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A DYNAMICALLY ADAPTIVE SPARSE GRID METHOD FOR
QUASI-OPTIMAL INTERPOLATION OF MULTIDIMENSIONAL

ANALYTIC FUNCTIONS

Miroslav K. Stoyanov ∗ Clayton G. Webster †

Abstract. In this work we develop a dynamically adaptive sparse grids (SG) method for quasi-optimal
interpolation of multidimensional analytic functions defined over a product of one dimensional bounded
domains. The goal of such approach is to construct an interpolant in space that corresponds to the “best
M -terms” based on sharp a priori estimate of polynomial coefficients. In the past, SG methods have
been successful in achieving this, with a traditional construction that relies on the solution to a Knapsack
problem: only the most profitable hierarchical surpluses are added to the SG. However, this approach
requires additional sharp estimates related to the size of the analytic region and the norm of the interpolation
operator, i.e., the Lebesgue constant. Instead, we present an iterative SG procedure that adaptively refines
an estimate of the region and accounts for the effects of the Lebesgue constant. Our approach does not
require any a priori knowledge of the analyticity or operator norm, is easily generalized to both affine
and non-affine analytic functions, and can be applied to sparse grids build from one dimensional rules with
arbitrary growth of the number of nodes. In several numerical examples, we utilize our dynamically adaptive
SG to interpolate quantities of interest related to the solutions of parametrized elliptic and hyperbolic PDEs,
and compare the performance of our quasi-optimal interpolant to several alternative SG schemes.

1. Introduction. This paper considers constructing an approximations to multidimen-
sional analytic functions defined over a product of one dimensional bounded domains. The
main challenge facing all methods in this context is the curse of dimensionality, i.e., the
computational complexity of approximation techniques increases exponentially with the
number of dimensions. To alleviate the curse, methods have been proposed that reduce the
dimensionality of the problem [19, 26], reduce the complexity the target function [2, 11], or
approximate the function in an optimal polynomial subspace [9, 23, 24]. We take the latter
approach and we build upon the recent results in best M -terms approximation [5, 9, 29],
where the function is projected onto the polynomial space associated with the dominant co-
efficients of either a Taylor or Legendre expansion. In implementation, finding the optimal
space is intractable and instead sharp a priori estimates of the expansion coefficients are
used to select a quasi-optimal space. Such approach can achieve sub-exponential conver-
gence rate in the context of both projection, e.g., [1, 12, 28] and interpolation, e.g., [5, 22],
however, the quasi-optimal methods rely heavily on a priori estimates of the size of the
region of analyticity of the function and sharp estimates are available only in few special
cases.

Given a suitable polynomial space, orthogonal projection results in the best L2 approx-
imation, however, the projection approach often times comes at a heavy computational
cost [1, 12, 28]. In contrast, sampling based techniques require only the values of the func-
tion at a set of nodes, e.g., Monte Carlo random sampling for computing the statistical
moments of a function [17, 21], and Sparse Grids (SG) method for high order polynomial
approximation [18, 23, 24], which is the focus on this work. SG sampling does not result
in best approximation in the associated polynomial space and the error is magnified by
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the norm of the SG operator, a.k.a., the Lebesgue constant. However, sampling tends to
be computationally cheaper than projection as well as more susceptible to parallelization
which usually offsets the moderate increase of the error. In addition, sampling procedures
can wrap around simulation software that computes single realization of the function, which
simplifies the implementation and allows the use of legacy and third party code.

Sparse grids algorithms construct multidimensional function approximation from a lin-
ear combination of tensors of one dimensional interpolation rules. Quasi-optimal SG are
traditionally constructed as the solution to a Knapsack problem [3, 22], where the selected
set of tensors is associated with the largest profit index that is derived from an a priori
estimate of the hierarchical surplus, the Lebesgue constant, and the number of samples
in a tensor. In the case when the one dimensional rules grow by one node at a time, a
near optimal greedy procedure using the Taylor coefficients of the function can construct a
suitable approximation [4, 5], however, without a priori assumptions, selecting the optimal
set of coefficients comes at a very high computational cost.

In this work, we present an iterative procedure for constructing a sequence of SG in-
terpolants with increasing number of nodes and accuracy, that does not require a priori
estimates of the region of analyticity. We focus our attention to the nested SG case, where
all nodes associated with one grid are also utilized by the next grid in the sequence, thus
reusing all available samples. We review popular one dimensional nested rules such as
Clenshaw-Curtis [7] and Leja [6, 10] and we present several new rules based on greedy
minimization of operator norms. In addition, for any chosen rule and any arbitrary lower
(i.e., admissible [3]) polynomial space, we present a strategy for selecting the minimal set
of tensors that yields an interpolant in that space. Every interpolant in the sequence is
constructed using this strategy, which circumvents the Knapsack problem and allows us to
restrict our attention to the selection of the optimal polynomial spaces.

The quasi-optimal polynomial space associated with Legendre coefficients is a total
degree space with a small logarithmic correction [1,29]. However, while the Legendre space
is optimal with respect to projection, in the context of interpolation, the quasi-optimal
estimate does not account for the effect of the Lebesgue constant. Using estimates of the
operator norm of the one dimensional rules, we add a strong correction to the total degree
space to arrive at a an estimate for the quasi-optimal interpolation space. Our estimate is
parametrized by two vectors associated with the size of the analytic region of the function
and the growth of the Lebesgue constant of the interpolation rules.

In order to keep our approach free from a priori assumptions, we present a procedure for
dynamically estimating the two vector parameters. For each interpolant in the sequence,
we consider the orthogonal decomposition of the interpolant into a linear combination of
multivariate Legendre polynomials. Then, we seek the vectors that give the best fit of our
quasi-optimal estimate to the decay rate of the Legendre coefficients, i.e., using least-squares
approach. The polynomial space used for the construction of the next interpolant in the
sequence is optimal with respect to the parameters inferred from the previous interpolant.
The number of additional nodes in each interpolant can be chosen arbitrarily, however,
few nodes result in more frequent update of the parameter vectors which leads to better
accuracy, while larger number of nodes allows for greater parallelization.

The procedure for estimating the quasi-optimal polynomial space can be coupled with
any approximation strategy that satisfies a mild assumption regarding the growth of the
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Lebesgue constant. One potential alternative is to use interpolation based on Fekete points,
however, even in moderate dimensions, finding those points involves an ill-conditioned and
prohibitively expensive problem. Other popular alternatives are the optimization based
methods that construct the an approximation based on minimization of `2 (e.g., least-
squares [14]) or `1 (e.g., compressed sensing [15]) norms. Those methods can be applied
to sets of random samples, however, the number of samples needed to construct the ap-
proximation always exceeds the cardinality of the optimal polynomial space. We assume
that we can choose the abscissas for each samples and we want to exploit the fact that the
range of an interpolation operator has exactly the same degrees of freedom as the number
of interpolation nodes. Thus, the sparse grids interpolants are best suited for our context.

The rest of the paper is organized as follows, in §2 we derive an estimate of the quasi-
optimal interpolation space and we present an iterative procedure for generating a sequence
of quasi-optimal polynomial spaces. In §3, we present a strategy for constructing sparse
grids operators with minimal number of nodes and we present several one dimensional
interpolation rules. In §4 we present several numerical examples.

2. Quasi-optimal polynomial space. We consider the problem of approximating a

multivariate function f(y) : Γ → R, where Γ ⊂ Rd is a d-dimensional hypercube, i.e.,
Γ =

⊗d
k=1 Γk and without loss of generality we let Γk = [−1, 1]. We assume that f(y)

admits holomorphic extension to a poly-ellipse in complex plane, i.e.,
Assumption 1 (Holomorphic extension). For a vector ρ ∈ Rd with ρk > 1, the map

z → f(z) is holomorphic in an open neighborhood of the poly-ellipse

Eρ =
⋃

θ∈[0,2π]

⊗
1≤k≤d

{
zk ∈ C : |<(zk)| ≤

ρk + ρ−1
k

2
cos(θ), |=(zk)| ≤

ρk − ρ−1
k

2
sin(θ)

}
(2.1)

where <(zk) and =(zk) indicate the real and complex part of zk.
Due to this assumption, we aim at approximaiting f(y) with globally defined polyno-

mials over Γ. To achieve this goal, we introduce a multivariate polynomial space

PΛ(p)(Γ) = span {yν : ν ∈ Λ(p)} ,

in which it will be convenient to use multi-index notation1, where Λ(p) is a sequence of lower
multi-index set2. A global polynomial approximation of f(y) in PΛ(p)(Γ) has the form

fΛ(p) =
∑
ν∈Λ(p)

cνφν(y),

where span{φν(y) : ν ∈ Λ(p)} = PΛ(p)(Γ), and the choice of φν(y) and cν is method
specific. To alleviate the curse of dimensionality, the polynomial space PΛ(p)(Γ) should
be chosen with as few degrees of freedom necessary to approximate f(y) with sufficient

1For the remainder of the paper we let N be the set of natural numbers including zero, and Λ,Θ ⊂ Nd

will denote set of multi-indexes. For any two vectors, we define yν =
∏d
k=1 y

νk
k with the usual convention

00 = 1.
2A set Λ is caller lower or admissible if ν ∈ Λ implies {i ∈ Nd : i ≤ ν} ⊂ Λ, where i ≤ ν if and only if

ik ≤ νk for all 1 ≤ k ≤ d.
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accuracy. Using Assumption 1, let αk = log(ρk) for 1 ≤ k ≤ d dictate the anisotropy in
each direction, then the most common choice of the polynomial space is the tensor product
space PΛTP (p)(Γ), where

ΛTP (p) = {ν ∈ Nd : max
1≤k≤d

αkνk ≤ p},

and the cardinality depends exponentially on the dimension. Several alternative polynomial
spaces have been proposed, namely total degree space with ΛTD(p) = {ν ∈ Nd : α · ν ≤ p},
hyperbolic cross section ΛHC(p) = {ν ∈ Nd : (ν + 1)α ≤ p} and Smolyak ΛSm(p) =
{ν ∈ Nd : α · log2(ν + 1) ≤ p}, where · indicates vector dot product and log(ν + 1) =⊗d

k=1 log(νk + 1) (see [18] and references therein).
Our approach is motivated by recent work on best M -term quasi-optimal Galerkin

approximation [1, 8, 28]. Consider the orthogonal decomposition of f(y)

f(y) =
∑
ν∈Nd

cνLν(y),

where Lν(y) are the multivariate Legendre polynomials. For any lower set Λ(p) the projec-
tion of f(y) onto PΛ(p)(Γ) is given by fΛ(p)(y) =

∑
ν∈Λ(p) cνLν(y) and the approximation

error is
‖f − fΛ(p)‖2L2 =

∑
ν 6∈Λ(p)

|cν |2

Therefore, the best M -term space for projection is the space associated with the M largest
coefficients. The coefficients are not known a priori, however, when Assumption 1 is satisfied,
a sharp upper bound to |cν | is given by

|cν | ≤ C · exp(−α · ν)
d∏

k=1

√
2νk + 1, (2.2)

for some constant C [1,29]. The quasi-optimal projection space is then associated with the
multi-indexes that yield the largest upper estimate, i.e.,

Λα(p) =

{
ν ∈ Nd : α · ν − 1

2

d∑
k=1

log(νk + 0.5) ≤ p

}

where we derive the condition by taking the log of the right hand side of (2.2), changing
the sign and ignoring the constant. In this context, p ∈ N is an arbitrary variable used to
discretize the index space into levels.

2.1. Quasi-optimal interpolation. We are interested in constructing approximation
using a computationally cheap sampling scheme. Projection results in optimal L2(Γ) error,
however, interpolatory approximations are not optimal. Let Λ(L) be a lower set and let
fΛ(L)(y) be in interpolatory approximation of f(y) in PΛ(L)(Γ), then

‖f − fΛ(L)‖L∞ ≤ (1 + CΛ(L)) inf
p∈PΛ(L)(Γ)

‖f − p‖L∞ , (2.3)

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.
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where CΛ(L) is the Lebesgue constant, i.e., norm of the interpolation operator, that manifests
as an additional penalty term. Observe that

inf
p∈PΛ(L)(Γ)

‖f − p‖L∞ ≤

∥∥∥∥∥∥f −
∑

ν∈Λ(L)

cνLν

∥∥∥∥∥∥
L∞

, (2.4)

therefore, the dominant polynomial space associated with the infimum term in (2.3) can be
(heuristically) approximated by estimate (2.2), i.e., the difference comes only from using
L2(Γ) as opposed to the L∞(Γ) norm. However, to define a proper quasi-optimal interpo-
lation space, (2.2) has to be combined with an estimate of the Lebesgue constant. Here we
make the following assumption3:

Assumption 2 (Lebesgue constant). Let Cν indicate the Lebesgue constant associated
with the smallest lower set that contains ν, i.e., Cν = C{j∈Nd:j≤ν}, then we assume that

Cν ≤ Cγ
d∏

k=1

(νk + 1)γk , (2.5)

for some constants Cγ and (γk)1≤k≤d.
Multiplying (2.2) by (2.5), and using that νk + 0.5 < νk + 1 we arrive at the estimate

Cν · C · exp(−α · ν)
d∏

k=1

√
2νk + 1 ≤ C · Cγ ·

√
2 · exp(−α · ν)

d∏
k=1

(νk + 1)γk+ 1
2 (2.6)

As before, taking the log of (2.6), reversing the sign and ignoring the constants, we define
the quasi-optimal interpolation space

Λα,β(L) =
{
ν ∈ Nd : α · ν + β · log(ν + 1) ≤ L

}
, (2.7)

where βk = −γk − 1
2 . The vectors α and β give rise to a discretization of the multi-index

space, however, the notion of levels does not transcend the specific α and β, since (2.7)
depends on the scaling of the vector components. Given parameter vectors and a sequence
of levels {Ln}∞n=0 ∈ Nd, we can construct the corresponding quasi-optimal approximations
fΛα,β(Ln)(y), however, finding suitable α and β is of consideration.

Remark 2.1 (Preserving the property lower). The entries of β in (2.7) could be negative,
hence, Λα,β(L) is not necessarily a lower set. Lower sets have the advantage that the polyno-
mial space associated with the multi-indexes is independent from the hierarchical basis used,
e.g., Legendre basis, monomials, Newton polynomials. We are interested in constructing a
sequence of lower sets, thus, if Λα,β(L) is not a lower set, we replace (2.7) with

Λα,β(L) =
⋃

ν∈Nd,α·ν+β·log(ν+1)≤L

{j ∈ Nd : j ≤ ν}

3In §3 we derive an estimate for the Lebesgue constant associated with our sparse grids construction
and we demonstrate that Assumption 2 is indeed satisfied.
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2.2. Estimating the parameters. Sharp a priori bounds of the region of analytic ex-
tension of f(y) and the corresponding α are seldom available, likewise estimates of the
Lebesgue constant are either overly conservative or the constant fluctuates in a wide range
and predicting the effective γk is very difficult. Thus, we need a procedure to dynamically
estimate the effective parameters α and β that give the best fit of (2.6) to the behavior of
f(y).

Assume that we have constructed an interpolant fΛ(L)(y) for some lower set Λ(L).
Here Λ(L) could be chosen according to (2.7) for some α and β, or according to total
degree, hyperbolic cross section or Smolyak formulas [18]. Since fΛ(L)(y) ∈ PΛ(L) there are
coefficients ĉν for ν ∈ Λ(L) such that

fΛ(L)(y) =
∑

ν∈Λ(L)

ĉνLν(y),

where Lν(y) are the multidimensional Legendre polynomials. By orthogonality, each of the
coefficients is

ĉν =

∫
Γ
fΛ(L)(y)Lν(y)dy, (2.8)

where the integral can be computed with a multidimensional quadrature rule and note
this can be done without additional evaluations of f(y). Since Lν(y) and fΛ(L)(y) are
polynomials, it is sufficient to use a quadrature that can integrate exactly all polynomials
in P2Λ(L).

We assume that |ĉν | decay at a rate guided by (2.6) for some α and β, i.e.,

|ĉν | ∝ exp(−α · ν)(ν + 1)−β =⇒ log(|ĉν |) ≈ −Ĉ −α · ν − β · log(ν + 1), (2.9)

for some constant Ĉ. In (2.9), all ĉν are known and we can solve for α, β and Ĉ, however,
the decay rate of the coefficients is not monotone and hence we look for the parameters that
give the “best fit”. Here best is used in `2 sense, i.e., we infer approximate α̂ and β̂ from
the solution to the convex minimization problem

min
α,β,Ĉ

1

2

∑
ν∈Λ(L)

(
Ĉ +α · ν + β · log(ν + 1) + log(|ĉν |)

)2
(2.10)

For sufficiently large Λ(L), (2.10) admits a unique solution. However, the accuracy of the
estimated α̂ and β̂ strongly depends on the size of Λ(L), in fact, estimates obtained using
this least squares approach are valid only for sets close to Λ(L). Furthermore, the constant
Ĉ is not used in (2.7) and since Ĉexp(−α · ν)(ν + 1)−β does not give an upper bound on
the coefficients, Ĉ cannot be used to estimate the true approximation error; in this context,
Ĉ plays the role of a dummy variable.

Remark 2.2 (Ad hoc stability constraint). In general, |ĉν | do not decay monotonically and
if Λ(L) is small, some of the estimated parameters in α̂ could be negative. The entries of α̂
are associated with the convergence rate in different direction and negative entries indicate
that for this specific direction and specific Λ(L) we are observing divergence. In case of a
negative α̂k, we use an ad hoc correction, where we replace the negative entries with the
smallest positive one, i.e., we assume that in the limit the diverging direction will in fact
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converge, albeit slowly.
The least-squares approach allows us to construct a sequence of polynomial spaces in-

dexed by sets {Λn}∞n=0. We start with either Λ0 = Λα0,β0(L0) for some initial guess of α0, β0

and L0, or Λ0 can be chosen according to total degree, hyperbolic cross section or Smolyak
formulas. Then from Λn and the interpolant fΛn(y), we infer the best fit parameters α̂n+1

and β̂n+1 and construct the next index set as

Λn+1 = Λn
⋃

Λα̂n+1,β̂n+1(Ln+1), (2.11)

where we take the union to ensure that the sequence is nested and Ln+1 controls the number
of additional degrees of freedom in the polynomial space. Using small Ln+1, i.e., taking the

smallest Ln+1 such that Λα̂n+1,β̂n+1(Ln+1) 6⊂ Λn, leads to a more frequent update of the
parameters α̂ and β̂ and hence better accuracy, however, larger Ln+1 leads to more samples
needed for constructing fΛn+1(y) and hence more opportunity for parallelization.

Next, we present a specific sparse grids strategy for constructing fΛn(y).

3. Sparse grids interpolation. In this section we present a general sparse grids inter-
polation approach, which consists of evaluating f(y) at a set of nodes y1, · · · ,ym ∈ Γ and
constructing an interpolant fΛ(L)(y) ∈ PΛ(L), where Λ(L) is an arbitrary lower index set,
i.e., not necessarily constructed according to (2.7). The properties of the SG interpolant are
determined by the Lebesgue constant and growth of nodes in the one dimensional family of
interpolants that induce the grid. Minimizing the number of nodes is desirable and ideally
we want the number of samples to not exceed the cardinality of Λ(L), however, interpolants
with more nodes often times result in smaller operator norm and potentially more accurate
approximation. For a given Λ(L) and one dimensional rule, we present a strategy for con-
structing the SG with smallest number of nodes that produces an interpolant in PΛ(L). We
also present several novel one dimensional rules.

3.1. Constructing optimal interpolant. A nested one dimensional family of interpola-
tion rules is defined by a distinct sequence of nodes {yj}∞j=1 ∈ [−1, 1] and a strictly increasing
growth function m : N → N, i.e., m(0) > 0 and m(l + 1) > m(l). For l = 0, 1, 2, · · · we
define the l-th level interpolation operator

Um(l) : C0(Γ)→ Pm(l)−1([−1, 1]), by Uml [g](y) =

m(l)∑
j=1

g(yj)ψ
l
j(y),

where g(y) ∈ C0([−1, 1]), the Lagrange basis functions are ψlj(y) =
∏ml
i=1,i 6=j

y−yi
yj−yi and

Pm(l)−1([−1, 1]) = span{yν : 0 ≤ ν ≤ m(l)−1}. In addition, for l > 0, we define the surplus

operators ∆m(l) = Um(l) − Um(l−1) and for notational convenience let ∆0 = Um(0). Several
specific examples of yj and ml are listed in Table 1 in §3.3. Note, we are explicitly assuming
the interpolants have nested nodes and strictly increasing m(l), see Remarks 3.1 and 3.3.

Taking the d-dimensional tensors, we have

m(i) =
d⊗

k=1

m(ik) : Nd → Nd, yj =
d⊗

k=1

yjk ∈ Γ, Ψij(y) =
d∏

k=1

ψikjk ,

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.
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where i, j ∈ Nd, y ∈ Γ and ψikjk is evaluated at the corresponding k-th component of y. The
tenor operators are given by

∆m(i) =

d⊗
k=1

∆m(ik), Um(i) =

d⊗
k=1

Um(ik), Um(i)[f ](y) =
∑

1≤j≤m(i)

f(yj)Ψ
i
j(y)

Note that by the telescoping properties of ∆m(i) we have that Um(i) =
∑
j≤i∆m(j), i.e.,

each full tensor operator Um(i) can be decomposed into a sum of surplus operators.
Every multidimensional polynomial space can be included in the range of a full tensor

interpolation operator, however, full tensors have a rigid structure and often times require an
excessive number of samples. Sparse grids offer a flexible alternative, where the interpolant
is constructed from a sparse set of the surplus operators Θ(L), i.e.,

ImΘ(L) =
∑
i∈Θ(L)

∆m(i) (3.1)

For any lower index set Θ(L), (3.1) is an interpolation operator with nodes {yj}j∈Θm(L),
where

Θm(L) =
⋃

i∈Θ(L)

{j ∈ Nd : 1 ≤ j ≤m(i)} =
⋃

i∈Θ(L)

{j ∈ Nd : mi−1 + 1 ≤ j ≤m(i)} (3.2)

and ImΘ(L)[f ] ∈ PΘm(L)−1 with Θm(L) − 1 = {j ∈ Nd : j + 1 ∈ Θm(L)} [22]. By definition

of ∆m(i), there exists a set of integer weights {tj}j∈Θ(L), satisfying the system of equations∑
j≤i,j∈Θ(L) tj = 1 for every i ∈ Θ(L), and the interpolant can be written explicitly as

ImΘ(L)[f ](y) =
∑

j∈Θm(L)

f(yj)
∑

i∈Θ(L),m(i)≤j

tiΨ
i
j(y) (3.3)

Interpolant (3.3) is constructed from the samples f(yj) for j ∈ Θm(L), and since the sets
of the second union of (3.2) are disjoint, we have a direct relationship between Θ(L), m(l)
and the number of nodes.

Remark 3.1. If the one dimensional family of rules is not nested then generally (3.1)
is not an interpolant. Even in the non-nested case, operator of the form (3.1) can produce
an accurate approximation to f(y) [22, 24], however, the approximation belongs to a space
of polynomials with cardinality much less than the required number of function evaluations.
Excess sampling unnecessarily increases the computational cost and thus we restrict our
attention to nested rules.

Next, we present the main result of this section, where we consider the optimal choice
of tensor set that will guarantee the range of the interpolation operator includes a given
polynomial space.

Theorem 1 (Minimal polynomial interpolant). Let Λ(L) be a lower set of polynomial
multi-indexes and define

Θopt(L) =
{
i ∈ Nd : m(i− 1) ∈ Λ(L)

}
, (3.4)
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where for notational convenience we let m(−1) = 0. Then, PΛ(L) ⊂ PΘoptm (L)−1 and with

respect to the particular m(l), Θopt(L) is minimal, i.e., if Θ(L) is a lower set such that
PΛ(L) ⊂ PΘm(L)−1, then Θ(L) is a superset of Θopt(L).

Proof: For arbitrary j ∈ Λ(L), by monotonicity of m(l), there is i such that m(ik−1) ≤
jk ≤ m(ik)− 1 for k = 1, 2, · · · , d. Then, according to (3.4)

m(i− 1) ≤ j =⇒ i ∈ Θopt(L), and j ≤m(i)− 1 =⇒ j ∈ Θopt
m (L)− 1.

To show that Θopt(L) is minimal, suppose Θ(L) is a lower set and Λ(L) ⊂ Θm(L)− 1.
For arbitrary i ∈ Θopt(L), let j = m(i− 1), then

j = m(i− 1) =⇒ j ∈ Λ(L) =⇒ j ∈ Θm(L)− 1 =⇒ exists i′ ∈ Θ(L) s.t. j ≤m(i′)− 1.

Thus, m(i− 1) ≤m(i′)− 1 and by monotonicity of m(l) we have i ≤ i′. Since i′ ∈ Θ(L)
and Θ(L) is a lower set, i ∈ Θ(L).

Corollary 3.2. For Λα,β(L) defined in (2.7), the optimal tensor set is

Θα,β(L) =
{
i ∈ Nd : α ·m(i− 1) + β · log(m(i− 1) + 1) ≤ L

}
(3.5)

Armed with this result, we define the sparse grids inteprolants associated with the
sequence of polynomial spaces defined in (2.11). Let Θ0 be the optimal tensor set associated
with Λ0, then fΛ0(y) = ImΘ0

[f ](y) and for n ∈ N

Θn+1 = Θn

⋃
Θα̂n+1,β̂n+1(Ln+1), and fΛn+1(y) = IΘn+1 [f ](y)

where α̂n+1 and β̂n+1 are estimated from (2.10). Note that unless m(l) = l + 1 the inter-
polants constructed in this fashion will be associated with polynomial spaces larger than
PΛn . The traditional Knapsack approach uses m(l) explicitly into the definition of the profit
index [3, 22], however, in our context, rules with m(l) > l + 1 are associated with smaller
Lebesgue constant and thus m(l) affects Λn implicitly through the β term.

Remark 3.3. Isotropic total degree space defined by
∑d

k=1 jk ≤ L is an example of a
particular polynomial space of interest, in fact, large amount of the initial work in sparse
grids was aimed at constructing total degree interpolants. The work [25] give an optimal
construction using one dimensional rules with occasionally repeating number of nodes (as
opposed to strictly increasing). However, Corollary 3.2 with α = 1 and β = 0 gives us the
same result as the slow-growth method and hence the assumption m(l) < m(l + 1) is not
restrictive.

3.2. Lebesgue constant. In the one dimensional context, the norm of Um(l) can be
estimated numerically and, in some cases, sharp theoretical estimates are also available.
Thus, we assume there exists {λl}∞l=0 ∈ R so that ‖Um(l)‖L∞ ≤ λl, and for specific examples
see §3.3. However, even if λl is sharp, there is no known sharp analytic estimate of ‖ImΘ(L)‖L∞
for a general Θ(L) and numerical estimates are computationally impractical. In the case
when λl exhibits polynomial growth, i.e., λl ≤ Cγ(l + 1)γ for some Cγ , γ ∈ R, Lemma 3.1
in [5] shows that

‖ImΘ(L)‖C0 ≤ Cdγ (#Θ(L))γ+1 (3.6)
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Figure 1: Interpolation operator norm for different sequence of points. Left: the two

dashed lines correspond to 3
√
l + 1 and 4

√
l + 1. Right: the reference lines are 3

2(l+ 1) and
2
π log(2l + 1).

where #Θ(L) indicates the umber of elements in Θ(L). This result is not sharp and the
effective operator norm is usually much smaller than what (3.6) suggests, however, estimate
(3.6) indicates that the two main factors contributing to the operator norm are the growth
of λl (i.e., Cγ and γ) and the cardinality of Θ(L).

The polynomial growth of λl is sufficient to satisfy Assumption 2. The norm of a full
tensor operator is ‖Um(i)‖L∞ ≤

∏d
k=1 λik , and the associated polynomial space is indexed

by {ν ∈ Nd : ν ≤m(i)− 1}. By monotonicity of m(l), if i is the index of the smallest full
tensor containing ν, then i ≤ ν and

Cν ≤
d∏

k=1

λik ≤ C
d
γ

d∏
k=1

(ik + 1)γ ≤ Cdγ
d∏

k=1

(νk + 1)γ (3.7)

Note that (3.7) implies that γk is independent from k, however, a one dimensional family
of rules can exhibit very slow increase of the Lebesgue constant for the first several nodes,
followed by much sharper increase. Thus, when f(y) exhibits strong anisotropic behavior
(i.e., the components of α differ significantly), there is a large discrepancy in the number
of one dimensional nodes associated with various directions, and different γk yield a much
sharper estimate.

3.3. One dimensional rules. In this section, we present multiple one dimensional in-
terpolation rules with different nodes yj , growth sequence ml and operator norm λl. Ideally,
we want a rule with slowly growing m(l) and λl, since small ml results in fewer interpo-
lation nodes and smaller λl leads to better accuracy of the approximation, however, those
are competing goals. Rules with rapidly increasing m(l) lead to Θn with small cardinality
and interpolants with small Lebesgue constant. However, rapid growth of m(l) also leads to
interpolants with more nodes than degrees of freedom of Λn. It is hard to predict a priori
the optimal relation between m(l) and λl, and in what follows, we present a list of several
candidate interpolation rules.
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The roots and extrema of Chebyshev polynomials are a popular choice for interpolation
nodes and the Chenshaw-Curtis [7] rule is one of the most widely used. The Chenshaw-
Curtis nodes yj are defined by

y1 = 0, y2 = 1, y3 = −1, for j > 3, yj = cos
(

2−dlog2(j−1)e(2j − 3)π
)
, (3.8)

where dxe = min{i ∈ Z : i ≥ x}. The growth sequence starts with m(0) = 1 and for l > 0
we have m(l) = 2l + 1. The operator norm increases logarithmically in number of nodes

λl =
2

π
log(m(l)− 1) + 1 =

2

π
log(2l) + 1. (3.9)

Another similar example is the Fejer type-2 interpolation based on the interior roots of
Chebyshev polynomials [16]. The nodes are given by

yj = cos
(

2−dlog2(j+1)e(2j + 1)π
)
, (3.10)

with growth sequence m(l) = 2l+1 − 1. Similar to Clenshaw-Curtis, the operator norm
exhibits logarithmic dependence on m(l).

Remark 3.4. For interpolation rules that exhibit logarithmic increase of λl, replacing
(νk + 1)γ in Assumption 2 with log(νk + 1) may yield a sharper estimate. However, the
effects of the logarithmic term are negligible even for relatively small α. See Figure 2 in §4.

A nested rule based on Chebyshev nodes and a slower growing ml is the R-Leja sequence
presented in [6]. Let {θk}∞k=1 be the sequence defined recursively by

θ1 = 0, θ2 = π, θ3 =
π

2
, for j > 3, θj =

{
θj−1 + π, j is odd
1
2θ j

2
+1, j is even (3.11)

then the R-Leja nodes are yj = cos(θj) with m(l) = l+ 1, and λl ≤ 2(l+ 1)2 log(l+ 1). The
single point growth gives great flexibility, since the number of nodes needed to construct
fΛn(y) always equals the number of indexes in Λn, however, the operator norm of R-Leja
based interpolants is usually larger than Clenshaw-Curtis and Fejer rules.

The quadratic estimate of the Lebesgue constant for the R-Leja sequence is sharp for
the worst case, however, the actual penalty fluctuates between quadratic and logarithmic
(in the number of nodes), which gives rise to a family of rules with different m(l) [6]. First,
we define the centered R-Leja sequence as

y1 = 0, y2 = 1, y3 = −1, yj = cos(θj), (3.12)

where θj is defined as in (3.11). With the centered rule, if we select m(l) = 2l + 1 (and
m(0) = 1), then the resulting one dimensional interpolants are identical to those defined
by the Clenshaw-Curtis rule. In general, R-Leja sub-sequences with exponentially growing
m(l) exhibit linear (in l) increase of λl. Two specific examples include the R-Leja double-2
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rule defined by

m(0) = 1, m(1) = 3, for l > 1, m(l) = 2b
l
2
c+1

(
1 +

l

2
−
⌊ l

2

⌋)
+ 1, (3.13)

and the R-Leja double-4 rule defined by

m(0) = 1, m(1) = 3, for l > 1, m(l) = 22+b l−2
4
c
(

1 +
l − 2

4
−
⌊ l − 2

4

⌋)
+ 1, (3.14)

where bxc = max{i ∈ Z : i ≤ x}. The word double in the name refers to the fact that l
appears in the exponents of 2 (i.e., we are doubling the number of nodes) and the numbers
2 and 4 refer to the delay of the doubling (i.e., m(l+2)−1 = 2(m(l)−1) and m(l+4)−1 =
2(m(l) − 1) respectively). Yet another option is to use the odd sub-sequence, namely
m(l) = 2l + 1. The R-Leja odd rules result in interpolants with symmetric distribution of
nodes and slightly lower operator norm. See Table 1 for a summary of the R-Leja rules.

The R-Leja sequence is constructed as the solution to a greedy optimization problem
defined on the unit disk in the complex plane, the resulting complex nodes are projected
onto the real line. The optimization problem can also be defined on [−1, 1] as y1 = 0 and

yj+1 = argmax
y∈[−1,1]

j∏
i=1

∣∣y − yi∣∣, (3.15)

where, if the optimization admits more than one solution, we take the right-most one. This
construction leads to Leja interpolation [10] and the number of points in Leja interpolants
can grow one at a time, i.e., m(l) = l+1, or we can use only the odd rules, i.e., m(l) = 2l+1.
Unlike the R-Leja sequence, there is no known sharp estimate of the operator norm of Leja
interpolants, however, numerical tests shows that for l ≤ 50 we can take λl ≈ 3(l + 1)1/2.

Alternative greedy sequences can be constructed by replacing (3.15) with maximization
of the Lebesgue function

yj+1 = argmax
y∈[−1,1]

j∑
j′=1

j∏
i=1,i 6=j′

∣∣∣ y − yi
yj′ − yi

∣∣∣, (3.16)

minimization of ‖Um(l)‖L∞

yj+1 = argmin
y∈[−1,1]

max
y′∈[−1,1]

j∏
i=1

∣∣∣y′ − yi
y − yi

∣∣∣+

j∑
j′=1

∣∣∣ y′ − y
yj′ − y

∣∣∣ j∏
i=1,i 6=j′

∣∣∣ y′ − yi
yj′ − yi

∣∣∣, (3.17)

or minimization of ‖∆m(l)‖L∞

yj+1 = argmin
y∈[−1,1]

max
y′∈[−1,1]

1 +

j∑
i=1

j∏
j′=1,j′ 6=i

∣∣∣ y − yj′
yi − yj′

∣∣∣
 j∏

j′=1

∣∣∣y′ − yj′
y − yj′

∣∣∣. (3.18)

In (3.16)-(3.18) the growth can be prescribed either as a one or two points (i.e., m(l) = l+1
or m(l) = 2l + 1). Numerical estimates of λl for each sequence are given in Figure 1.

Remark 3.5 (Alternative interpolation rules). Each of the optimization problems (3.15)
- (3.18) can be redefined over a multidimensional domain and a greedy procedure can be
devised that constructs an interpolant for an arbitrary Λ(L). However, The optimization
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Name ml λl yk
Clenshaw-Curtis 1, 2l + 1 2

π log(2l + 1) see (3.8)
Fejer type 2 2l+1 − 1 2

π log(2l+1 − 1) see (3.10)
R-Leja l + 1 1.5(l + 1) cos(θk) (see 3.11)
R-Leja double-2 see (3.13) 1.5(l + 1) see (3.12)
R-Leja double-4 see (3.14) 1.5(l + 1) see (3.12)
R-Leja odd 2l + 1 3(l + 1) see (3.12)

Leja l + 1 3
√
l + 1 see (3.15)

Leja odd 2l + 1 6
√
l + 1 see (3.15)

max-Lebesgue l + 1 4
√
l + 1 see (3.16)

max-Lebesgue odd 2l + 1 8
√
l + 1 see (3.16)

min-Lebesgue l + 1 4
√
l + 1 see (3.17)

min-Lebesgue odd 2l + 1 8
√
l + 1 see (3.17)

min-delta l + 1 3
√
l + 1 see (3.18)

min-delta odd 2l + 1 6
√
l + 1 see (3.18)

Table 1: Summary of one dimensional rules. Note that the increase of the Lebesgue penalty
λl is mesured empirically form the first 50 nodes of the corresponding sequence.

problem is ill-conditioned and feasible only for few dimensions and moderate cardinality of
Λ(L), and therefore not practical. A notable exception is the Magic Points procedure [20],
which is an extension of (3.15) to a multidimensional domain of arbitrary geometry, and the
method can be used for non-polynomial interpolation. However, in the case of a hypercube
Γ and a lower polynomial space, the functional associated with the Magic Points greedy
problem is a product of one dimensional functionals of type (3.15), and the maximum is a
tensor of one dimensional Leje nodes. Thus, one possible realization of the Magic Points
algorithm is a sparse grid induced from Leja nodes.

3.4. Summary of our method. Our dynamically adaptive sparse grids interpolaiton
strategy is summarized in the following algorithm:

Algorithm 1 (Anisotropic Dynamically Adaptive Multidimensional Approximation).

Given target function f(y) ∈ C0(Γ), where Γ is a hypercube in Rd

Select one dimensional nodes {yj}∞j=1 and growth rule m(l) (e.g., form Table 1)

Select initial Λ0, e.g., (2.7), total degree, hyperbolic cross section or Smolyak formulas.

Let Θ0 = Θopt
0 according to (3.4)

for n = 0, 1, 2, · · · to ∞ do
Construct fΛn(y) = IΘn [f ](y) according to (3.3), i.e., compute the necessary f(yj)

Compute the coefficients ĉ
(l)
i according to (2.8)

Solve the minimization problem (2.10) for α̂n+1 and β̂n+1

If necessary, apply the ah hoc correction of Remark 2.2

Let Θn+1 = Θn
⋃

Θα̂n+1,β̂n+1(Ln+1) according to (3.5)

If necessary, find Ln+1 large enough to exploit parallelism

end for
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Evaluating fΛn(y) is computationally cheap and the coefficients ĉν are computed using
only fΛn(y), however, for a high dimensional problem this process can still take 10-20
minutes on 6-core CPU. A potentially cheaper alternative is to represent the interpolant
using Newton hierarchical polynomials. We define the hierarchical basis

h1(y) = 1, and for j > 1, hj(y) =

j−1∏
i=1

y − yi
yj − yi

, Hj(y) =
d∏

k=1

hjk (3.19)

Then, for any lower tensor set Θ(L) and Θm(L) as defined in (3.2), there are surplus
coefficients {sj}j∈Θm(L) satisfying the system of equations

∑
1≤j≤i sjHj(yi) = f(yi) for

every i ∈ Θm(L) and the interpolant can be written as

ImΘ(L)[f ](y) =
∑

j∈Θm(L)

sjHj(y) (3.20)

The surplus coefficients are much cheaper to compute than the Legendre coefficients, and
sj can be used as an alternative to ĉν . When the one dimensional growth functions is

m(l) = l + 1, then we can infer α̂ and β̂ from

min
α,β,Ĉ

1

2

∑
j∈Θm(L)

(
Ĉ +α · j + β · log(j + 1) + log(|sj |)

)2
(3.21)

i.e., using sj in place of ĉν in (2.10). However, this approach is not suited for the case
when m(l) > l + 1. Any interpolant can be written in surplus form, and the sub-ordering

of {yj}m(l)
j=m(l−1)+1 does not affect the nodes, polynomial space, or Lebesgue constant. How-

ever, the surpluses do depend on the sub-ordering, and therefore, sj are influenced by λl
associated with growth m(l) = l + 1 rather than m(l) > l + 1.

Remark 3.6. When Θ(L) is a lower index set the three constructions (3.1), (3.3) and
(3.20) result in identical interpolants. In addition, the associated polynomial space is de-
termined solely by Θ(L) and the growth sequence m(l), i.e., the choice of nodes does not
affects the range of the operator (only the norm). The three formulas can be generalized to
not lower tensor sets Θ(L), however, if Θ(L) is not a lower set, then the three approxima-
tions are not equal and only (3.20) gives an interpolant. Furthermore, when Θ(L) is not
lower, the associated polynomial spaces depend on the specific choice of yj. In our experi-
ments, interpolants constructed from not lower tensor sets are less accurate and we restrict
our attention to lower sets Θ(L).

4. Numerical results. In this section we present several numerical examples using func-
tions f(y) that depend on the solutions to discretized linear and nonlinear parametric PDEs.
We compare the convergence rates of SG interpolants for different selections of the tensor
sets, including total degree space and the Θn constructed using Algorithm 1. We also test
the performance of the one dimensional rules from Table 1.
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4.1. Parametrized elliptic equation. The first three examples use similar setup involv-
ing the parametrized elliptic equation defined by{

−∇x · (a(x,y)∇xu(x,y)) = b(x), x ∈ D
u(x,y) = 0, x ∈ ∂D, (4.1)

where y ∈ Γ and D = [0, 1]⊗ [0, 1]. The parametrized coefficient a(x,y) is such that

0 < min
x,y

a(x,y) ≤ max
x,y

a(x,y) <∞,

in which case for every y ∈ Γ exists a unique u(x,y) ∈ H1
0(D) that satisfies (4.1), e.g., [24].

For a bounded functional Q : H1
0(D)→ R we define the quantity of interest (QoI)

f(y) = Q (u(x,y)) : Γ→ R.

The first three numerical examples differ only in the choice of a(x,y), b(x) and Q (u(x,y)).
The above setup has been the thoroughly studies in literature, e.g., [1, 5, 8, 9, 23, 24], and
makes for a good test bed of novel techniques.

4.1.1. Karhunen-Loéve expansion. Let (Ω,F ,P) denote a complete probability space,
with sample space Ω, σ-algebra F = 2Ω and probability measure P : F → [0, 1]. For
x ∈ [0, 1] and η ∈ Ω. Let a1(x, η) define a random field with covariance function

Cov
[

log(a1 − 0.5)
]
(x, x′) = exp

(
−(x− x′)2

4

)
Using Karhunen-Loéve expansion, we parametrize the random field using the dominant
seven eigenvalues and eigenfunctions

a1(x,y) ≈ 0.5 + exp

(
1 +

4
√

9π

2
y1 +

4
√

9π√
2

3∑
k=1

e−
(kπ)2

32
(
y2k sin(kπx1) + y2k+1 cos(kπx1)

))
,

where y is uniformly distributed over Γ [23, 24]. Assuming that the diffusion coefficient
in (4.1) depends only on the first component of x, we define a1(x,y) = a1(x1,y). The
source term is b1(x) = cos(x1) sin(x2) and the quantity of interest is the L2(D) norm of the
solution u(x,y)

f1(y) =

(∫
D
u2(x,y)dx

)1/2

, y ∈ Γ ⊂ R7 (4.2)

Analytic expression for f1(y) is not available, however, for a given yj ∈ Γ, we can approx-
imate (4.1) with a finite element method (e.g., [27]) and compute a sufficiently accurate
approximation to f1(yj). The error associated with this additional approximation is be-
yond the scope of this paper and we focus our attention to the discretized f1(y).

Figure 2 shows a comparison of eight different types of interpolation methods applied to
f1(y). The left plot shows the results using the Clenshaw-Curtis rule, while the right plot
uses the Leja nodes. Each plot shows the results from four different selections of the tensor
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set and the error is estimated from 1000 uniformly distributed random samples {ỹi}1000
i=1

error = max
1≤i≤1000

|IΘn [f1](ỹi)− f1(ỹi)| . (4.3)

The isotropic case corresponds to the construction of isotropic total degree polynomial
space, i.e., as defined in Remark 3.3. However, the e−k

2
term in (??) decays fast with

increasing k and thus yk variables corresponding to larger k will have lesser effect on the
overall variation of f1(y). The isotropic approach fails to capture the different behavior of
yk and hence it is the worst performing scheme for this example. Anisotropic SG method
has been proposed in [23] and using a1(x,y) anisotropic weights are derived

α = (0.85, 0.80, 0.80, 1.0, 1.0, 1.6, 1.6) ,

and the analytic anisotropic polynomial space is defined by

Λα(L) =
{
ν ∈ Nd : α · ν ≤ L

}
.

Using Λα(L), we construct the corresponding interpolant defined in Theorem 1, the results
are plotted as the dashed lines in Figure 2.

For comparison purposes, Figure 2 also plots a Dynamic Total Degree example that uses
a modified version of Algorithm 1. In the total degree case, we remove the β term from the
weight function (2.9) and the least-squares estimate (2.10), and we compute only α̂. For
both Clenshaw-Curtis and Leja nodes, the total degree approach captures the anisotropic
behavior of f1(y) and the method exhibits faster convergence. The estimated normalized
parameters α̂ are given on Table 2. Since the dominant polynomial space is independent
from the scaling of α̂, we divide all entries of α̂ by the average 1

7 |α̂|1. Both Clenshaw-Curtis
and Leja nodes result in nearly identical α̂ even though Clenshaw-Curtis parameters are
based on the projection of the interpolant (2.8) while the Leja parameters are computed
using the hierarchical surpluses (3.21). The Clenshaw-Curtis nodes have a lower Lebesgue
constant, however, the Clenshaw-Curtis nodes result in grids with more nodes due to the
exponential growth of m(l). For this particular problem using dynamic total degree nodes,
the lower operator norm of Clenshaw-Curtis nodes leads to faster convergence.

Figure 2 also shows the results from applying Algorithm 1 to f1(y), and the curve
is labeled Dynamic Curved. When using Clenshaw-Curtis nodes, there is no significant
difference between the total degree method and the quasi-optimal interpolation (2.7). The
estimated (normalized) decay parameters α̂ and β̂ are listed in Table 3 and we see that
β̂ is relatively small. In contrast, when using the Leja nodes, the quasi-optimal estimate
(2.7) leads to a significant improvement in convergence and from Table 3 we see that the β̂
estimated parameters are smaller compared to the Clenshaw-Curtis ones, which is due to
the larger Lebesgue constant.

Figure 3 shows the results of applying Algorithm 1 to f1(y) and using different rules from
Table 1. The curves are not smooth since the results are affected by error in the least-squares
approximation, fluctuations of the operator norm (see Figure 1), the random samples used
to compute the error (4.3), and, when m(l) > l+1 the range of the resulting interpolant is a
super-set of the estimated optimal polynomial space. However, all interpolants have similar
convergence rate within the “noise” in the method. Table 4 gives the relative variation of α̂
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Figure 2: Applying four different construction of interpolants for f1(y). Left: using
Clenshaw-Curtis nodes. Right: using Leja nodes.

Dimension α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7

Clenshaw-Curtis 0.58 0.70 0.57 0.99 0.93 1.57 1.66
Leja 0.61 0.70 0.58 0.96 0.91 1.55 1.68
Analytic 0.78 0.73 0.73 0.92 0.92 1.46 1.46

Table 2: Estimated α̂ parameters for f1(y) using total degree estimate.

Dimension α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7

Clenshaw-Curtis 0.64 0.77 0.80 0.97 0.99 1.48 1.34
Leja 0.67 0.80 0.85 1.08 1.05 1.43 1.12

Dimension β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7

Clenshaw-Curtis −0.46 −0.51 −0.94 −0.31 −0.47 −0.29 0.09
Leja −1.00 −1.14 −1.68 −1.24 −1.27 −0.96 −0.21

Table 3: Estimated α̂ and β̂ parameters for f1(y).

Dimension δα̂1 δα̂2 δα̂3 δα̂4 δα̂5 δβ̂1 δβ̂2 δβ̂3 δβ̂4 δβ̂5

Clenshaw-Curtis 0.80 0.45 0.82 0.50 0.67 1.27 0.88 0.93 1.70 0.89

Table 4: Relative variation of α̂ and β̂ parameters for f1(y) over all rules from Table 1 .
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Figure 3: Algorithm 1 applied to f1(y) using all rules from Table 1.

and β̂ components for all rules in Table 1, where δαk is computed as the difference between
the largest and smallest estimate for αk divided by the average (same for βk). From the
first 5 components, we see that the components of β̂ vary over a much wider range than
those of α̂, since the α̂ is affected by only by the “noise” while β̂ is also affected by the
different Lebesgue constants for the different rules. Note that the table lists only the first 5
components, since y6 and y7 are associated with the smallest eigenvalue of the Karhunen-
Loéve expansion, f1(y) is least sensitive to y6 and y7, and the constructed interpolants have
few nodes in those two directions, which leads to unreliable estimates.

4.1.2. Inclusion problem. In this section we apply our approach to two inclusion prob-
lems, presented in [1], where we consider the domain given on Figure 4.

Isotropic case. The (almost) isotropic inclusion problem associates each of the eight disks
with a component of y ∈

⊗8
k=1[0.01, 1] and we define

a2(x,y) =

{
yk, x ∈ Disk k
1, otherwise.

b2(x) =

{
100, x ∈ Box
0, otherwise.

f2(y) =

∫
Box

u(x,y)dx

Figure 5 shows a plot of the convergence rate of interpolants based on Clenshaw-Curtis and
Leja nodes. Figure 5 compares three possible selections of the polynomial space, isotropic
total degree (see Remark 3.3), dynamic curved (i.e., Algorithm 1), and dynamic total degree
(i.e., Algorithm 1 ignoring β). The disks are not equidistant from the box and thus the
components of y do not have equal influence on f2(y), however, the anisotropy is weak and
the performance of the the anisotropic total selection is indistinguishable from the isotropic
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Figure 4: Mesh for the inclusion problem. Each disk has radius 2
15 and the centers are at

0.2, 0.5 and 0.8 along the horizontal and vertical axis. The square box is located at the
center and has side of 0.2.

Dimension α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 α̂8

Clenshaw-Curtis 0.86 1.32 0.67 1.32 1.25 0.67 1.26 0.66
Leja 0.94 1.32 0.66 1.32 1.22 0.66 1.22 0.66

Dimension β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

Clenshaw-Curtis 0.66 −0.49 1.41 −0.50 −0.20 1.40 −0.20 1.47
Leja 0.17 −1.24 0.75 −1.24 −0.86 0.74 −0.86 0.79

Table 5: Estimated α̂ and β̂ parameters for f2(y).

interpolant. On the other hand, our quasi-optimal approach has a significantly better
convergence. Table 5 gives the final values of the estimated α̂ and β̂ parameters, similar
to the Karhunen-Loéve example, the α̂ parameters are almost identical for both Clenshaw-
Curtis and Leja nodes, however, the β̂ parameters for the Leja nodes are smaller due to
the larger operator norm. Despite the seemingly small values of β̂, the added flexibility
of the log term in (2.7) results in accurate interpolants with thousands of fewer nodes as
compared to the total degree construction.

It is interesting to note that several of the β̂k estimates in Table 5 are in fact positive,
as opposed to the negative values suggested in the theoretical derivation of (2.7) and As-
sumption 2. This indicates that the coefficients ĉi exhibit a combination of exponential and
algebraic decay and the added flexibility of β (i.e., imposing no restictions on the individ-
ual β̂k), results in a more accurate estimate of the optimal polynomial space. Thus, our
approach is applicable to a wider class of functions, namely those obeying estimate (2.7) for
any β, albeit rigorous characterization of this class of functions is not currently available.
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Figure 5: Applying three different construction of interpolants for f2(y). Left: using
Clenshaw-Curtis nodes. Right: using Leja nodes.

Anisotropic case. The second variation of the inclusion problem uses only the four corner
disks

ytop-left ∈ [0.109, 1], ytop-right ∈ [0.2575, 1],

ybottom-left ∈ [0.010, 1], ybottom-right ∈ [0.4060, 1].

The diffusion coefficient is constant 1 outside the four boxes. The four parameter forcing
term and quantity of interest are now defined over the entire domain, i.e., b3(x) = 100 and

f3(y) =

∫
D
u(x,y)dx. (4.4)

Despite the smaller number of dimensions, the four parameter problem is more difficult, due
to the smaller amin and smaller region of analyticity. For this problem, anisotropic total
degree weights have been derived

α = (40, 317, 137, 227) , (4.5)

and numerical results show that (4.5) are reasonably accurate when used in the context
of Galerkin projection [1]. Figure 6 shows a comparison in the convergence rate between
interpolants constructed via the total degree weights given in (4.5) and the application of
Algorithm 1, Table 6 lists the estimated α̂ and β̂ parameters. The convergence rate of
the interpolants is closer to algebraic, leading to a large β, which dominates for indexes
with small entries. Thus, in the context of interpolation, the total degree space estimated
by the weights (4.5) is far from optimal. Initially, the least squares method struggles to
estimate the quasi-optimal parameters, however, once a sufficient number of samples are
computed, the convergence rate of Algorithm 1 dramatically increases leading to enormous
savings compared to the total degree selection. Furthermore, due to the small region of
analyticity of f3(y), the difference in Lebesgue constant between Clenshaw-Curtis and Leja
has a significant effect with the former method outperforming the latter.
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Figure 6: Applying three different construction of interpolants f3(y). Left: using Clenshaw-
Curtis nodes. Right: using Leja nodes.

Dimension α̂1 α̂2 α̂3 α̂4 β̂1 β̂2 β̂3 β̂4

Clenshaw-Curtis 0.18 2.38 0.18 1.27 12.70 10.64 13.62 12.00
Leja 0.24 2.22 0.24 1.30 6.95 5.69 8.75 6.94

Table 6: Estimated α̂ and β̂ parameters for f3(y).

4.2. Parametrized steady state Burgers equation. Consider the steady state Burgers
equation defined over the domain D = [0, 1]⊗ [0, 0.5] \ [0.15, 0.25]⊗ [0.15, 0.35] (see Figure
7). The right most wall of the domain is associated with homogenous Neumann boundary
conditions, i.e., ∂Dn = {1}⊗ [0, 0.5], the remainder of the boundary, i.e., ∂Dd, is associated
with the Dirichlet conditions defined by

ub(x) =

{
16x2(0.5− x2), x1 = 0
0, otherwise.

(4.6)

A time dependent control problem using the above domain is described in [13]. In our
context, we are interested in parametrizing the steady state Burgers equation given by

−∇x · (a(y)∇xu(x,y)) +
(
v(y) · ∇xu(x,y)

)
u(x,y) = 0, x ∈ D,
u(x,y) = ub(x), x ∈ ∂Dd,

∂
∂x1

u(x,y) = 0, x ∈ ∂Dn,
(4.7)

where y ∈
⊗3

k=1[−1, 1] and

a(y) =
1

200 + 100y3
, v(y) =

(
1 + 0.2y1

0.1y2

)
, f4(y) =

∫ 0.45

0.05

∫ 0.8

0.6
u(x,y)dx1dx2

Figure 7 plots the nominal solution corresponding to y = 0. There is no available result
regarding the analyticity of f4(y) or the corresponding optimal polynomial space. However,
the components of the convection term v(y) affect different derivatives of the non-uniform
solution, y1 and y2 are multiplied by different coefficients, and y3 affects the diffusion term
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Figure 7: The domain associated with the Burgers equation (4.7), the color map corresponds
to the nominal solution y = 0.
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Figure 8: Applying three different construction of interpolants for f4(y). Left: using
Clenshaw-Curtis nodes. Right: using Leja nodes.

which has very different effect on u(x,y). Thus, we expect anisotropic decay behavior of
f4(y).

Figure 8 plots the result of interpolating f4(y) with three different polynomial selection
schemes, the isotropic total degree (see Remark 3.3), and Algorithm 1 ignoring and including
β. We use Leja and Clenshaw-Curtis nodes and the estimated parameters are given in Table
7. We observe results very similar to the previous examples, which shows that our approach
extends to problems associated with nonlinear PDEs.

5. Conclusion. In this work, we have presented an adaptive algorithm for constructing
a sequence of interpolants of a function defined over a product of one dimensional intervals
and admitting analytic extension to poly-ellipse in complex space. Following recent results
in “best M -term” approximation, we derive a heuristic estimate for the optimal interpola-
tion space, which we parametrize by two vectors, one depending on the region of analytic
extension of the function and one depending on the Lebesgue constant of the interpolation
scheme. Traditional methods for (quasi-)optimal approximation rely on a priori estimates,
instead, we present a procedure for constructing a sequence of polynomial spaces, where
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Dimension α̂1 α̂2 α̂3 β̂1 β̂2 β̂3

Clenshaw-Curtis 1.22 1.53 0.25 −1.57 −1.71 0.25
Leja 1.18 1.46 0.35 −2.37 −2.40 −0.76

Table 7: Estimated α̂ and β̂ parameters for f4(y).

each space is derived from an estimate inferred from an interpolant in the previous space.
Each interpolant is constructed using a sparse grids approach, and we present a strategy
for selecting the tensor rules so that the resulting grid is optimal (i.e., fewest nodes) with
respect to the polynomial space. We also present several novel interpolation rules derived
from greedy optimization of operator norms. Our numerical experiments demonstrate that
the method can be applied to a wide range of problems without the need for a priori es-
timates of the region of analyticity of the function, so long as the function is analytic and
the one dimensional family of rules inducing the sparse grid exhibits polynomial growth of
the Lebesgue constant.
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