive relations) or can describe different physics altogether (e.g., fluid-structure
interactions, multiphase simulations). Model adaptivity features several advantages for exascale
computing: it can potentially exploit different levels of parallelism, asynchrony, and mixed preci-
sion and can minimize communication across layers. Model adaptivity (as well as AMR) could be
tied to error control and uncertainty management to apply the finer-grained models only in those
regions where the extra expense improves the solution accuracy. Model adaptivity still presents
important challenges, however, particularly with regard to the nature of the coupling across differ-
ent physical descriptions, the criteria governing the choice of model, dynamic load balancing, the
preservation of conservation laws, and the impact on fidelity of the prolongation of information from
coarser descriptions to finer ones. There are clearly opportunities in developing scalable adaptive
algorithms, but more research is needed.

Real-world simulations can also transition between regimes of coupling strength, and this fea-
ture will likely be more pronounced in exascale multiphysics simulations. Detecting these tran-
sitions and devising adaptive discretizations that minimize error relative to fully coupled models
could provide substantial savings by using more sophisticated (and expensive) coupling procedures
only when necessary. Using metrics that determine the strength of coupling between operators
in multiphysics models, dynamically adaptive discretizations could adjust solution approach (e.g.,
explicit or implicit) per component, the coupling accuracy, and/or the splitting method during the
course of long-running simulations. Research will be required to ensure a consistent solution from
such algorithms as well as to develop verification approaches that accommodate the solution- and
time-dependent discretization.

4.3.5 Scalable Computational Geometry and Mesh Generation

To date, a gap has remained in the exascale discussion regarding issues related to defining and
constructing complete simulation workflows. The execution of a simulation workflow begins with
the domain geometry and includes many aspects, from meshing and discretization to solvers, error
estimation, adaptive refinement, data transfer between meshes, UQ, optimization, and visualiza-
tion. The interactions among these components are complex, can be tightly coupled, and occur
throughout the entire solution process. Thus, when executed on massively parallel computers,
parallel structures and services are required for all aspects of the simulation workflow. Moreover,
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different workflow components are often developed by different work groups. In order to allow
simulations to leverage the best available tools in each category, it is important that the parallel
structures be based on well-described functional interfaces that form the backbone of an interop-
erable infrastructure.

The two key technical issues discussed in this section are parallel methods for interacting with
high-level descriptions of complex geometries and generating and adapting high-quality, high-order,
curvilinear meshes. Both these workflow steps are an integral part of the solution process and
must be done by using in-memory linkages among geometry, mesh, simulation fields, and adaptive
control. Without additional research and development, these areas will be a critical bottleneck
in next-generation DOE science applications that require high-order methods to solve multimodel
problems over complex, high-dimensional domains.

Computational geometry. Historically, the simulation domain was defined directly in terms
of the discretization (e.g., the computational mesh) used by the analysis procedures. Unfortunately,
such a definition does not adequately support the automation needed in multimodel and/or adap-
tive simulations. A higher-level domain representation is required that can support the complete
specification of the simulation attributes and all the geometry operations required by the simulation
components. These operations include automatic generation and adaptation of meshes to the true
geometry, geometry interrogations for analysis, and geometry modifications to account for large
deformations, fracture, shape optimization, and adaptive control of geometric simplifications.

Clearly, the geometric operations described above require that the geometric information be
available throughout the simulation process. However, when the geometric model contains large
numbers of boundary entities or extensive shape information, maintaining a copy of the entire
geometry on each process becomes problematic. It is not unusual for a moderately complex CAD
model to be 1 GB of data, which is a significant percentage of the expected size of local memory in
future computer systems, and therefore a possibly unacceptable storage overhead. In addition, the
I/O associated with copying this amount of data to each process creates a bottleneck on massively
parallel machines. In cases when the geometry input has millions of features (e.g., full models
of integrated circuit), it is also important to generate the original, complete geometric model in
parallel for the basic design data (e.g., GDSII layout files for integrated circuits). The development
of parallel geometric modeling has received little consideration, but one approach that appears
promising is a flexible, parallel spatial decomposition of the domain based on an octree for which
parallel implementations have been developed for mesh generation.

When a parallel mesh has already been constructed for a given geometric model, one can
distribute the model based on the distribution of the mesh, colocating the geometric model entities
with their associated the mesh entities. The key to proper parallel operation is maintaining proper
model entity adjacencies. As an example, consider the partitioned mesh and geometry shown in
Figure 3. The upper image is the partitioned mesh, while the lower image shows the mesh on four
of the sixteen parts and the geometric model entities (in gray) that are stored with those meshes.
Tests show that the total memory to store the model entities in a distributed fashion is generally
independent of the number of partitions and only up to 1.5 to 2 times more than storing the entire
model a single time.

Additional research is required in a number of areas including understanding how to best par-
tition a geometrical domain without the pre-existence of an associated parallel mesh, how to han-
dle evolving geometry (e.g., in shape optimization and damage modeling); geometrical coarsen-
ing/refinement operations to match the level of accuracy required by the simulation; lossy and
lossless compression schemes for geometrical information; and efficient, fast migration of geometric
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Figure 3: Parallel geometry for a distributed mesh. Geometry included with each part is shown as translucent.

information to different processors as the simulation proceeds.

Parallel mesh generation and adaptation. The majority of parallel simulations rely on an
initial serial mesh, which introduces a bottleneck when the meshes have many millions of elements.
The bottleneck is due to the cost of file transfer from the large-memory machines (typically used
to generate the mesh) to the parallel computers used to execute the simulation. Alternatively, the
initial meshes should be generated and adapted, in parallel, on the same parallel computer that
executes the analysis. Methods to support distributed mesh generation and adaptation have been
developed and are available for many types of meshes; but as meshes reach very large sizes, such
methods become scarce. The bulk of this work supports MPI-based programming models, although
current research efforts are increasingly investigating methods and programming models for hybrid
parallelism and mixed GPU/CPU support.

Additional research is needed in a number of areas to ensure that this critical component of
the simulation workflow supports the needs of high-order simulations and can run efficiently on
exascale computers. While high-order discretization methods have been developed and studied
extensively, the overall solution approaches have often used low-order (e.g., linear) representations
of the computational mesh. These can limit the accuracy and convergence rates achieved by
the simulations. Many fundamental, open questions remain that are related to the generation,
quality control, and adaptation of high-order, curvilinear meshes, both in serial and in parallel. For
example, new methods are needed for high-order mesh transformations (e.g., mesh smoothing or
swapping) and dealing with moving meshes that contain high-order elements.

For the complex multiphysics applications that will be enabled by exascale computers, new
methods of mesh generation and data partitioning are required. Dynamic partitioning methods for
mesh adaptation must themselves be fast and scalable and must directly consider the needs of each
simulation workflow step. It is often unclear what the partitioning objective function should be
to maximize performance, and trade-offs among load balancing, maximizing memory bandwidth,
and minimizing communication costs must be considered. Furthermore, since exascale computers
will often be used for ensemble simulations (e.g., for uncertainty quantification or design studies)
those scenarios must leverage information across as many runs as possible. For mesh and geometry
information, it is unclear, for example, which information can be leveraged, what optimizations can
be made, and whether any memory compression schemes can be achieved.
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4.3.6 Related Position Papers

Many position papers related to discretization were presented at the Exascale Mathematics Work-
shop. These included papers on multiscale and multiphysics coupling [WP14, WP25, WP27, WP28,
WP40, WP73], high-order discretizations [WP17], time discretization [WP53], and computational
geometry [WP19]. Additional position papers related to these topics include [WP2, WP33, WP44,
WP60, WP61].

4.4 Scalable Solvers

In our top-down view of the role of applied mathematics in exascale computing, discussion has
moved from the specific (i.e., formulations and models specific to the problem at hand) to the more
general. With an appropriate mathematical model chosen and discretized, the original problem is
approximated (in general) by a finite-dimensional, coupled, nonlinear or linear system of algebraic
equations. Nonlinear solvers, eigensolvers, and linear solvers, appropriate to the properties of the
algebraic system, are then employed to obtain the approximate solution. Many of these solvers are
provided in numerical solver libraries, which have been optimized over the years for a variety of
platforms.

Moving to the exascale will put heavier demands on these algorithms in at least two areas:
the need for increasing amounts of data locality in order to perform computations efficiently and
the need to obtain much higher factors of fine-grained parallelism as high-end systems support
increasing numbers of compute threads. Consequently, parallel algorithms must adapt to this
environment, and new algorithms and implementations must be developed to capitalize on the
computational capabilities of the new hardware. Here, we discuss several key research topics in
numerical solver development for exascale computing. While the discussion focuses mostly on the
solution of linear systems, many of the issues and challenges identified are applicable to nonlinear
solvers and eigensolvers.

4.4.1 Direct and Iterative Solvers

The solution of sparse linear systems is often the most time-consuming computation in large-scale
science and engineering simulations. Although iterative methods have become more and more
prevalent for solving many of these systems, direct solvers are still widely used and will continue to
play an important role at the exascale. The primary advantage of direct solvers is their robustness.
Direct solvers are guaranteed to terminate after a finite number of steps. Moreover, with appropri-
ate pivoting for numerical stability, direct solvers are often the method of choice for solving highly
ill-conditioned linear systems. The main drawbacks of direct methods are their memory require-
ment and computational cost. Pinpointing the complexity of direct methods is difficult because
of fill (which refers to the zero entries of the matrix that become nonzero during the factorization
process). For matrices arising from certain two-dimensional finite-element/finite-difference meshes,
the number of nonzero entries in the triangular factors and the number of operations required to
compute the factors are bounded below by O(n log n) and O(n3/2), respectively, where n is the num-
ber of unknowns. In three dimensions, these numbers are much larger. In general, the complexities
are significant for large problems compared with iterative methods, particularly O(n) solvers such
as multigrid (discussed below).

For iterative methods, the primary kernel in an iteration is typically a matrix-vector multipli-
cation, the cost of which is generally proportional to the number of nonzeros in the matrix. On
the other hand, the convergence of iterative methods can vary widely across applications and even
within a single code or simulation. The number of iterations required depends on the linear system
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being solved. The iteration count can be affected by applying preconditioning to the linear systems,
although the choice of preconditioners is often application dependent. Attempts have been made to
employ techniques developed for sparse direct solvers to compute incomplete factorizations, which
are then used as preconditioners for iterative methods. Such approaches have varying degrees of
success.

In addition, effective iterative methods often have subcomponents that require direct solvers,
both dense and sparse. For example, dense solvers are used to build smoothers in multigrid methods
for PDE systems, and sparse direct solvers are sometimes needed to solve the coarse system of
equations. In domain decomposition, a linear system is permuted so that it has a bordered block
diagonal form. Direct solvers (and iterative solvers too) are ideal for solving the diagonal blocks
because these blocks are smaller. Processing the border results in the Schur complement, which
can be dense, and can be solved by using iterative methods, since the Schur complement needs
not be formed explicitly. Several implementations of such hybrid methods have been proposed and
applied to large-scale problems. In other variants, direct and iterative methods are combined to
produce efficient hybrid solvers.

In general, dense and sparse linear algebra represent fundamental building blocks that are
ubiquitous and used in a variety of applications. Although they will be rarely used on a full
exascale system, dense operations frequently occur on smaller scales ranging from a single multicore
processor to accelerators and terascale/petascale clusters of such components. For all these reasons,
research and development in both direct and iterative solvers will be essential for future exascale
simulation science needs.

4.4.2 Multilevel Algorithms

For many problems, the fastest and most scalable solver approaches are multilevel methods, because
they are both mathematically optimal and highly parallel. As a result, multilevel solvers are already
widely used in DOE scientific simulation codes, and we argue that their importance only increases
in the exascale setting. Consider the simplest setting of multigrid methods for linear systems (the
basic comments and conclusions carry over to the general setting). Multigrid methods are called
optimal (order) methods because the work required to solve a linear system is linearly proportional
to the number of unknowns. That is, they are O(n) methods, where n is the number of unknowns.
This property gives them the potential to solve ever larger problems on larger parallel machines in
(nearly) constant time. Multigrid methods achieve this optimality by employing two complementary
processes: smoothing and coarse-grid correction. In the classical setting [7, 13, 44] of scalar elliptic
problems, the smoother (or relaxation method) is a simple iterative algorithm such as Gauss-
Seidel that is effective at reducing high-frequency error. The remaining low-frequency error is then
accurately represented and efficiently eliminated on coarser grids via the coarse-grid correction
step. Applying this simple multigrid idea to get a scalable method often involves considerable
algorithmic research, however. One has to decide which iterative method to use as a smoother,
how to coarsen the problem, and how to transfer information between the grids. When designed
properly, a multigrid solver is algorithmically scalable; it uniformly damps all error frequencies
with a computational cost that depends only linearly on the problem size. In addition, a well-
designed multigrid algorithm has a high degree of concurrency. Specifically, its computational task
dependency graph has a depth that depends at most logarithmically on the problem size. In other
words, the size of the sequential component of the algorithm (the part that cannot be parallelized)
is only O(log n), which is often the minimum-order size achievable because of the underlying physics
being simulated.

Because of their optimality and high concurrency properties, multilevel methods will continue
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to play a critical role for exascale computing. In addition, at least one parallel algebraic multigrid
code has already been shown to exhibit a natural resilience to soft faults when applied to diffu-
sion problems, with the vast majority of solver failures being due to pointer corruption and not
mathematical frailty. This result may indicate that multilevel methods are a good starting point
for building fault-tolerant algorithms as well. Finally, multilevel techniques will also likely play an
important role for computing multiple time steps in parallel, as discussed in Section 4.3.2.

Although multilevel methods have many desirable properties, any given algorithm generally
has somewhat narrow applicability. As a result, there are many approaches for solving different
classes of problems, and in some cases optimal-order methods have yet to be fully developed (for
example, Helmholtz equations). In addition, exascale computing restricts algorithmic choices,
eliminating the use of important techniques such as lexicographic Gauss-Seidel smoothing (too
sequential) and W-cycles (too much communication). Hence, a high-level multigrid research agenda
basically involves the development of optimal algorithms that address at least one or more of the
following: (1) new application areas; (2) removal of sequential subcomponents (e.g., smoothers that
follow characteristics in CFD applications); or (3) communication reduction (e.g., additive methods,
non-Galerkin coarse operators, multilevel domain decomposition approaches). Another important
research goal is the pursuit of methods that are broadly applicable. Algebraic multigrid (AMG)
[14, 66] is an example of such a research topic that has paid dividends to date. In practice, AMG is
tailored for specific applications to achieve the best performance, usually by way of many adjustable
parameter choices. But, the basic AMG goal of developing an O(n) method that depends only on
the coefficients of a general matrix has helped further our overall knowledge and understanding of
multilevel methods and has led to breakthroughs in areas such as lattice quantum chromodynamics,
where the development of optimal multigrid methods had been illusive.

4.4.3 Numerical Solver Exascale Research Issues

While the anticipated changes in architecture, as discussed in Section 3, will have effects across the
“math stack,” it is in numerical solvers that the necessary adaptations may be most explicit. Here
we discuss several strategies and techniques that should help achieve high performance but that
require further investigation: communication-avoiding algorithms; synchronization reduction; data
compression; mixed-precision algorithms; randomization and sampling algorithms; adaptive load
balancing; scheduling and memory management for heterogeneity; energy-efficient algorithms; and
autotuning. These ideas will also be useful in considerations of problem formulation, modeling,
and discretization, since the requirements driven by the science needs will inevitably be tempered
by the constraints of the computer architecture.

Communication avoiding. Algorithmic complexity is usually expressed in terms of the
number of operations performed rather than the quantity of data movement to memory. This
is antithetical to the expected costs of computation at the exascale, where memory movement
will be very expensive and operations will be nearly free. When solving very large problems on
parallel architectures, the most significant concern becomes the cost per iteration of the method—
typically because of communication and synchronization overheads. This is especially the case for
preconditioned Krylov methods, for example, which are the most popular class of iterative methods
for large sparse systems.

To address the critical issue of communication costs, researchers need to investigate algorithms
that minimize communication. New bandwidth and latency lower bounds must be derived for
various numerical algorithms on parallel and sequential machines (e.g., for dense linear algebra
algorithms where the well-known lower bounds for the usual O(n3) matrix multiplication algorithm
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should be extended). New algorithms that attain these lower bounds, at least in many cases, must
be invented. Another example of needed research is in Krylov subspace methods such as GMRES,
CG, and Lanczos, where one should devise means to take k steps of these methods with the same
communication costs as a single step.

One method that should be exploited more is the fast multipole method (FMM) algorithm,
which exploits local regularity to achieve significant reductions in both computation (asymptotically,
from O(n2) to O(n)) and communication. This algorithm has been named one of the most important
algorithms of the 20th and 21st centuries, yet strangely it has seen little adoption, perhaps because
of its initial perceived complexity. However, a growing community of algorithms experts are finding
that the future success of the exascale era may go hand in hand with the ability for researchers
to develop new, fast direct solvers and adaptations to the FMM. The route to this may involve
using kernel-independent approaches that remove the need for FMM solvers to be hand-crafted
for particular applications. The breadth of application of FMM is not limited to such solvers; one
important application will be its ability to reduce communications of large FFTs by close to a
factor of 3.

Synchronization reduction. Often one must synchronize the computation in an algorithm.
A good example is the parallel computation of dot products. Synchronization is needed after such
global reductions. However, synchronizations can become bottlenecks. Thus, one must design
algorithms that have as few synchronization points as possible. Attempts have been made to
restructure existing algorithms so that the number of synchronizations is reduced. An example
is the conjugate gradient algorithm. By using some mathematical identities, one can produce
versions of the conjugate gradient algorithm that have just one synchronization rather than two in
the conventional description of the algorithm.

The idea of restructuring the algorithm to reduce the number of synchronizations, and in general
the amount of communication, will become more important in the exascale era. However, not all
the variants of an algorithm may have the same numerical behavior. In the case of conjugate gra-
dient, some variants may not be numerically stable. Thus, in restructuring an algorithm to reduce
synchronization and communication, the stability of the variants is an important consideration.

Data compression. Another way to reduce the volume of communication is to consider data
compression. If the compression rate is high, then this can result in a significant reduction in the
amount of data to be communicated in an algorithm. In some cases, data compression can also
result in an improvement in the execution time despite the fact that time is needed to perform the
compression.

An example of data compression is the recent work on matrix factorizations using compact
representation. For matrices arising from self-adjoint elliptic operators, for example, submatrices
in the factors exhibit low ranks. Thus, one can store these low-rank submatrices by using compact
representations, such as singular value decompositions, rather than the conventional matrix repre-
sentation. Results have shown significant reduction in the storage requirement, and naturally this
also leads to reduction in the amount of data to be communicated in a parallel setting. Further-
more, the cost of the factorization is often reduced because less data has to be manipulated, even
though time is needed to compute the compact representations.

The idea of low-rank representations can be extended further by allowing lossy compression.
Using the matrix factorization as an example again, one can truncate the singular value decompo-
sition to obtain a low-rank approximation. This results in an approximate factorization, which can
then be used, for example, as a preconditioner in an iterative method.
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A number of research problems should be investigated. First, what is the extent of compression
possible for a given class of problems? Second, what is the tradeoff between the increased cost due
to compression and the possible reduction in cost due to reduction in communication? Third, when
lossy compression is enabled, what is the impact on the reliability and accuracy of the algorithm?

Multiple-precision algorithms. Algorithms and applications are becoming increasingly
adaptive, and we have seen that various adaptivity requirements have become an essential, key
component of their roadmap to exascale computing. Another aspect of this quest to adaptivity is
related to the development of libraries that recognize and exploit the presence of mixed-precision
mathematics. A motivation comes from the fact that, on modern architectures, the performance of
32-bit operations is often at least twice as fast as the performance of 64-bit operations. Moreover,
by using a combination of 32-bit and 64-bit floating-point arithmetic, the performance of many
linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of
the resulting solution. This approach can be applied not only to conventional processors but also
to other technologies, such as GPUs, and thus can spur the creation of mixed-precision algorithms
that more effectively utilize heterogeneous hardware.

Mixed-precision algorithms can easily provide substantial speedup with little coding effort
mainly by taking into account existing hardware properties. Earlier work has shown how to derive
mixed-precision versions for various architectures and for a variety of algorithms for solving general
sparse or dense linear systems of equations. Typically, a direct method is first applied in single
precision in order to achieve a significant speedup compared with using double precision. Then an
iterative refinement procedure aims at retrieving the lost digits. Iterative refinement can also be
applied for eigenvalue and singular value computations.

Of current interest is to extend and incorporate this approach in applications that do not nec-
essarily originate from linear algebra and to study the robustness of mixed-precision algorithms on
large-scale platforms. Indeed, the convergence of the mixed-precision iterative refinement solvers
strongly depends on the condition number of the matrix at hand. The conditioning can be deter-
mined at run time, and proper precision can be selected. Ideally, the user could specify the required
precision for the result, and the algorithm would choose the best combination of precision on the
local hardware in order to achieve it. The actual mechanics would be hidden from the user.

Randomization and sampling algorithms. Randomized and asynchronous algorithms
have been successful in several areas of computer science and have received a growing amount
of interest in recent years in linear algebra, in particular linear least squares (dense) and general
sparse linear systems. On future exascale systems, randomization algorithms and algorithms based
on sampling may become more important in reducing synchronization and data movement. This
approach may outperform deterministic algorithms for standard problems such as solving linear
systems. Randomized algorithms have the advantage that they are often simple to implement and
often require little synchronization; some versions may run completely asynchronously. However,
randomized algorithms often raise concerns. Are they sufficiently accurate? Do they converge too
slowly for a given tolerance? What if they fail? Success “with high probability” is not acceptable
in many cases. One place where randomized algorithms may play an important role is as pre-
conditioners in iterative methods. For preconditioners, which try to accelerate convergence, it is
acceptable to have low accuracy and occasionally fail to return a correct answer, since there is an
outer iteration to guarantee convergence.
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Adaptive response to load imbalance. As we move to architectures with billions of
threads, even naturally load-balanced algorithms on homogeneous hardware will present many
of the same load-balancing problems that are observed in current adaptive codes. For example,
software-based recovery mechanisms for fault tolerance or energy-management features will create
substantial load imbalances as tasks are delayed by rollback to a previous state or correction of
detected errors. Dynamic scheduling based on directed acyclic graphs (DAGs) has been identified
as a path forward, but this approach will require new approaches to optimize for resource utilization
without compromising spatial locality.

Scheduling and memory management for heterogeneity and scale. Extracting the
desired performance from environments that offer massive parallelism, especially where additional
constraints (e.g., limits on memory bandwidth and energy) are in play, requires more sophisticated
scheduling and memory management techniques than have heretofore been applied to linear algebra
libraries. Confronting the limits of domain-decomposition in the face of massive, explicit parallelism
introduces another form of heterogeneity. Feed-forward pipeline parallelism can be used to extract
additional parallelism without forcing additional domain-decomposition, but it exposes the user to
dataflow hazards. Ideas relating to a data-flow-like model, where parallelism is expressed explicitly
in DAGs, allows for dynamic scheduling of tasks, support of massive parallelism, and application
of common optimization techniques to increase throughput. Approaches for isolating side-effects
include explicit approaches that annotate the input arguments to explicitly identify their scope
of reference and implicit methods, such as using language semantics or strongly typed elements
to render code easier to analyze for side-effects by compiler technology. New primitives for mem-
ory management techniques are needed that enable diverse memory management systems to be
managed efficiently and in coordination with the execution schedule.

Energy-efficient algorithms. Emerging constraints on energy consumption are expected to
have pervasive effects on HPC; power and energy consumption must now be added to the traditional
goals of algorithm design, namely, correctness and performance. The emerging metric of merit is
performance per watt. Consequently, it may be essential to build power and energy awareness,
control, and efficiency into the foundations of our numerical libraries. In order to accomplish such
a goal, first and foremost, standardized interfaces and APIs for collecting energy consumption data
should be developed, just as PAPI has done for hardware performance counter data. Accurate
and fine-grained measurement of power consumption underpins all tools that seek to improve such
metrics; anything that cannot be measured cannot be improved. Second, these tools must be used
to better understand the effects that energy saving hardware features have on the performance of
linear algebra codes. Third, parameters and alternative execution strategies must be identified for
each numerical library that can be tuned for energy efficient executions, and to enhance schedulers
for better low-energy execution.

Autotuning algorithms. Numerical algorithms and libraries need the ability to adapt to
the possibly heterogeneous environment in which they operate. Such adaptation must deal with
the complexity of discovering and applying the best algorithm for diverse and rapidly evolving ar-
chitectures. An automated process would be best, both for productivity and for correctness, where
productivity refers both to the development time of the implementation and to the user’s time to
solution. The objective is to provide a consistent library interface that, independent of scale and
processor heterogeneity, can achieve good performance and efficiency by binding to different under-
lying code, depending on the configuration. The diversity and rapid evolution of today’s platforms
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mean that autotuning of libraries such as the BLAS will be indispensable to achieving good perfor-
mance, energy efficiency, and load balancing across the range of systems. In addition, autotuning
has to be extended to frameworks that go beyond libraries, such as optimizing data layout (e.g.,
blocking strategies for sparse matrix/SpMV kernels), stencil autotuners (since stencils kernels are
diverse and not amenable to library calls), and even tuning of the optimization strategy for multi-
grid solvers (optimizing the transition between the multigrid coarsening cycle and bottom-solver
to minimize runtime). Adding heuristic search techniques and combining these with traditional
compiler techniques will enhance the ability to address generic problems extending beyond linear
algebra.

4.4.4 Role of Numerical Libraries

Many numerical solvers for high-performance computing are made available through libraries, and
DOE has historically supported the development of such libraries. LAPACK, ScaLAPACK, PETSc,
hypre, Trilinos, SuperLU, SUNDIALS, Chombo, BoxLib, SAMRAI, and TAO are well-known ex-
amples of the results of this investment. Numerical libraries will continue to play an important
role at the exascale; once genuinely exascale-suitable algorithms for a class of discrete problem have
been identified and developed for a particular platform, libraries provide an efficient means to share
these implementations across applications with similar characteristics. Of course, libraries alone
cannot provide all the advances needed for exascale. Expert knowledge on the algorithms and how
to use them effectively within the context of the problem, mathematical model, and discretization
will continue to be important.

A critical issue for exascale computing, therefore, will be to develop numerical libraries for exa-
scale architectures in order to share this wealth of experience efficiently, but this library development
will face challenges. For instance, programming models and hardware architectures are still in a
state of flux, and this uncertainty will slow down the development of extreme-scale solver libraries
as new configurations and abstractions are tried. It seems most reasonable to build on top of
existing libraries instead of developing entirely new libraries; this will amortize some of the software
maintenance costs, provide backward capability, and make transition for applications easier. Many
applications will need to be run on at least capacity up through leadership-class machines, if not
down to even smaller-scale clusters and workstations. Libraries that can handle all of these scales of
computing with consistent interfaces will aid in the development and portability of DOE application
codes; autotuning is an obvious approach to pursue. Finally, the development of exascale-suitable
extensions of numerical libraries will require more than just research into improved algorithms—
it will also require significant investment into substantial software development and support that
cannot (and should not) be a hidden cost of discrete solvers research.

4.4.5 Related Position Papers

Many position papers related to discrete solvers were presented at the Exascale Mathematics Work-
shop. Topics of presented papers included multilevel algorithms [WP9, WP16, WP17, WP20,
WP21, WPA1], direct/iterative methods [WP34, WP45, WP56, WP59, WP65], eigensolvers [WP18],
the use of compression techniques [WP45, WP47, WP65], communication/synchronization avoid-
ing [WP3, WP22, WP68], randomization and sampling [WP47, WP59], partitioning and load bal-
ancing [WP43, WP44], and the use of mixed-/adaptive-precision arithmetic [WP25, WP54, WP65].
Additional positions papers related to this topic include [WP11, WP63].

Applied Mathematics Research for Exascale Computing 37



4.5 Data Analysis

Undeniably, the exascale era will usher in unprecedented volumes of scientific data, including data
captured at experimental facilities and data generated at leadership computing facilities. However,
without efficient and effective methods for data analysis, the scientific advances—whether planned
or fortuitous—buried in this data will be delayed or remain undiscovered.

Data analysis cuts across and/or has implications for all branches of the exascale mathematics
stack detailed in this report. Computer simulations can be used to quantify the uncertainties in
complex physical systems, and physical experiments can be used to validate the computer simula-
tions. For example: Section 4.2.2 discusses advances in UQ that could enable scalable data fusion,
and using experimental data and simulation to quantify the uncertainties in QoIs; developments
in optimal experimental design (see Section 4.2.3) could change the data we capture and inform
which experiments should be run physically and which should be run computationally; Section 4.4.3
underscored opportunities for data compression to reduce time to solution, while this discussion
focused on numerical solvers, the fundamental questions are the same for more general analysis
paradigms. Furthermore, many data analysis problems can be posed as problems in UQ or opti-
mization or determined as solutions to differential and/or algebraic equations. In the remainder of
this section we highlight opportunities for data analysis not covered in the rest of the report.

4.5.1 Concurrent Analysis

The traditional workflow for many data-intensive tasks arising from physical or computational
experiments is that analysis is done offline, typically as part of a post-processing step. Steady
improvements in both physical detectors and computing resources are enabling ever more enhanced
experiments, but I/O constraints are already impeding the impacts of these improvements. For
example, despite increases in temporal resolution, the gap between time steps saved to disk keeps
increasing. This compromise in fidelity makes it impossible to track features with timescales smaller
than that of I/O frequency. Such discrepancies will become more pressing on future architectures
as increases in computational power significantly outpace I/O capabilities and will motivate a
fundamental shift away from postprocess-centric data analyses.

Concurrent analysis frameworks are a promising direction wherein raw data is processed as it
is generated, decoupling the analysis from I/O. Both in situ analysis frameworks, where operations
share the primary resources used in data generation, and in-transit analysis frameworks, involving
asynchronous data transfers to secondary resources, store only the results, which are typically
several orders of magnitude smaller than the raw data. This reduction mitigates the effects of
limited disk bandwidth and capacity. Since these solutions involve the sharing of resources, they
face significant challenges because analysis and simulation algorithms must be redesigned to operate
within tight memory, communication, and I/O constraints. A further challenge is performing several
analyses simultaneously, within these constraints and in a coordinated fashion.

4.5.2 In Situ Data Reduction and Transformation Techniques

A shortcoming of concurrent analysis frameworks is that they require a priori knowledge of the
questions one wants to ask of the data, thus limiting one to the study of anticipated phenomena. In
many cases, unexpected results lead to new questions, which call for iterative exploration that may
be most effectively done by postprocessing. Traditional compression techniques reduce the amount
of data written to disk but, since the data must be decompressed prior to analysis, ultimately still
require scalable analysis algorithms.
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Figure 4: (a) Isomap uses geodesic distances on a weighted graph to identify a lower-dimensional
embedding of high-dimensional data (image courtesy of [8]); (b) Merge trees segment data according
to the level-set behavior of a field of interest (image courtesy of [10]).

An alternative solution is the use of in situ data transformations that create reduced repre-
sentations while maintaining the properties of interest, thus minimizing the impact on subsequent
analyses. Statistical feature extraction is one possible approach to identify a reduced representation
of data. Such techniques—including dimensionality reduction algorithms such as principal compo-
nent analysis and its variants, Isomap, and locally linear embeddings—define a lower-dimensional
representation that still captures the data with sufficient accuracy (see Figure 4a). In contrast,
segmentation-based feature extraction techniques focus on the identification of relevant subsets of
a spatial domain. Typically, the subsets of the domain are defined in terms of one or more of the
observables in the spatial fields and the resulting coherent structures correspond to physical phe-
nomena of interest. Segmentation algorithms include those commonly used in the image analysis
community (e.g., as used in analyzing medical scans) and topology-based, multiscale algorithms
based on level-set or gradient behavior of a function defined on a spatial domain (see Figure 4b).

4.5.3 Memory- and Compute-Efficient Algorithms

Whether because of the need to share computational resources with a data-generating process or
because of the sheer volume of required data, data analysis algorithms will need to operate under
tight memory, communication, and I/O constraints. Not all analysis algorithms scale in such an
environment, and significant algorithmic shifts will be required to achieve the necessary scalability.

We expect sampling-based algorithms to play an important role in this area. Sublinear algo-
rithms are particularly interesting, since they are designed to estimate properties of a given function
over a massive discrete domain, by accessing a tiny fraction of the domain. Sublinear algorithms
have been used in graph analysis and the application-independent generation of colormaps; under-
standing in what settings these algorithms admit quantification of the error due to sampling is a key
research question. Another class of memory-efficient algorithms that require further mathematical
analysis is streaming techniques, which progressively process and visualize large scientific datasets
by leveraging progressive multiresolution data structures.

Efficient implementation of data analysis algorithms on today’s high-performance computing
platforms often requires detailed knowledge of the network, memory hierarchies, and computing
architecture. The extreme concurrency and resilience requirements of exascale computing create
an even more pressing need for abstractions and frameworks to support the development of new
data analysis algorithms. Effective paradigms will support decomposition of the analysis. Candi-
dates include new constructs to operate on a fine granularity of data, building blocks for portable
and efficient parallel analysis algorithms, system-tailored kernel functions, and MapReduce-style
problem decomposition.
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4.5.4 Related Position Papers

Position papers related to data analysis that were presented at the Exascale Mathematics Workshop
include [WP43, WP55, WP62]. Additional positions papers related to this topic include [WP34,
WP48, WP49].

4.6 Resilience and Correctness

Computing an incorrect answer quickly is of no use to a scientist. Yet computing with exascale
hardware poses several challenges in assessing and assuring the correctness of numerical simulation
results. Resilience to faults has been identified as a critical need for future HPC systems [58];
the thousandfold increase in computational capabilities expected over the next decade, along with
incorporation of techniques for reducing energy consumption, is predicted to increase the error rate
of the largest systems. DOE has several critical mission deliverables, including annual stockpile
certification and safety assurance for the NNSA and future energy generation technologies for the
Office of Science. Computer simulations are key to meeting these deliverables and must be resilient
enough to complete in time and correctly, in order to meet the respective critical mission need. In
many cases, these simulations can take days, weeks, or even months to complete, which increases
the computation’s exposure to faults.

Both hard and soft faults are expected to occur with much greater frequency than on previous
hardware. Uncorrected soft faults have the potential to corrupt computed solutions. Hard faults
will need to be handled on the fly; halting and restarting an entire application because of the loss of
a node, for instance, will be prohibitively expensive at the exascale. Dynamically recovering from
either type of fault will introduce nondeterministic variability in resource usage, as will dynamic
scheduling of tasks. Because of the nonassociativity of floating-point arithmetic, such nondetermin-
ism will make bitwise reproducibility difficult at best and will complicate code correctness testing
procedures, including code verification, where reproducible execution behavior is assumed.

Preventing all faults during exascale simulation will be impossible, and nondeterministic execu-
tion is likewise unavoidable without potentially severe performance penalties. Fault management
will require developments in hardware, programming environments, runtime systems, and pro-
gramming models; but mathematics will play an important role as well. The issue of correctness is
ultimately a mathematical one and will require mathematics-informed solutions. Research will be
required in order to devise efficient application-level fault-tolerance mechanisms and new procedures
to verify code correctness at scale.

4.6.1 Resilient Algorithms

Mathematical algorithms have typically been designed under the assumption that the computer
system is a reliable digital machine, although lack of floating-point arithmetic associativity has
been a regular concern. Computer system faults certainly occur but have typically been handled
by a checkpoint/restart (CPR) mechanism that lives outside the scope of algorithmic concerns.

Even so, a large body of work, commonly referred to as algorithm-based fault tolerance (ABFT),
is concerned with detecting and correcting floating-point error by means of knowledge about the
algorithm and use of metadata, or reconstituting lost state via the same mechanisms. A seminal
paper in this area is [54].

Currently, we expect that the frequency of failures, size of data, and cost of checkpointing
and restarting will lead us to further consider models and algorithms for resilience beyond CPR.
Applications and the numerical engines that drive them will need to take a more active role in the
detection or recovery from errors, or both.
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In addition to classical ABFT approaches, we need to develop, as part of the design of resilient
algorithms, computing models that support expression and execution of these algorithms. Beyond
CPR, models that have emerged include the following:

• Skeptical Programming
If we no longer assume that our computing systems are reliable digital machines, one ap-
proach to mitigating the impact of failure is to be “skeptical” of results that are produced
by introducing simple, inexpensive validation tests. Often these tests can be derived from
metaknowledge about the problem being solved, such as a conservation principle, orthogo-
nality property, or valid range specification. Although skeptical programming cannot detect
or correct all faults, it can help reduce the number of faults. Furthermore, some faults may
only slow progress to solution and can be tolerated instead of halting execution.

• Relaxed Bulk-Synchronous Programming (RBSP)
One of the first impacts of reduced reliability is performance variability. As low-level system
failure rates increase, error detection and correction happen more frequently in the hardware
and system software layers. These events preserve the reliable digital machine model but
introduce variability in execution time. Many scalable applications are designed under the
implicit assumption that equal work implies equal execution time, so that if the work of a
parallel application is balanced, then the application should scale well on a parallel computer
even if processors must be synchronized across during execution. Performance variability,
when coupled with frequent collective operations, leads to severe limitations in scalability,
especially as one reaches a million or more processes.

With the introduction of MPI-3 [60], asynchronous neighborhood and global collectives now
enable a “relaxed” bulk-synchronous programming model (RBSP). Given RBSP capabilities,
one can now develop algorithms that potentially hide latency. Data from some applications
(e.g., [WP39]) show measured variability in real settings.

• Local Failure, Local Recovery
For parallel applications based on MPI, the current approach to dealing with the loss of a single
process is to kill all remaining processes and restart the application. Since computational runs
now regularly use hundreds of thousands to more than a million processors, this approach is
not feasible. Instead, a local failure should permit a local recovery.

One local-failure-local-recovery (LFLR) model permits the user to store specific data persis-
tently for each MPI process and allows a recovery function to be registered, such that if a
process fails, a new process is started and assigned to the rank of the failed process. The
user’s recovery function is then called, giving access to the persistent data of the old process
as well as the neighbors’ persistent data. Using LFLR, one can develop new algorithms for
many types of problems.

• Selective Reliability Programming
Selective reliability programming is another potential programming model in which the pro-
grammer has the ability to declare specific data and to compute some regions to be more
reliable than the “bulk” reliability of the underlying system (alternatively, the default could
be highly reliable with selectively less reliable regions). By distinguishing between what needs
to be highly reliable or not, new algorithms can be developed that store most data and do most
computations with low reliability while retaining the robustness of a fully reliable approach.

Although the costs of high reliability will impact the practicality of some approaches, the
details the implementation of reliability are not fundamentally important to reasoning about
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new algorithms. In some cases, even very expensive approaches, such as triple modular
redundancy, can still be much faster than a fully unreliable approach.

Resilient computing models enable reasoning about and implementing a large collection of new
algorithms, while also making existing ABFT approaches easier to implement. These kinds of
models permit us to address the perceived resilience concerns of future computing systems. Prelim-
inary work shows that expertise in applied mathematics, numerical algorithms, and floating-point
arithmetic is essential to designing effective new algorithms.

4.6.2 Reproducibility

Today, many DOE applications use bitwise reproducibility as a surrogate for rigorous verification
and validation, often at the behest of regulatory agencies. Bitwise reproducibility will be expensive
if not impossible to achieve on exascale machines because it requires deterministic behavior, which
is difficult to achieve in the presence of fault recovery and dynamic task scheduling. Requirements
for bitwise reproducibility will need to be relaxed and will most likely need to be replaced with
statistical concepts. Research into characterizations of expected variability in computed results will
be necessary both to enable debugging at scale and to satisfy regulatory constraints. With regard to
the former, one cannot overstate the usefulness of strict local and global conservation theorems, at
least in some simplified geometries (e.g., periodic domains). The availability of such mathematical
theorems in a discrete context is an invaluable tool to root out coding mistakes and thus to provide
an important measure of correctness. Global sensitivity analysis, design of experiments, and other
ingredients from uncertainty quantification (see Section 4.2.2) can also be expected to play a role
in characterizing the expected variability in a given algorithm or computation.

4.6.3 Verification

Simulation codes must undergo code verification tests to provide confidence in the computed re-
sults, even before considering additional concerns such as validation and uncertainty quantification.
Verification, as defined in [27], is “the process of determining, as completely as possible, whether a
computer code correctly implements the intended algorithms, and determining the accuracy with
which the algorithms solve the intended equations.” While correctness might be seen as primar-
ily a computer science concern, part of the appeal of bitwise reproducibility is that it provides a
transference mechanism from one implementation whose correctness has been established to a new
implementation, as in the case where a parallel implementation is required to exactly reproduce the
results of a sequential implementation. In the absence of bitwise reproducibility, a new mechanism
to efficiently establish the correctness of new implementations of floating-point computations must
be developed. Analyses of solution accuracy should demonstrate not only that the code converges
to the correct answer but also that the code converges at the expected rate; both are invaluable in
code debugging.

Important for multiphysics and multiscale simulations are mechanisms for establishing the cor-
rectness of complex, integrated applications constructed from individual components whose cor-
rectness has been established. Code (order) verification is the preferred approach to demonstrating
correctness, but this requires a known solution and therefore often fails to test the more complex
interactions in the code. The method of manufactured solutions can generate more complex, in-
tegrated tests, but tools are needed to automate its use and codes must be developed with the
necessary infrastructure to support this approach. This more systematic approach has not gen-
erally been attempted for non-mesh-based methods, so this represents a potential area for new
research. Further, for multiscale applications using scale-bridging algorithms, one must perform
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verification across the model hierarchy, both as standalone models (to isolate errors in each level)
and as a coupled system. The latter, however, may prove problematic unless one ensures that de-
scriptions are discretely consistent across levels, namely, that different levels of the model hierarchy
do not pollute the solution with separate truncation error contributions, for instance by enslaving
numerical truncation errors across the hierarchy to reproduce that of a chosen level of the hierarchy.
Early work in this area indicates that discrete consistency is in fact a major element of long-term
nonlinear stability in scale-bridging algorithms and will likely prove essential in verification as well.

Even once a suitable set of test problems is established, the error still needs to be measured.
Such measurement is often done by mesh convergence studies where all other code behavior is meant
to be held fixed. The execution of such studies at scale is difficult now; but at the exascale will be
even worse because of dynamic scheduling, dynamically changing multiphysics modules and models,
and fault handling. Results will be difficult to interpret. Techniques to assess code convergence
should be considered in order to understand dynamic code behavior and the effectiveness of test
problems. Certain studies can be done at smaller scale and on individual components, but these
will not necessarily characterize the behavior of the full code with the many complexities meant to
optimize exascale performance, in particular, the effects of coupling errors.

New approaches to verification must be considered. Theoretically justifiable statistical ap-
proaches to convergence studies may be necessary. The exascale-motivated rewrite of applications
is an opportunity to build a posteriori error estimation techniques into application codes, but these
techniques need further research in order to be applicable to the anticipated multiscale, multiphysics
models. The effects of possible faults in these error estimators must also be investigated.

4.6.4 Related Position Papers

Position papers related to resilience and correctness that were presented at the Exascale Mathe-
matics Workshop include [WP70] and [WP56].

4.7 Mathematics for Exascale System Software

The impacts of mathematics research will not be confined to applications designed for exascale
computing; the operation of the exascale machines will also benefit from new mathematically
motivated approaches. As the system software stack becomes more adaptive and self-aware, the
need for mathematical analysis and algorithms increases. No longer can ad hoc heuristics be
expected to work reliably; methods with a solid theoretical foundation should be employed wherever
possible. Mathematical and statistical techniques, particularly from optimization, can contribute
to these dynamic system management challenges. Here we discuss four areas in which additional
research is needed.

4.7.1 Autotuning Search as Derivative-Free Optimization

The search phase of autotuning can be posed as a derivative-free optimization problem and solved
with existing optimization algorithms adapted to this new context or with wholly new algorithms
developed to account for discrete design variables and hidden constraints. However, additional
research is required in order to deal with the likely characteristics of exascale computing systems.
In particular, new algorithms are needed to address multiple objectives such as (expected) execution
time, memory footprint, resilience, and power demands. Furthermore, autotuning methods already
struggle in situations that exhibit high variance in the stochastic response, often due to contention
for shared resources. As power limits and other design and operational constraints lead to greater
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contention among and within jobs, we can expect this challenge to become more pronounced.
Stochasticity will have to become a more explicit aspect of the autotuning process.

4.7.2 Adaptive Runtime Systems as Optimal Control Problems

Self-aware runtime systems monitor job performance and allocate more or fewer resources based
on the job’s performance goals and behavior, subject to constraints on available resources. To op-
timize performance, such systems rely on adaptive feedback control systems and machine learning.
New research is required in order to address the case of additional, possibly interdependent, perfor-
mance goals, such as power, time, and energy. In addition, scaling up to large computing systems
demands decentralization and autonomy among the self-aware runtime agents. Understanding and
controlling the expected behavior of such systems of agents will require game theoretic analysis and
the development of distributed, multilevel optimization algorithms.

4.7.3 Mathematically Grounded Scheduling

Current batch scheduling systems frequently rely on fast heuristics to schedule normal jobs and per-
form backfilling. As scheduling becomes increasingly complicated, with a requirement to map jobs
to heterogeneous resources subject to power and energy constraints, simple heuristics will likely not
provide the level of system utilization demanded for leadership-class computing systems. Instead,
it is likely that advanced job schedulers will rely on techniques from operations research to perform
job scheduling and to estimate the actual resource requirements of jobs. New scheduling algorithms
will, however, need to account for the highly adaptive and self-aware execution environments in
which jobs are expected to execute, as well as the complex work flows typical of high-level analyses
such as uncertainty quantification. Schedulers also need to account for the notoriously unreliable
user estimates of execution time (even when incentives are provided for supplying an accurate ex-
pected value in addition to an upper bound). Consequently, effective scheduling algorithms can be
expected to include statistical and machine learning models.

4.7.4 Stochastic Performance Models

Current performance models are typically deterministic or exhibit low variance when evaluated at
configurations where experimental performance data has been collected. However, as algorithms
and runtime systems become increasingly asynchronous and adaptive, we anticipate a greater de-
mand for stochastic performance models. Such models can be used as a surrogate during au-
totuning, for extrapolation to predict performance and diagnose performance problems, and for
use in anomaly detection. However, the construction of useful, mathematically justified perfor-
mance models will require a close collaboration between computer scientists and applied mathe-
maticians/statisticians.

4.7.5 Related Position Papers

Although important, the mathematics behind the dynamic management of exascale systems was
not discussed explicitly at the Exascale Mathematics Workshop. One related position paper on
fault detection that was not presented but is related is [WP4]. Several position papers from the
Exascale OS/R Workshop are relevant to this discussion, including papers on optimization, optimal
control, and machine learning [41, 53, 56], and a paper on machine learning from the performance
modeling and simulation workshop [68].
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5 Interdependencies with Other Efforts

Efforts to advance mathematics for exascale will not occur in a vacuum; other efforts sponsored
by DOE ASCR and NNSA exist that either are directed toward the exascale computing goal or
are relevant to some of the issues an exascale mathematics research program will address. In
order to make the most effective use of the limited funding resources expected to be available, new
research directions advocated in this report must be closely aligned and coordinated with other
activities in the developing exascale ecosystem. Mathematicians will need to work with domain
scientists and computer scientists to develop compatible, integrated approaches that leverage the
latest development in hardware and software technologies while maintaining the overarching goal
of enabling innovative science and engineering.

5.1 Existing DOE Efforts

Primarily led by DOE ASCR, there has been an increasing investment in the United States over
the past five years in efforts that are both directly and indirectly relevant to exascale computing:

• Exascale Co-Design Centers: Co-design is a holistic design process where integrated teams
of hardware architects, system software developers, domain scientists, computer scientists,
and applied mathematicians work together to collaboratively develop compatible software
and hardware solutions. It is an opportunity not only for the software and application side to
reason about how to leverage emerging architectures and technology but also for the hardware
developers and vendors to better understand the needs of DOE scientific computing. DOE
ASCR has funded three exascale co-design centers, each organized around a specific DOE-
relevant science area: combustion [42], materials [43], and nuclear reactors [17]. The applied
mathematics community can learn from context provided by the co-design centers, and the
co-design centers will benefit from advances in numerical algorithms developed by applied
mathematics research efforts.

• X-Stack: Many issues need to be addressed for the exascale across the software stack. The
ASCR X-Stack program supports nine projects [5] exploring innovative solutions to improve
the programmability of exascale systems. Research areas include support for domain-specific
languages, hierarchical programming models, compilers and compiler optimizations, adaptive
runtime systems, execution models, autotuning frameworks, and support for resilience and
fault containment. Applied mathematics efforts to develop new algorithms for the exascale
will fundamentally rely on these technologies, and the X-Stack projects must understand the
needs of numerical algorithms and application developers.

• Exascale Operating and Runtime Systems: The scale and complexity of exascale plat-
forms are expected to require radically new functions and interfaces for system control, man-
agement of resources, communications, thread management, synchronization, power man-
agement, fault recovery, configuration, monitoring, and load balancing. These changes are
being addressed in the Exascale Operating and Runtime Systems (OS/R) initiative launched
in FY13 with the goal of developing a complete, platform-neutral prototype exascale OS/R.
Two three-year projects were funded: Argo [4] and Hobbes [50].

• FastForward and DesignForward: The objective of the FastForward and DesignForward
initiatives is to build partnerships between DOE and multiple computer hardware vendors in
order to accelerate the research and development of critical technologies needed for extreme-
scale computing. Research in these two-year projects involves all aspects of computer hard-
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ware, including innovative processor, memory, file system, and interconnect design, with
goals to minimize energy use, maximize parallel performance, and ensure reliability. Applied
mathematics research projects need to be aware of these advances in new technologies that
may mitigate some of the anticipated exascale challenges. Similarly, the FastForward and
DesignForward projects need to be informed about the needs of numerical algorithms and
applications.

• SciDAC Institutes: The current SciDAC program is a five-year program that began in 2011
and is funded by DOE ASCR. SciDAC is not an exascale research program, but it is a major
source of interaction in DOE computational science between the applied mathematics and
science applications communities. Institutes are one component of SciDAC, and these have
a mission to develop tools and resources that will enable and accelerate scientific discoveries
through the use of advanced computing. The development is intended for the next five years
of computer systems at the Oak Ridge and Argonne leadership computing facilities and at
the National Energy Research Scientific Computing Center. While the SciDAC Institutes are
focusing on computing platforms that are available near term, the research and development
within these institutes may be relevant to the exascale machines being considered in this
report; the current generation of petascale machines already introduce, to a lesser extent, some
of the challenges of exascale, such as heterogeneous architectures, the availability of multi-
and many-core systems, relatively small memory per core, resiliency, and power consumption.

Two SciDAC Institutes are concerned primarily with applied mathematics research:

– FASTMath (Frameworks, Algorithms, and Scalable Technologies for Mathematics): The
FASTMath SciDAC Institute develops and deploys scalable mathematical algorithms
and software tools for reliable simulation of complex physical phenomena and collabo-
rates with DOE domain scientists to ensure the usefulness and applicability of FAST-
Math technologies.

– QUEST (Quantification of Uncertainty in Extreme-Scale Computations): The QUEST
SciDAC Institute focuses on uncertainty quantification in large-scale scientific compu-
tations. The overarching goal is to provide modeling, algorithmic, and general uncer-
tainty quantification expertise, together with software tools, to other SciDAC Institutes,
SciDAC applications, and Office of Science projects in general—thereby enabling and
guiding a broad range of uncertainty quantification activities in their respective contexts.

• ASCR Applied Mathematics Subprogram Initiatives and Projects: In the past few
years, many of the initiatives within ASCR’s Applied Mathematics subprogram have required
some consideration of future HPC architecture challenges or have considered the solution of
increasingly complex multiscale, multiphysics problems, particularly in the context of larger
design and decision questions.

– Mathematical Multifaceted Integrated Capability Centers: To address grand challenges of
increasing complexity within DOEs mission areas, ASCR established three Mathematical
Multifaceted Integrated Capability Centers (MMICCs) to foster new integrated, iterative
research processes across multiple mathematical disciplines. Started in FY12, these
centers address holistically mathematics for scientific discovery, design, optimization,
and risk assessment. The application targets for these centers are mesoscale modeling for
materials, chemistry, and biofuels; complex energy systems such as the power grid; and
multiscale, multiphysics modeling of subsurface flow and materials for energy storage.
While exascale was not a primary focus of this call, sensitivity to next-generation HPC
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resources was considered. The greater relevance of this call is that it provides examples
of integrated mathematics research activities across the “math stack,” from problem
formulation to analysis. Additional details can be found in the report [1].

– Resilient Extreme-Scale Solvers: To enable scientific discovery on the supercomputers
expected to come online in the next 5–10 years and to lay the foundation for research in
numerical algorithms for extreme-scale scientific computing, ASCR initiated the Resilient
Extreme-Scale Solvers program in FY12 (although the projects did not officially start
until late in FY13). The goal of this solicitation was to fund basic research that advances
the state of the art in scalable, resilient, extreme-scale numerical algorithms. Four
projects were funded, addressing topics in linear algebra solvers, nonlinear solvers, Monte
Carlo algorithms, and high-order discretizations and related solvers (including hyperbolic
and particle methods). Additional details can be found in the report [39].

– Uncertainty Quantification Methodologies for Enabling Extreme-Scale Science: ASCR’s
Uncertainty Quantification Methodologies for Enabling Extreme-Scale Science initiative,
which was launched in FY13, focuses on basic research in methodologies and tools that
will deliver advanced UQ capabilities for DOE-mission science while also anticipating the
changes and challenges of using extreme-scale computing systems. Six projects funded in
this solicitation address a variety of UQ topics, such as Bayesian inference, Markov-Chain
Monte Carlo, multilevel methods for UQ of multiscale, and stochastic expansions, within
the context of the anticipated challenges of the next-generation HPC architectures.

5.2 International Exascale Efforts

Internationally, the European Union, Japan, and China are also actively ramping up activities
in exascale computing research. All three have independent funded efforts to build an exaflop
machine by 2020, although Europe and Japan likely have the edge in developing the algorithms and
software necessary to obtain exascale performance. In particular, the European Union’s European
Exascale Software Initiative (EESI) is a consortium of more than thirty academic institutions,
government research laboratories, and private corporations organized to provide recommendations
on strategic European actions with a particular focus on software improvement, cross-cutting issues
advances, and gap analysis. The EESI is organized into eight working groups including Education
and Strategic Coordination (including Co-Design), Applications, Enabling Technologies (including
Numerical Libraries, Solvers, and Algorithms), and Cross-Cutting Issues (including Resilience).
Two more specific goals of interest are to (i) produce a roadmap for transition of numerical libraries,
the software eco-system, scientific software engineering, and programmability and (ii) promote an
International Exascale Software Initiative within the international community. A clear connection
exists between the EESI and the still-organizing U.S. exascale effort, and opportunities should be
found to coordinate U.S. efforts with international activities where it makes sense to do so.

5.3 Areas of Collaboration with Other Exascale Efforts

Mathematics research for the exascale cannot proceed independent of other exascale activities.
The applied mathematics community requires technical information, models, tools, and infrastruc-
ture from other research efforts within the DOE exascale ecosystem, and these efforts should not
proceed without feedback and requirements from the applied mathematics community. Here we
consider seven areas represented within the DOE exascale research activities and highlight the
interdependencies of each area with applied mathematics research.
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5.3.1 Architectures and Performance Modeling

To design numerical algorithms better suited for exascale simulation, the applied mathematics
community needs information about those architectures or at least representations of them. No one
has access to an exascale system yet. Therefore, new abstract machine models, such as those used
in roofline analyses, are needed to guide thinking about the various trade-offs between algorithms
and implementations; it is no longer adequate to consider crude estimates of operation complexity
and memory usage. In order to demonstrate that performance gains are not merely theoretical,
simulators that incorporate the latest exascale architectural concepts must be made available to
numerical algorithm developers. In the area of resilience, any capabilities in hardware that can
help detect soft faults will be beneficial in reducing fault tolerance to a problem of rapid recovery.

In the opposite direction, system architects and performance modelers need to better understand
how exascale machines will be used. Applied mathematicians must provide clear descriptions of the
nature of the discrete problems to be solved. Essential and negotiable characteristics of the prob-
lems and resulting algorithms must be identified. For instance, it is unlikely that stencil operations
on multidimensional arrays can be completely abandoned. Thus, hardware support in the form of
sophisticated prefetchers and advanced memory concepts that facilitate access to mutidimensional
array sections can be expected to pay dividends. A dialogue is critical: today’s data access pat-
terns represent a particular design choice, and future choices will be dictated by a combination of
algorithmic requirements and hardware constraints. Similarly, the coupling and communication of
simulations often reflect fundamental physical constraints imposed on the problem. Where these
couplings are artificial, they should be removed, but in many cases they must remain. Exascale
architectures cannot assume that mathematical models will be found that completely eliminate
global communication.

5.3.2 Operating and Runtime Systems

Operating system and runtime systems (OS/R) are the layers that insulate applications from the
detailed complexity of the hardware through abstractions. It is extremely important that these
abstractions provide interfaces that enable the more complex mathematical algorithms expected
for good exascale performance. Applications will most likely depend on dynamic software composi-
tion, load balancing, and task scheduling throughout the execution of a simulation. Various levels
of APIs for resource management (e.g., power, resilience, memory, fine-scale thread management)
will need to be made available to numerical algorithms in order to allow for as little or as much
user control as desired. Standardized APIs and interoperability of programming models are bene-
ficial for mathematical algorithm and software development, but mathematicians must make their
requirements known to the computer scientists developing these abstractions.

The input from applied mathematics to OS/R efforts, however, should go beyond needs and
requirements for interfaces and capabilities. As explained in Section 4.7, applied mathematics
can provide optimization techniques for autotuning of software and adaptivity of runtime systems
and operations research approaches to dynamic scheduling. A very tight collaboration between
computer scientists and applied mathematicians in OS/R research may prove very beneficial.

5.3.3 Programming Environment

A mathematical algorithm is only truly useful if it can be expressed in the form of efficient and
maintainable software. The shape of the programming environment for the exascale is in flux, with
numerous ideas about programming models, domain-specific languages, and compiler optimizations
being proposed and investigated. Ideally, the developer of mathematical software would not need
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to deal with the complexities of memory layout, code fusion, transfer to and from accelerators,
and so forth. Code could be developed in a maintainable, modular way by using portable parallel
library interfaces (with machine-specific implementations hidden behind consistent interfaces) and
intelligent compilers that would transform the code from its maintainable implementation into
a formulation for efficient execution. Applied mathematicians must work with the designers and
developers of the programming environments to help them understand the use patterns in numerical
software, to help define suitable APIs, and to help define suitable compiler or precompiler commands
that will allow the numericist to express optimization directives as easily and concisely as possible.
Even if the ideal is not achieved in all cases, close collaboration between mathematicians and
computer scientists can help ensure that mathematical software is as maintainable and performant
as possible.

5.3.4 Development and Performance Tools

The complexity of exascale systems and application software makes it difficult to understand code
(mis)behavior. Indeed, without an appropriate set of tools, once a simulation launches, it is dif-
ficult to understand the code execution and where the code might be failing or underperforming.
Debugging at scale (perhaps with a million or more cores) of an application that is dynamically
task-scheduled is even hard to conceptualize. Applied mathematicians will need a suite of exascale
tools, not only for debugging, but also for understanding power usage, dynamic memory layout
across deep memory hierarchies, data transfer patterns, and so on. Mathematicians must work
with these tool developers to help them understand what types of diagnostics are necessary, which
types may be specific to different classes of algorithms, and how the diagnostic information will be
used, so that appropriate visualizations and data exploration tools can be devised.

5.3.5 Fault Management

Fault management touches on all aspects of exascale machine use. At many levels—the hardware,
the OS, the runtime, the libraries, and the application itself—there are roles and responsibilities
for fault management. Fault detection can occur at any level; by default, faults should be detected
at the lowest possible level, ideally in hardware. However, when faults can be easily detected
or tolerated at higher levels, it is desirable that low-level detection can be disabled in order to
save time and energy. Once faults are identified, responsibility for dealing with the fault could
occur anywhere throughout the stack. In some cases the application may choose to recover; in
other cases the algorithms may be robust to the fault, making recovery unnecessary. Clearly, some
kind of backplane for fault handling at various levels is necessary, and applied mathematicians
must influence its design and development based on the tolerance or recovery characteristics of
the algorithms and models used. In addition, applied mathematicians need software tools to aid
in local restart and recovery; mathematics may provide techniques that allow local reconstruction
or rollback without loss of accuracy, but the underlying software to change the execution path
dynamically and locally and/or to execute recovery from some distributed checkpoint data must
be provided by the computer science community.

5.3.6 Data Management

Of course, the point of simulation for DOE-relevant problems is to generate useful data to help
understand or solve important science and engineering problems. Schemes must be developed for
handling this data efficiently and without losing important artifacts. Data management includes
workflow systems; metadata generation and capture; data representations; data movement on and
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between machines; and the ability to manipulate, annotate, archive, and share data. At the ex-
ascale, these activities will be challenging. More data, from both higher resolutions and ensemble
simulations, and the increasing disparities between computational capacity and I/O infrastructure
performance will necessitate new data-processing modes, in particular, in situ data staging and
processing, that complement traditional data postprocessing. a

From the applied mathematics perspective, through analysis and visualization, applied math-
ematics is already well entwined with data management. In situ mathematical analysis and data
reduction techniques will help address some of the data management challenges. These same algo-
rithms will rely on the APIs and infrastructure developed for exascale data management.

5.3.7 Applications and Co-Design

Applied mathematics provides the mapping from a physical model to computer hardware. This
mapping is accomplished through a set of choices at each level of the mathematics stack. Applied
mathematicians must select the mathematical model to use, including UQ and optimization for-
mulations; the discrete representation; suitable solvers and algorithms; and the data analysis to be
performed. At a basic level, many of these choices must be informed both by the application re-
quirements and by the underlying hardware. A holistic co-design cycle must involve applied math-
ematicians and consider the interplay among applications, algorithms, and architectures. There
must be a close collaboration between the applied mathematics community and application co-
design activities so that the former better understand the needs of domain scientists and so that
the latter are aware of new advances in exascale mathematics.

6 Common Themes, Findings, and Recommendations

Historically, advances in computational mathematics have contributed as much to increases in high-
performance computing as have improvements in hardware. In the move to exascale computing, this
situation will not change. Mathematics is intimately involved in numerical simulation and in design
and decision problems, from the problem formulation and modeling, through discrete algorithms
and data analysis, to system operations. From our consideration of the role of mathematics in
exascale computing research, we present here the common themes, high-level conclusions, and
recommendations for a path forward for the DOE ASCR program.

6.1 Themes

Three common themes emerged from the information that the working group collected: hierarchies,
integrated and holistic approaches, and adaptivity and automation. We expect these three themes
to permeate exascale mathematics research, and we review them here as useful paradigms to guide
thinking about approaches for simulation on exascale computers.

Hierarchies. The idea of hierarchies in exascale computing is pervasive. The architecture of
exascale machines will be hierarchical: multiple nodes connected by an interconnect, where each
node comprises multiple processing units and/or accelerators with multiple types and levels of mem-
ory. Similarly, multilevel or hierarchical models and algorithms are expected to play a significant
role in the formulation and efficient solution of science problems on exascale architectures. Mul-
tiscale models can and should be formulated in hierarchical ways; this structure can be harnessed
to allow for asynchrony, to communicate information efficiently across the solution, to accelerate
the fine-scale solution, and to map different models to the most congruent architectural layer (e.g.,
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moment models on CPUs and particle models on GPUs). Multilevel methods for linear algebra
are mathematically optimal; for many DOE applications, these methods form the basis for the
only truly scalable solvers. Hierarchical representations of solutions also provide natural opportu-
nities for algorithmic-based fault tolerance. Collective operations, which are common in scientific
applications, may be most efficiently implemented through tree-based hierarchical algorithms.

Integrated and holistic approaches. The challenges of exascale computing cut across tra-
ditional discipline domains. For this reason, DOE has already established three exascale co-design
centers, which are meant to bring together application scientists, applied mathematicians, and com-
puter scientists and engineers to solve the exascale design problem collaboratively while respecting
the requirements and constraints of the problems, the algorithms, and the hardware. In a similar
way, the mathematical areas represented in the math stack, from problem formulation through
data analysis, should be considered holistically because there are interdependencies throughout
the stack. Choices made in formulations, models, and discretizations, for instance, constrain the
possible solution methods and parallel implementations, while the availability of scalable solver
algorithms places limits on problem formulation and model choices.

Adaptivity and automation. Exascale machines will be architecturally more complex, as
will the operating systems and runtime environments, which will need to ensure reliability and
promote efficient machine usage (power, throughput, etc.). Given the vast number of components
(e.g., millions to billions of cores and deep memory hierarchies), this complexity cannot be managed
manually by human operators. The systems and their software will therefore require a great deal
of adaptivity and automation.

Similarly, adaptivity and automation will play key roles in scientific simulations and the al-
gorithms that enable them. Adaptive mesh and model refinement will reduce problem size and
concentrate resources where better fidelity is required. Comparable adaptivity will likely occur in
optimization and UQ algorithms in order to reduce the search time and/or size of the parameter
space. Resilience will likely require simulations to migrate or restart locally and on the fly, instead
of the traditional fail-stop model. All these examples present dynamically changing, heterogeneous
workloads that will require automated, dynamic load balancing to maximize parallel efficiency.

Automation will also play an important role in numerical software portability. Portability will
increasingly be a challenge as different hardware configurations are tried on the path to achieve
exaflop-capable machines. Maintaining software optimized for any given architecture, and opti-
mizing for each new architecture, will be cost-prohibitive. Libraries of numerical algorithms can
address this challenge through autotuning.

6.2 Findings

Based on our inquiry, the Exascale Mathematics Working Group reports the following six findings.

Finding 1: Exascale computing will enable us to use computation to solve problems in ways that
are not feasible today and will result in significant scientific breakthroughs. However, the transition
to exascale poses numerous scientific and technological challenges.

Reaching exaflop performance on a limited power budget will come at the cost of a dramati-
cally altered computer architecture that will require substantial reconsideration of the algorithms
involved in simulation. However, one must avoid the trap of focusing solely on the architectural
challenges associated with exascale computing and of forgetting the prime reason to pursue it:
the new science that will be enabled. DOE has a mission to solve some of the most challenging

Applied Mathematics Research for Exascale Computing 51



scientific problems our nation faces, and algorithmic research is needed in order to address these
extreme-scale problems. Examples include designing novel materials and chemical processes at
the nanoscale to produce specified macroscale behavior, incorporating information about fine-scale
environmental processes into models of climate, and designing next-generation energy generation
and conversion technologies to meet growing energy demands.

Finding 2: Without a close collaboration between applied mathematicians, computer scientists, and
application scientists, we will not be able to develop a computational science discovery environment
capable of exploiting the computational resources that will be available at the exascale.

In simulation, the choice of problem formulation and mathematical model is in part motivated
by the science objectives, but it is also constrained by the computer hardware and the set of known
available algorithms. Understanding the breadth of the requirements and constraints and finding
solutions that balance these will require multidisciplinary teamwork. Domain scientists must work
with mathematicians to formulate problems, models, and discretizations that are tractable for
discrete solvers. Mathematicians must work with computer scientists and engineers to develop
new algorithms and implementations that can efficiently harness architectural features. Computer
scientists must collaborate with domain scientists and mathematicians to ensure that programming
environments, runtime environments, and performance measurement tools provide functionality
relevant to their needs. Exascale computing is forcing an end-to-end reconsideration of high-
performance computing, and close collaboration will be necessary to converge more rapidly on a
useful simulation environment.

Finding 3: Advances in applied mathematics, in areas such as mathematical modeling, numerical
analysis, and adaptive algorithms, will be essential in order to produce high-performance exascale
applications and will provide key input to application scientists and computer scientists.

A great task before us is to determine those models and algorithms that will be successful for
use in exascale computing, including existing models and algorithms and new ones yet to be de-
vised. The performance of current algorithms on hypothetical exascale systems must be understood
in order to find improved implementations and to motivate new algorithms. Opportunities must
be provided to explore new problem formulations and discretization approaches. New discretiza-
tions that provide higher order, tighter coupling, and the discrete preservation of invariant and
asymptotic properties will be needed. Adaptivity in models, mesh, sampling, and configuration
will be needed in order to make best use of the exascale computers, and new algorithms must be
devised that make use of adaptive procedures. Furthermore, it is not enough to devise schemes that
produce answers quickly; indeed, it is of no use if these answers are wrong. Numerical analysis,
which provides proof (or at least justification) of the consistency, accuracy, and stability of numer-
ical algorithms, must be advanced to address the more advanced algorithms expected for exascale
computers. Simulation, at its core, is applied mathematics; and the results of this applied mathe-
matics research will inform and modify the thinking of domain scientists and computer scientists
who will use advances in computational mathematics to develop exascale-capable applications and
to motivate new capabilities in the development and runtime environments.

Finding 4: Exascale computing will enable a more holistic treatment of complex problems.

Exascale provides an opportunity to move beyond the loosely coupled, forward-simulation
paradigm that has driven much of scientific computing up through petascale. This change con-
tains the “revolution” in mathematics needed for exascale computing: not a “new mathematics,”
but a rethinking of the way we design algorithms and codes for better physical fidelity and to
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address new questions. Because of the architectural challenges, we anticipate a need to invest in
a new generation of codes, and this opportunity should be seized to incorporate better algorithms
and support for UQ and optimization. For application domains that are prepared for these ad-
vanced formulations, exascale platforms offer the first concrete opportunity to improve the value
of simulation qualitatively.

Finding 5: Because computer architectures will be altered from supercomputers down through per-
sonal computers, some advances in algorithms devised for the exascale likely will benefit computation
across the range of resources.

Computer architectures are changing across the board with the capability to add more cores to
computer chips and a desire for low-power computing from cell phones up to the exascale. Design
improvements at both ends of the hardware spectrum can have far-reaching impacts. Accordingly,
some algorithms intended to address the challenges of exascale computing will be relevant to ma-
chines at smaller scales of computing, and fundamental algorithmic research at small scale could
also have unexpected impact on exascale simulation.

Finding 6: In addition to fundamental research into new algorithms, resources will be needed for
more applied research and development to extend the large collection of existing DOE mathematics
libraries so that they make better use of exascale architectural features.

Libraries are powerful means of sharing verified, optimized algorithms; accordingly, DOE has
invested in the development of numerous numerical libraries. Such investments must continue, and
these investments must go beyond funding the development of new algorithms. Substantial software
engineering costs must be borne in the extension of existing libraries to the exascale. Furthermore,
autotuning of libraries will play a more significant role at the exascale, since libraries will need
to support a wider variety of platforms and automated empirical discovery and optimization will
accelerate scientific computing workflows. Developing autotuning capabilities will require additional
up-front investment, with the promise of long-term savings in user and computer time.

6.3 Recommendations

Our findings indicate that the DOE Advanced Scientific Computing Research program needs to take
action to build a more explicit research program in applied mathematics for exascale computing.
We summarize the necessary actions in five key recommendations.

Recommendation 1: DOE ASCR should proceed expeditiously and with high priority with an
exascale mathematics initiative so that DOE continues to lead in using extreme-scale computing to
meet important national needs.

This report demonstrates a clear need for research in applied mathematics specifically for ex-
ascale computing. The promise of exascale computing will not be realized without advances in
computational mathematics. Research in applied mathematics often takes years to produce re-
sults, and the implementation of those results requires additional time. The R&D that leads to
those advances can and must start now. We cannot wait until the first exaflop machine exists; only
with preparation and investment will we be able to make efficient use of such a machine soon after
its arrival.

Recommendation 2: A significant new investment in research and development of new models,
discretizations, and algorithms implemented in new science application codes is required in order
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to fully leverage the significant advances in computational capability that will be available at the
exascale.

The move to exascale will be a more disruptive transition than the previous moves to terascale
and petascale because of the significant changes in computer architecture. Many existing algo-
rithms and implementations that have relied on steady clock speed improvements cannot exploit
the performance trends of future systems. Current algorithms will need to be evaluated and ei-
ther modified or abandoned; alternative algorithms will need to be invented or rediscovered. The
promise of exascale resources will also provide opportunities for other models and problem formu-
lations, but how and when to use such models are open questions. Much investigation needs to be
done on specific classes of models and algorithms. Because of the complexity of the problem and
the numerous trade-offs, it is too early to designate any one technology or approach as superior;
therefore, a diverse research portfolio is the most robust investment strategy at this point. In order
to establish such a diverse program, a broad segment of the applied mathematics community must
be engaged, and hence funding opportunities must be created that enable broad participation.

Recommendation 3: Not all problems require exascale computation, and yet these problems will
continue to require applied mathematics research. Thus, a balance is needed in the DOE applied
mathematics research portfolio that provides sufficient resources to realize the potential of exascale
simulation while preserving a healthy base research program.

Most science and engineering are not done at the most extreme scale of computing, yet nev-
ertheless require sophisticated algorithms, improved time to solution, and better model fidelity.
We expect that because of some similarities in future architectures, new approaches for the ex-
ascale will improve smaller-scale applications. However, this trickle-down benefit cannot be the
only support provided to scientists not working at the exascale. Resources must continue to be
invested in applied mathematics areas that are not focused on exascale computing. In addition to
supporting the whole mission of DOE, fundamental research at small scale may result in models
and algorithms that have unexpected impacts on exascale computing. Thus, new funding must
be obtained to support an exascale mathematics research program, while preserving the current
applied mathematics base program. The so-called Brown Report [? ] identified priority areas of
research in applied mathematics to support the DOE.

Recommendation 4: An intensive co-design effort is essential for success, where computer sci-
entists, applied mathematicians, and application scientists work closely together to produce a com-
putational science discovery environment able to exploit the computational resources that will be
available at the exascale.

While research is needed into individual models and algorithms at the exascale, aspects of the
problem suggest that a holistic approach should also be pursued. Many of the opportunities in
exascale computing will come from reconsidering the entire problem—from formulation through
analysis and co-designing models, discretizations, and solvers that work together. Of course, more
fundamental research into each of the components is necessary so that options and trade-offs are well
understood. Nevertheless, no single domain can work in isolation; in particular, mathematicians
must understand the needs of the domain scientists and the computational environments in which
simulations will be run. Like the challenge of putting a man on the moon, assembling a diverse
team to focus on a well-defined goal, such as a scientific grand-challenge problem, has advantages
over attempting to solve more general and therefore vaguely defined problems. This is true not
just between the domain science, mathematics, and computer science disciplines but also within
the applied mathematics specialties (i.e., across the math stack). Co-design and MMICCs-like
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projects should be pursued. However, in order to promote diversity in approaches and to engage
as much of the applied mathematics community as possible, the DOE ASCR research portfolio
cannot be limited to end-to-end projects; the limited number of such projects will limit the number
of participating researchers.

Recommendation 5: DOE ASCR must make investments to increase the pool of computational
scientists and mathematicians trained in both applied mathematics and high-performance comput-
ing.

In order to advance mathematics for exascale computing, a well-trained workforce is critical.
Substantial research in applied mathematics is necessary for exascale computing, and so new re-
search funds are required. There will be a corresponding need to grow the community capable
of executing this new research program. Such researchers will require a breadth of understanding
beyond applied mathematics. Exascale computers will introduce changes in system operation and
program execution that, at least for some time, will not be hidden behind programming abstrac-
tions. Computational mathematicians will therefore need a better understanding of the computer
science issues involved. Furthermore, the science needs that drive exascale computing, combined
with the HPC system changes, present opportunities to rethink how and what we simulate. Progress
in exascale simulation will be driven by integrated, holistic approaches that will require knowledge
throughout the mathematics stack and beyond, into both the applications and the computer sci-
ence. Efforts such as co-design will require multidisciplinary teams but will operate most effectively
when those teams comprise researchers with interdisciplinary skills and knowledge. Thus, invest-
ments will be needed to develop the workforce necessary to execute an applied mathematics research
agenda for exascale computing. This workforce development should provide opportunities both for
new researchers (e.g., through interdisciplinary graduate fellowships) and for existing researchers
in DOE and the greater applied mathematics community.

6.4 Impact

Applied mathematics research is a critical component of the overall exascale computing enterprise.
Enhancing the national capabilities in advanced mathematical modeling, numerical algorithms, and
software will have a major impact on our future national research capacity and an international
impact in the ever-increasing number of domains within which high-performance computing is,
or is set to become, a core activity. It is essential that DOE make strategic investments now in
high performance-computing algorithms and software in order to enable successful use of exascale
resources in support of its mission and to safeguard our ability to continue to lead the world in this
field.
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