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A MULTILEVEL STOCHASTIC COLLOCATION METHOD FOR
PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT

DATA

A. L. Teckentrup ∗ P. Jantsch † C. G. Webster ‡ M. Gunzburger §

Abstract. Stochastic collocation methods for approximating the solution of partial differential
equations with random input data (e.g., coefficients and forcing terms) suffer from the curse of
dimensionality whereby increases in the stochastic dimension cause an explosion of the computational
effort. We propose and analyze a multilevel version of the stochastic collocation method that, as is
the case for multilevel Monte Carlo (MLMC) methods, uses hierarchies of spatial approximations
to reduce the overall computational complexity. In addition, our proposed approach utilizes, for
approximation in stochastic space, a sequence of multi-dimensional interpolants of increasing fidelity
which can then be used for approximating statistics of the solution as well as for building high-
order surrogates featuring faster convergence rates. A rigorous convergence and computational
cost analysis of the new multilevel stochastic collocation method is provided in the case of elliptic
equations, demonstrating its advantages compared to standard single-level stochastic collocation
approximations as well as MLMC methods. Numerical results are provided that illustrate the theory
and the effectiveness of the new multilevel method.

Key words. multilevel methods, PDEs with random input data, sparse grids, uncertainty quan-
tification, finite element methods, multivariate polynomial approximation, hierarchical methods,
high-dimensional approximation

1. Introduction. Nowadays, mathematical modeling and computer simulations
are used extensively in many scientific and engineering fields, usually with the goal
of understanding or predicting the behavior of a system given its inputs such as
the computational domain, model parameter values, and source terms. However,
whether stemming from incomplete or inaccurate knowledge or from some inherent
variability in the system, often these inputs may be subject to uncertainty. In order to
correctly predict the behavior of the system, it is especially pertinent to understand
and propagate the effect of the input uncertainty to the output of the simulation, i.e.,
to the solution of the mathematical model.

In this paper, we consider systems which are modeled by elliptic partial differen-
tial equations (PDEs) with random input data. We work under the finite-dimensional
noise assumption, i.e., we assume that the random inputs are characterized by a finite-
dimensional random vector. When enough information is available to completely
characterize the randomness in the inputs, probability theory provides a natural set-
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ting for quantifying uncertainties. The object of our computations is the accurate
calculation of solutions of stochastic elliptic PDEs or statistics of some functional of
the solution of the PDE. For instance, in addition to the solution itself, one might be
interested in the expected value or variance of the solution in a given region of the
computational domain.

A large number of methods have been developed for the numerical solution of
PDEs with random inputs; see, e.g., [24] and the references cited therein. The most
popular approach is the Monte Carlo (MC) method which involves random sampling
of the input vector of random variables (also referred to as the stochastic parameter
space) and the solution of the deterministic PDE at each of the sample points. In
addition to the benefits of simple implementation and a natural decoupling of the
stochastic and spatial degrees of freedom, MC methods feature a convergence rate
that is independent of the dimension of the stochastic space. This makes it par-
ticularly attractive for high-dimensional problems. However, the convergence is in
general very slow and, especially in case the stochastic space is only of moderate
dimension and the solution of the PDE or a functional of interest is smooth with
respect to the random parameters, better convergence rates can be achieved using
more sophisticated methods.

Stochastic collocation (SC) methods [1, 31, 32] are similar to MC methods in the
sense that they involve only the solution of a sequence of deterministic PDEs at
given sample points in the stochastic space. However, rather than randomly chosen
samples, SC methods use a deterministic grid of points at which one then solves the
corresponding deterministic PDE, and then builds an interpolant, either using global
Lagrange-type polynomials [1,31,32] or even local hierarchical basis functions [23,29].
For problems where the solution is a smooth function of the random input variables
and the dimension of the stochastic space is moderate, SC methods have been shown
to converge much faster than MC methods.

Unfortunately, for most problems, stochastic collocation methods suffer from the
curse of dimensionality, a phrase that refers to the deterioration of the convergence
rate and the explosion of computational effort as the dimension of the stochastic space
increases. In this paper, we introduce a multilevel stochastic collocation (MLSC) ap-
proach for reducing the computational cost incurred by standard, i.e., single level,
SC methods. Drawing inspiration from multigrid solvers for linear equations, the
main idea behind multilevel methods is to utilize a hierarchical sequence of spatial
approximations to the underlying PDE model that are then combined with stochastic
discretizations in such a way as to minimize computational cost. Starting with the
pioneering works [27] in the field of integral equations and [20] in the field of com-
putational finance, the multilevel approach has been successfully applied to many
applications of MC methods; see, e.g., [2, 8, 15, 21, 22, 28, 30]. The MLSC method
proposed in this work is similar to the construction found in [4], where the authors
propose to adapt the resolution of the spatial and stochastic discretizations to reduce
the total degrees of freedom. In contrast, our construction provides the flexibility of
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optimizing the interpolation operators used at each level of discretization to minimize
computational cost. Our method is also similar to the multilevel quadrature approx-
imations of moments of the solution studied in [25, 26], which consider quasi-MC,
polynomial chaos and collocation schemes. However, our focus is on the analysis of
the computational complexity of the multilevel interpolation algorithms which also
includes results for functionals of the solution. In particular, we prove new interpo-
lation error bounds on functionals of the solution that are needed for the analysis of
the MLSC methods.

The outline of the paper is as follows. In Section 2, we introduce the mathematical
problem, the main notation used throughout, the assumptions on the parametrization
of the random inputs that are used to transform the original stochastic problem into
a deterministic parametric version, and necessary assumptions about the regularity of
the solution of the PDE. A description of the spatial and stochastic approximations
as well as the formulation of the MLSC method follows in Section 3. In Section 4,
we provide a general convergence and complexity analysis for the MLSC method.
As an example of a specific single level SC approach satisfying our interpolation
assumptions, we describe, in Section 5, a generalized sparse grid stochastic collocation
approach based on global Lagrange interpolation. In Section 6, we provide numerical
results that illustrate the theoretical results and complexity estimates and also explore
issues related to the implementation of the MLSC method.

2. Problem Setting. Consider the problem of approximating the solution of an
elliptic partial differential equation (PDE) with random input data. To this end, let
D ⊂ Rd, d = 1, 2, 3, denote a bounded, Lipschitz domain with boundary denoted by
∂D and let (Ω,F ,P) denote a complete probability space. Here, Ω denotes the set of
outcomes, F ⊂ 2Ω the σ-algebra of events, and P : F → [0, 1] a probability measure.
Given a random field a(ω,x) : Ω×D → R, the model problem we consider is stated
as follows: find u(ω,x) : Ω×D → R such that almost surely{

−∇(a(ω,x) · ∇u(ω,x)) = f(x) in D
u(ω,x) = 0 on ∂D.

(2.1)

We make the following assumptions on a:

A1. (Finite-dimensional noise) The random field a is determined by a finite number
N of random variables, denoted by the random vector y(ω) := [y1(ω), . . . yN(ω)] :
Ω→ RN .

A2. (Boundedness) The image Γn := yn(Ω) of yn is bounded for all n ∈ {1, . . . , N}
and, with Γ =

∏N
n=1 Γn, the random variables y have a joint probability density

function ρ(y) =
∏N

n=1 ρ̃(yn) ∈ L∞(Γ), where ρ̃(·) : [−1, 1]→ R denotes the one-
dimensional PDF corresponding to the probability space of the random fields.
Without loss of generality, we assume that Γ = [−1, 1]N .

Remark 2.1. Another setting having a finite number of random variables occurs
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when the coefficient a depends on a finite number of independent scalar random phys-
ical parameters, e.g., diffusivities, reaction rates, porosities, elastic moduli, etc. In
this case, each of the N parameters would have its own PDF ρn(yn), n = 1, . . . , N ,
so that the joint PDF is now given by ρ(y) =

∏N
n=1 ρn(yn). The algorithms discussed

in this work all apply equally well to this setting.
Under assumptions A1 and A2, the solution u to (2.1) depends measurably on a,

and therefore it follows from the Doob-Dynkin Lemma that u can also be characterized
in terms of the random vector y(ω). The solution u(ω,x) thus has a deterministic,
parametric equivalent u(y,x), with the probability space (Γ,B, ρ(y)dy) taking the
place of (Ω,F ,P); see, e.g., [1]. Here, B denotes the Borel σ-algebra generated by the
open subsets of Γ. In what follows, we will therefore denote the solution by u(y,x)
for y ∈ Γ and x ∈ D. Then we also assume:

A3. (Existence and uniqueness) The coefficient a(ω,x) is uniformly bounded and
coercive, i.e., there exists amin > 0 and amax <∞ such that

Prob
[
ω ∈ Ω : amin ≤ a(y(ω),x) ≤ amax ∀x ∈ D

]
= 1

and f ∈ H−1(D) so that the problem (2.1) admits a unique solution u ∈
L2
ρ(Γ;H1

0 (D)) with realizations in H1
0 (D), i.e., u(y(ω), ·) ∈ H1

0 (D) almost surely.

Here, given a Banach space X(D) of functions on D, the weighted Bochner spaces
Lqρ(Γ;X(D)) for 1 ≤ q <∞ are defined by

Lqρ(Γ;X(D)) =
{
v : Γ→ X(D) | v is strongly meas. and

∫
Γ

‖v(y, ·)‖qX(D)ρ(y)dy <∞
}

with corresponding norm ‖ · ‖Lqρ(Γ;X(D)) given by

‖v‖q
Lqρ(Γ;X(D))

=

∫
Γ

‖v(y, ·)‖qX(D)ρ(y)dy.

Assumption A1 is naturally satisfied by random fields that only depend on a finite
set of parameters, e.g.,

a(ω,x) = a(y(ω),x) = a0 +
N∑
n=1

yn(ω)an(x), {an}Nn=0 ⊂ L2(D),

where y(ω) is a vector of independent random variables. If this is not the case,
approximations of a that satisfy assumption A1 can be obtained by appropriately
truncating a spectral expansion such as the Karhunen-Loève expansion [13,19]. This
introduces an additional error; see [31] for a discussion of the effect of this error on the
convergence of stochastic collocation methods and [7,17] for bounds on the truncation
error. As an alternative to truncating infinite expansions, one can also consider using
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dimension-adaptive sparse grids as interpolation operators. For more details on this
type of approximation, we refer the reader to [9, 18].

Assumption A2 can be weakened to include the case of unbounded random vari-
ables such as Gaussian variables. See [1] for an analysis of the interpolation error and
note that, with only minor modifications, the multilevel stochastic collocation method
introduced in this paper also applies to unbounded random variables. Furthermore,
assumption A3 can be weakened to include coefficients a that are not uniformly
coercive; see [8, 34].

Finally, we remark that the multilevel stochastic collocation method proposed
in this paper is not specific to the model problem (2.1); it can be applied also to
higher-order PDEs and other types of boundary conditions.

3. Hierarchical multilevel stochastic collocation methods. We begin by re-
calling that standard stochastic collocation (SC) methods generally build an approx-
imation of the solution u by evaluating a spatial approximation uh(y, ·) ∈ Vh at a
given set of points {ym}Mm=1 in Γ, where Vh ⊂ H1

0 (D) is a finite-dimensional subspace.
In other words, we compute {uh(ym, ·)}Mm=1. Then, given a basis {φm(y)}Mm=1 for the

space PM = span {φm(y)}Mm=1 ⊂ L2
ρ(Γ), we use those samples to construct the fully

discrete approximation given by the interpolant

u
(SL)
M,h(y,x) = IM [uh](y,x) =

M∑
m=1

cm(x)φm(y), (3.1)

where the coefficients cm(x) are fully determined by the semi-discrete solutions at
the collocation points, uh(ym,x) for m = 1, . . . ,M . In (3.1), we label the standard
SC approximation by ‘SL’ to indicate that that approximation is constructed using
a single set of points {ym}Mm=1 in stochastic space, in contrast to the multilevel ap-
proximations considered below that use a hierarchy of point sets; thus, we refer to
(3.1) as a single level approximation. A wide range of choices for the interpolation
points {ym}Mm=1 and basis functions {φm(y)}Mm=1 are possible. A particular exam-
ple of the approximation (3.1), namely global Lagrange interpolation on generalized
sparse grids, is given in Section 5.

Convergence of the SC approximation (3.1) is often assessed in the natural L2
ρ(Γ;H1

0 (D))-
norm, and the goal is to determine a bound on the error ‖u− IM [uh]‖L2

ρ(Γ;H1
0 (D)). To

obtain a good approximation with SC methods, it is necessary in general to use ac-
curate spatial approximations uh and a large number M of collocation points. To
determine the coefficients cm(x) of the interpolant (3.1), the method requires the
computation of uh(ym, ·) for m = 1, . . . ,M so that, in practice, the cost can grow
quickly with increasing N . Therefore, to reduce the overall cost, we consider a mul-
tilevel version of SC methods that combines different levels of fidelity of both the
spatial and parameter approximations.

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.
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3.1. Spatial approximation. For spatial approximation, we use a hierarchical
family of finite element discretizations [5,10]. As discussed in [26], the formulation of
the multilevel method does not depend on the specific spatial discretization scheme
used and the results readily hold for other choices. For k ∈ N0, define a hierarchy of
nested finite element spaces

Vh0 ⊂ Vh1 ⊂ · · · ⊂ Vhk ⊂ · · · ⊂ H1
0 (D),

where each Vhk consists of continuous, piecewise polynomial functions on a shape
regular triangulation τhk ofD having maximum mesh spacing parameter hk. Note that
k merely serves to index the given spaces; the approximation properties of the space
Vhk is governed by hk. For simplicity, we assume that the triangulations {τhk}k∈N0

are generated by iterative uniform subdivisions of the initial triangulation τ0; this
implies that hk = η−kh0 for some η ∈ N, η > 1 and that indeed the corresponding
finite element spaces are nested.

Remark 3.1. For simplicity, we have assumed that the finite element family of
spaces is nested, and in fact, are constructed by a series of uniform subdivisions
of a parent mesh with mesh size h0. Neither of these assumptions are necessary
for our algorithms or conclusions to hold, provided η1 ≤ hk/hk+1 ≤ η2 for some
0 < η1 < η2 < ∞ and all k ∈ N0; in such cases, the finite element spaces are not
necessarily nested.

We also let uhk(y, ·) denote the Galerkin projection of u(y, ·) onto Vhk , i.e., uhk ∈
Vhk denotes the finite element approximation. Note that uhk(y, ·) is still a function on
the stochastic parameter space Γ. We assume the following approximation property
of the finite element spaces {Vhk}k∈N0 :

A4. There exist positive constants α and Cs, independent of hk, such that for all
k ∈ N0,

‖u− uhk‖L2
ρ(Γ;H1

0 (D)) ≤ Cs h
α
k .

In general, the rate α depends on the (spatial) regularity of u, which in turn depends
on the regularity of a and f as well as on the geometry of the domain D. For example,
if a, f , and D are sufficiently regular so that u ∈ L2

ρ(Γ;H2(D)), assumption A4 holds
with α = 1 and Cs dependent only on a and ‖u‖L2

ρ(Γ;H2(D)). For additional examples
and detailed analyses of finite element errors, see [34].

3.2. Stochastic interpolation. For stochastic approximation, we use interpola-
tion over Γ, where we assume u ∈ C0(Γ;H1

0 (D)). The specific choice of interpolation
scheme is not crucial at this juncture. We begin by letting {IMk

}∞k=0 denote a se-
quence of interpolation operators IMk

: C0(Γ)→ L2
ρ(Γ) using Mk points. We assume

the following:

A5. There exist positive constants CI , Cζ , and β, and a Banach space Λ(Γ;H1
0 (D)) ⊂

L2
ρ(Γ;H1

0 (D)) containing the finite element approximations {uhk}k∈N0 such that
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for all v ∈ Λ(Γ;H1
0 (D)) and all k ∈ N0

‖v − IMk
v‖L2

ρ(Γ;H1
0 (D)) ≤ CI σ(Mk) ζ(v),

for some decreasing sequence {σk}k∈N0 , with σk = σ(Mk), and operator
ζ : Λ(Γ;H1

0 (D))→ R that admits the estimates

ζ(uhk) ≤ Cζ h
β
0 and ζ(uhk+1

− uhk) ≤ Cζ h
β
k+1.

Remark 3.2. As in the previous section, k is merely an index; we use the same
index for the hierarchies of spatial and stochastic approximations because, in the mul-
tilevel SC method we introduce below, these two hierarchies are closely connected.

Remark 3.3. σk determines the approximation properties of the interpolant. More-
over, we allow non-unique interpolation operators in the sequence, i.e., it is possible
that, for any k = 0, . . . ,∞, Mk+1 = Mk and therefore IMk+1

= IMk
and σk+1 = σk.

Thus, although the spatial approximation improves with increasing k, i.e., hk+1 < hk,
we allow for the parameter space approximation for the index k + 1 remaining the
same as that for k.

In Section 5, assumption A5 is shown to hold, with σk = M−µ
k , for global La-

grange interpolation using generalized sparse grids. The bounds on the function ζ
in assumption A5 are shown to be the key to balancing spatial and stochastic dis-
cretizations through the multilevel formulation. Crucially, we make use of the fact
that the interpolation error is proportional to the size of the function being interpo-
lated, measured in an appropriate norm. In the case of the model problem (2.1), this
norm is usually related to the (spatial) H1

0 (D)-norm. The bounds in assumption A5
then arise from the fact that for any k ∈ N0, ‖uhk‖H1

0 (D) is bounded by a constant,

independent of k, whereas ‖uhk − uhk−1
‖H1

0 (D) decays with hβk for some β > 0. We
usually have β = α, where α is as in assumption A4. Note that we have chosen to
scale the bound on ζ(uhk) by hβ0 to simplify calculations. Because h0 is a constant,
this does not affect the nature of the assumption.

3.3. Formulation of the multilevel method. As in the previous sections, denote
by {uhk}k∈N0 and {IMk

}k∈N0 sequences of spatial approximations and interpolation
operators in parameter space, respectively. Then, for any K ∈ N, the formulation of
the multilevel method begins with the simple telescoping identity

uhK =
K∑
k=0

(uhk − uhk−1
), (3.2)

where, for simplicity, we set uh−1 := 0.
It follows from assumption A5 that as k →∞, less accurate interpolation opera-

tors are needed in order to estimate uhk − uhk−1
to achieve a required accuracy. We
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therefore define our multilevel interpolation approximation as

u
(ML)
K :=

K∑
k=0

IMK−k [uhk − uhk−1
] =

K∑
k=0

(
u

(SL)
MK−k,hk

− u(SL)
MK−k,hk−1

)
. (3.3)

Rather than simply interpolating uhK , this approximation uses different levels of
interpolation on each difference uhk − uhk−1

of finite element approximations. To
preserve convergence, the estimator uses the most accurate interpolation operator
IMK

on the coarsest spatial approximation uh0 and the least accurate interpolation
operator IM0 on the finest spatial approximation uhK − uhK−1

. Note that in (3.3) a
single index k is used to select appropriate spatial and stochastic approximations and
thus these approximations are indeed closely related.

4. Analysis of the multilevel approximation. This section is devoted to proving
the convergence of the multilevel approximation defined in Section 3.3 and analyzing
its computational complexity. We first prove, in Section 4.1, a general error bound,
whereas in Sections 4.2 and 4.3 we prove a bound on the computational complexity
in the particular case of an algebraic decay of the interpolation errors.

4.1. Convergence analysis. We consider the convergence of the multilevel ap-

proximation u
(ML)
K to the true solution u in the natural norm ‖ · ‖L2

ρ(Γ;H1
0 (D)).

First, we use the triangle inequality to split the error into the sum of a spatial
discretization error and a stochastic interpolation error, i.e.,

‖u− u(ML)
K ‖L2

ρ(Γ;H1
0 (D)) ≤ ‖u− uhK‖︸ ︷︷ ︸

(I)

L2
ρ(Γ;H1

0 (D)) + ‖uhK − u
(ML)
K ‖︸ ︷︷ ︸

(II)

L2
ρ(Γ;H1

0 (D)). (4.1)

The aim is to prove that with the interpolation operators {IMk
}Kk=0 chosen appropri-

ately, the stochastic interpolation error (II) of the multilevel approximation converges
at the same rate as the spatial discretization error (I), hence resulting in a convergence
result for the total error.

For the spatial discretization error (I), it follows immediately from assumption
A4 that

(I) ≤ Csh
α
K .

From (3.2) and assumption A5, we estimate the stochastic interpolation error

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.



ORNL/TM-2014/621: A. L. Teckentrup, P. Jantsch, M. Gunzburger, C. G. Webster 9

using the triangle inequality:

(II) =
∥∥∥ K∑
k=0

(uhk − uhk−1
)− IMK−k(uhk − uhk−1

)
∥∥∥
L2
ρ(Γ;H1

0 (D))

≤
K∑
k=0

∥∥(uhk − uhk−1
)− IMK−k(uhk − uhk−1

)
∥∥
L2
ρ(Γ;H1

0 (D))

≤
K∑
k=0

CI Cζ σK−k h
β
k .

To obtain an error of the same size as (I), we choose interpolation operators such
that

σK−k ≤ Cs
(
(K + 1)CI Cζ

)−1
hαK h

−β
k . (4.2)

Continuing from above,

(II) ≤
K∑
k=0

Cs
(
(K + 1)CI Cζ)

)−1
hαK h

−β
k CI Cζ h

β
k = Csh

α
K ,

as required. It follows that with σk as in (4.2)

‖u− u(ML)
K ‖L2

ρ(Γ;H1
0 (D)) ≤ 2Cs h

α
K .

4.2. Cost analysis. We now proceed to analyze the computational cost of the
MLSC method. We consider the ε-cost of the estimator, denoted here by CML

ε , which
is the computational cost required to achieve a desired accuracy ε. In order to quantify
this cost, we use the convergence rates of the spatial discretization error and, for
the stochastic interpolation error, the rates given by assumptions A4 and A5. In
particular, we will assume that A5 holds with σk = M−µ

k for some µ > 0.
Remark 4.1. The choice σk = M−µ

k best reflects approximations based on SC
methods that employ sparse grids. In particular, as mentioned in Section 3.2, alge-
braic decay holds for the generalized sparse grid interpolation operators considered in
Section 5; see Theorem 5.5. For other possible choices in the context of quadrature,
see [26].

In general, the MLSC method involves solving, for each k, the deterministic PDE
for each of the Mk sample points from Γ; in fact, according to (3.3), two solves are
needed, one for each of two spatial grid levels. Thus, we also require a bound on the
cost, which we denote by Ck, of computing uhk−uhk−1

at a sample point. We assume:

A6. There exist positive constants γ and Cc, independent of hk, such that Ck ≤
Cc h

−γ
k for all k ∈ N0.

If an optimal linear solver is used to solve the finite element equations for uhk , this
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assumption holds with γ ≈ d (see, e.g., [5]), where d is the spatial dimension. Note
that the constant Cc will in general depend on the refinement ratio η described in
Section 3.1.

We quantify the total computational cost of the MLSC approximation (3.3) using
the metric

C(ML) =
K∑
k=0

MK−k Ck. (4.3)

We now have the following result for the ε-cost of the MLSC method required to
achieve an accuracy ‖u−u(ML)

K ‖L2
ρ(Γ;H1

0 (D)) ≤ ε. In the analysis, we define the relations

a . b and a h b to indicate that a ≤ Cb (resp. a = Cb) for some constant C
independent the mesh width h, the number of interpolation pointsM and the accuracy
ε.

Theorem 4.2. Suppose assumptions A4–A6 hold with σk = M−µ
k , and assume

that α ≥ min(β, µγ). Then, for any ε < exp[−1], there exists an integer K, and a
sequence {Mk}Kk=0, such that

‖u− u(ML)
K ‖L2

ρ(Γ;H1
0 (D)) ≤ ε

and

C(ML)
ε .


ε−

1
µ , if β > µγ

ε−
1
µ | log ε|1+ 1

µ if β = µγ

ε−
1
µ
− γµ−β

αµ if β < µγ.

(4.4)

Proof. As in (4.1), we consider separately the two error contributions (I) and (II).
To achieve the desired accuracy, it is sufficient to bound both error contributions by
ε
2
. Without loss of generality, for the remainder of this proof we assume h0 = 1. If

this is not the case, we simply need to rescale the constants Cs, Cζ , and Cc.
First, we choose K large enough so that (I) ≤ ε

2
. By assumption A4, it is

sufficient to require Csh
α
K ≤ ε

2
. Because the hierarchy of meshes {hk}k∈N0 is obtained

by uniform refinement, hk = η−kh0 = η−k, and we have

hK ≤
( ε

2Cs

)1/α
if K =

⌈
1

α
logη

(2Cs
ε

)⌉
. (4.5)

This fixes the total number of levels K.
In order to obtain the multilevel estimator with the smallest computational cost,

we now determine the {Mk}Kk=0 so that the computational cost (4.3) is minimized,
subject to the requirement (II) ≤ ε

2
. Treating the Mk as continuous variables, we

use the Lagrange multiplier method. To begin, we form the Lagrange function, using
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assumptions A4-A6.

L(M0, . . . ,MK , λ) =
K∑
k=0

MK−k η
kγ + λ

(
K∑
k=0

CI CζM
−µ
K−k η

−kβ − ε/2

)
.

To find a relative extremum, we require ∇L = 0, leading to the K + 2 conditions

∂L
∂MK−k

= ηkγ − λCI CζµM−(µ+1)
K−k η−kβ = 0, k = 0, . . . , K, (4.6)

∂L
∂λ

=
K∑
k=0

CI CζM
−µ
K−k η

−kβ − ε/2 = 0. (4.7)

Solving the first K + 1 equations (4.6) for MK−k yields

MK−k = (CI Cζµλ)1/(µ+1)η
−k(β+γ)
µ+1 , k = 0, . . . , K. (4.8)

Now, substitute (4.8) into (4.7), and solve for λ to obtain

λ = (2µ+1CICζ)
1/µµ−1ε−(µ+1)/µS(η,K)(µ+1)/µ,

where

S(η,K) =
K∑
k=0

η−k(β−γµ
µ+1

).

Inserting this into (4.8) results in the optimal choice

MK−k =
(
2CI Cζ S(η,K)

)1/µ
ε−1/µ η−

k(β+γ)
µ+1 . (4.9)

Because MK−k given by (4.9) is, in general, not an integer, we choose

MK−k =
⌈
(2CI Cζ S(η,K))1/µ ε−1/µ η−

k(β+γ)
µ+1

⌉
. (4.10)

Note that this choice determines the sequence {Mk}Kk=0 and consequently {IMk
}Kk=0.

Also note that, in practice, this choice may not be possible for all interpolation
schemes; see Remark 4.3.

With the number of samples MK−k fixed, we now examine the complexity of the
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multilevel approximation. Since dxe < x+ 1, for any x ∈ R, we have

C(ML)
ε =

K∑
k=0

MK−kCk h
K∑
k=0

MK−k η
kγ

.
K∑
k=0

( ε

S(η,K)

)− 1
µ
η−k

β+γ
µ+1 ηkγ +

K∑
k=0

ηkγ

h ε−
1
µS(η,K)

1
µ

K∑
k=0

η−k
β+γ−γ(µ+1)

µ+1 +
K∑
k=0

ηkγ

h ε−
1
µS(η,K)

1
µ

K∑
k=0

η−k
β−γµ
µ+1 +

K∑
k=0

ηkγ (4.11)

h ε−
1
µS(η,K)1+ 1

µ +
K∑
k=0

ηkγ.

To bound the cost in terms of ε, first note that because K < 1
α

logη(2Cs/ε) + 1 by
(4.5), we have

K∑
k=0

ηkγ ≤ ηγK

1− η−γ
≤ ηγ(2Cs)

γ/α

1− η−γ
ε−γ/α. (4.12)

Next, we need to consider different values of β and µ. When β > γµ, S(η,K) is a
geometric sum that converges to a limit independent of K. Because α ≥ γµ implies

that ε−γ/α ≤ ε−
1
µ for ε < exp[−1], we have C

(ML)
ε . ε−

1
µ in this case.

When β = γµ, we find that S(η,K) = K + 1, and so, using (4.5) and α ≥ µγ,

C(ML)
ε . ε−

1
µ (K + 1)1+ 1

µ + ε−
γ
α h ε−

1
µ | log ε|1+ 1

µ .

For the final case of β < γµ, we reverse the index in the sum S(η,K) to obtain a
geometric sequence

S(η,K) =
K∑
k=0

η(k−K)β−γµ
µ+1 = η−K

β−γµ
µ+1

K∑
k=0

η−k( γµ−β
µ+1

) . ε
β−γµ
α(µ+1) .

Because α ≥ β, this gives

C(ML)
ε . ε−

1
µ ε

β−γµ
α(µ+1)

(1+ 1
µ

) + ε−
γ
α h ε−

1
µ
− γµ−β

αµ .

This completes the proof.

Remark 4.3. Error and quadrature level. In this section, we characterized the
convergence of the interpolation errors in terms of the number of interpolation points
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Mk. Yet when computing quadratures based on sparse grid techniques (see Section
5), an arbitrary number of points will not in general have an associated sparse grid.
Thus, choosing an interpolant using the optimal number of points according to (4.10)
may not be possible in practice. However, in light of estimates such as [31, Lemma
3.9], it is not unreasonable to make the assumption that given any number of points

M , there exists an interpolant using M̃ points, with

M ≤ M̃ ≤ CM δ (4.13)

for some δ ≥ 1. We can think of δ as measuring the inefficiency of our sparse
grids in representing higher-dimensional polynomial spaces. Using (4.13), one can
proceed as in Theorem 4.2 to derive a bound on the ε-cost of the resulting multilevel
approximation.

Another possibility would be to solve a discrete, constrained minimization problem
to find optimal interpolation levels, relying on convergence results for the interpolation
error in terms of the interpolation level rather than number of points; see [32, Theorem
3.4]. However, our cost metric relies on precise knowledge of the number of points,
making theoretical comparison difficult.

Remark 4.4. Cancellations and computational cost. The cost estimate
(4.3) takes into consideration the cost of all the terms in the multilevel estimator
(3.3). However, when the same interpolation operator is used on two consecutive
levels, terms in the multilevel approximation cancel and need in fact not be computed.
For example, if IMK−k = IMK−k−1

, then

IMK−k(uhk − uhk−1
) + IMK−k−1

(uhk+1
− uhk) = IMK−k(uhk+1

− uhk−1
)

so that the computation of the interpolants of uhk is not necessary. Especially in
the context of sparse grid interpolation, in practice we choose the same interpolation
grid for several consecutive levels, leading to a significant reduction in the actual
computational cost compared to that estimated in Theorem 4.2. The effect of these
cancellations is clearly visible in some of the numerical experiments of Section 6.

4.2.1. Comparison to single level collocation methods. Under the same as-
sumptions as in Theorem 4.2, for any Msl ∈ N0 and hsl, the error in the standard
single-level SC approximation (3.1) can be bounded by

‖u− u(SL)
Msl,hsl

‖L2
ρ(Γ;H1

0 (D)) ≤ Cs h
α
sl + CI ζ(uh)M

−µ
sl .

To make both contributions equal to ε/2, it suffices to choose hsl h ε1/α and Msl h
ε−1/µ. This choice determines Msl and hence IMsl

. The computational cost to achieve
a total error of ε is then bounded by

C(SL)
ε h h−γsl Msl h ε−

1
µ
− γ
α .
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A comparison with the bounds on computational complexity proved in Theorem 4.2
shows clearly the superiority of the multilevel method.

In the case β > γµ, the convergence rate of the finite element correction errors
is comparatively larger than the convergence rate of the interpolant when multiplied
by the cost factor γ. From (4.11), this indicates that the cost MK−kCk is largest at
the coarsest level k = 0, and hence most of the computational effort of the multilevel
approximation is expended computing IMK

(uh0). The savings in cost compared to
single level SC hence correspond to the difference in cost between obtaining samples
uh0 on the coarse grid h0 and obtaining samples uhK on the fine grid hsl = hK used
by the single-level method. This gives a saving of (hsl/h0)γ h εγ/α.

The case β = µγ corresponds to the computational effort being spread evenly
across the levels, and, up to a log factor, the savings in cost are again of order εγ/α.

In contrast, when β < γµ, i.e., when the interpolation error is converging quickly
compared to the finite element approximations, the computational cost of computing
one sample of uhk grows comparatively quickly with respect to k, and most of the
computational effort of the multilevel approximation is on the finest level k = K.
The benefits compared to single level SC hence corresponds approximately to the
difference between MK and Msl. This gives a savings of MK/Msl h (hβK)1/µ h εβ/αµ.

4.3. Multilevel approximation of functionals. In applications, it is often of in-
terest to bound the error in the expected value of a functional ψ of the solution u,
where ψ : H1

0 (D)→ R. Similar to (3.1), the SC approximation of ψ(u) is given by

ψ
(SL)
k,h [u] = IMk

[ψ(uh)] (4.14)

and, similar to (3.3), the multilevel interpolation approximation of ψ(u) is given by

ψ
(ML)
K [u] :=

K∑
k=0

IMK−k

(
ψ(uhk)− ψ(uhk−1

)
)
, (4.15)

where, as before, we set uh−1 := 0 and we also assume, without loss of generality, that
ψ(0) = 0. Note that in the particular case of linear functionals ψ, we in fact have

ψ
(SL)
k,h [u] = ψ(u

(SL)
k,h ) and ψ

(ML)
K [u] = ψ(u

(ML)
K ).

Analogous to Theorem 4.2, we have the following result about the ε-cost for the
error

∣∣E[ψ(u) − ψ(ML)
K [u]

]∣∣ in the expected value of the multilevel approximation of
functionals.

Proposition 4.5. Suppose there exist positive constants α, β, µ, γ, Cs, CI , Cζ , Cc,
with α ≥ min(β, µγ), and an operator ζ : Λ(Γ;R)→ R, for a Banach space Λ(Γ;R) ⊂
L2
ρ(Γ;R) containing the finite element approximations {ψ(uhk)}k∈N0, such that for all

k ∈ N0 we have
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F1. |E[ψ(u)− ψ(uhk)]| ≤ Cs h
α
k

F2.
∣∣E[ψ(uhk) − ψ(uhk−1

) − IMK−k(ψ(uhk) − ψ(uhk−1
))
]∣∣ ≤ CIM

−µ
K−k ζ(ψ(uhk) −

ψ(uhk−1
))

F3. ζ(ψ(uhk)− ψ(uhk−1
)) ≤ Cζ h

β
k

F4. Ck = Cc h
−γ
k .

Then, for any ε < exp[−1], there exists an integer K and a sequence {Mk}Kk=0 such
that ∣∣E[ψ(u)− ψ(ML)

K (u)
]∣∣ ≤ ε,

with computational cost C
(ML)
ε bounded as in Theorem 4.2.

The assumptions F1–F4 are essentially the same as the assumptions A4–A6 of
Theorem 4.2, with perhaps different values for the constants Cs, CI , Cζ , and Cc.
Certainly, bounded linear functionals have this inheritance property. In Section 5, we
give some examples of nonlinear functionals that also have this property.

5. Global multi-dimensional interpolation. In this section, we provide a specific
example of a single level SC approach, given by (3.1), that will be used to construct the
interpolation operators in our MLSC approach. As such, we briefly recall generalized
multi-dimensional (including sparse grid) interpolation, as well as theoretical results
related to the interpolation operator. For a more thorough description, see [1,3,31,32].

Remark 5.1. In this section, we again introduce a second notion of levels. The
levels here should not be confused with the levels used previously. For the latter,
‘levels’ refer to members of hierarchies of spatial and stochastic approximations, both
of which were indexed by k. In this section, ‘levels’ refer to a sequence, indexed by l, of
stochastic polynomial spaces and corresponding point sets used to construct a specific
sparse grid interpolant. The result of this construction, i.e., of using the levels indexed
by l, is the interpolants used in the previous sections that were indexed by k.

5.1. Construction of generalized sparse grid interpolant. The construction of

the interpolant in the N -dimensional space Γ =
∏N

n=1 Γn is based on sequences of

one-dimensional Lagrange interpolation operators {Up(l)n }l∈N : C0(Γn) → Pp(l)−1(Γn),
where Pp(Γn) denotes the space of polynomials of degree p on Γn. In particular, for
each n = 1, . . . , N , let l ∈ N+ denote the one-dimensional level of approximation and

let {y(l)
n,j}

p(l)
j=1 ⊂ Γn denote a sequence of one-dimensional interpolation points in Γn.

Here, p(l) : N+ → N+ is such that p(1) = 1 and p(l) < p(l + 1) for l = 2, 3, . . ., so
that p(l) strictly increases with l and defines the total number of collocation points

at level l. For a univariate function v ∈ C0(Γn), we define Up(l)n by

Up(l)n [v](yn) =

p(l)∑
j=1

v
(
y

(l)
n,j

)
ϕ

(l)
n,j(yn) for ln = 1, 2, . . . , (5.1)
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where ϕ
(l)
n,j ∈ Pp(l)−1(Γn), j = 1, . . . , p(l), are Lagrange fundamental polynomials of

degree p(l)− 1, which are completely determined by the property ϕ
(l)
n,j(y

(l)
n,i) = δi,j.

Using the convention that Up(0)
n = 0, we introduce the difference operator given

by
∆p(l)
n = Up(l)n − Up(l−1)

n . (5.2)

For the multivariate case, we let l = (l1, . . . , lN) ∈ NN denote a multi-index and
L ∈ N+ denote the total level of the sparse grid approximation. Now, from (5.2), the
L-th level generalized sparse-grid approximation of v ∈ C0(Γ) is given by

Ap,gL [v] =
∑
g(l)≤L

N⊗
n=1

∆p(ln)
n [v], (5.3)

where g : NN
+ → N is another strictly increasing function that defines the mapping

between the multi-index l and the level L used to construct the sparse grid. The single
level approximation (5.3) requires the independent evaluation of v on a deterministic
set of distinct collocation points given by

Hp,g
L =

⋃
L−N+1≤g(l)≤L

∏
1≤n≤N

{
y

(ln)
n,j

}p(ln)

j=1

having cardinality ML.
Remark 5.2. For the MLSC method, the interpolation operators IMk

introduced
in Section 3.2 are chosen as Ap,gL with Mk = ML. However, we have already noted
in Remark 4.3 that an arbitrary number of points will not in general have an associ-
ated sparse grid, and in practice a rounding strategy has to be applied to choose the
interpolation operator on each level. For examples of rounding strategies, see the nu-
merical examples in Section 6. Note that although in theory this rounding may change
the computational complexity of the MLSC estimators, our numerical investigations
confirm that the complexities proved in Theorem 4.2 are a good fit in practice.

The particular choices of the one-dimensional growth rate p(l) and the function
g(l) define a general multi-index set J p,g(L) used in the construction of the sparse
grid, and the corresponding underlying isotropic polynomial space of the approxi-
mation denoted PJ p,g(L)(Γ) [3, 24]. Some examples of functions p(l) and g(l) and
PJ p,g(L)(Γ) are given in Table 1. Extensions to anisotropic versions can be constructed
by introducing a weight vector as described in Remark 5.7.

Table 1 defines several polynomial spaces. A means for constructing a basis for
polynomial subspaces consists of the selecting a set of points and the defining ba-
sis functions based on those points, e.g., Lagrange fundamental polynomials. For
Smolyak polynomial spaces, the most popular choice of points are the sparse grids
based on the one-dimensional Clenshaw-Curtis abscissas [11] which are the extrema
of Chebyshev polynomials, including the end-point extrema. For level l, and in the
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Table 1: The functions p : N+ → N+ and g : NN
+ → N and the corresponding

isotropic polynomial subspaces.

Polynomial Space p(l) g(l)

Tensor product p(l) = l max
1≤n≤N

(ln − 1)

Total degree p(l) = l
∑N

n=1(ln − 1)

Hyperbolic cross p(l) = l
∏N

n=1(ln − 1)

Sparse Smolyak p(l) = 2l−1 + 1, l > 1
∑N

n=1(ln − 1)

particular case Γn = [−1, 1] and p(l) > 1, the resulting points are given by

y
(l)
n,j = − cos

(
π(j − 1)

p(l)− 1

)
for j = 1, . . . , p(l).

In particular, the choice p(l) given in Table 1 for the Smolyak case results in a nested

family of one-dimensional abscissas, i.e.,
{
y

(l)
n,j

}p(l)
j=1
⊂
{
y

(l+1)
n,j

}p(l+1)

j=1
, so that the sparse

grids are also nested, i.e., Hp,g
L ⊂ Hp,g

L+1. Using g(l) in (5.3), given as in Table 1
for the Smolyak polynomial space, corresponds to the most widely used sparse-grid
approximation, as first described in [33]. Other nested families of sparse grids can
be constructed from, e.g., the Newton-Cotes and Gauss-Patterson one-dimensional
abscissas.

Remark 5.3. In general, the growth rate p(l) can be chosen as any increasing
function on N. However, to construct the approximation (5.3) in the tensor product,
total degree, hyperbolic cross, and Smolyak polynomial spaces, the required functions
p and g are described in Table 1. Moreover, if the underlying abscissas can be nested,
as for the Clenshaw-Curtis points described above, the approximation (5.3) remains
a Lagrange interpolant. For non-nested point families, such as standard Gaussian
abscissas, the approximation (5.3) is no longer guaranteed to be an interpolant, but
the analysis of the approximation error remains similar to the analysis presented here
(see [31] for more details).

5.2. Multilevel approximation using generalized sparse grid interpolants.
The goal of the section is to verify the the assumptions of our multilevel collocation
scheme for the generalized global sparse grid operator IMk

= Ap,gLk . The convergence of
the global sparse grid operators applied to the the approximate solutions uhk , and the
functionals ψ(uhk), depends on some analytic regularity of the PDE with respect to
the parameterization. As such, we require the additional assumption on the regularity
of the coefficient a:
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A6. Assume that a : Γ → L∞(D) has a holomorphic complex continuation a∗ :
CN → L∞(D).

Next, we use assumption A6 to show that the approximate PDE solutions uhk are
analytic in a region Σ(τ ) ⊂ CN . For τ = (τ1, . . . , τN) ∈ (1,∞)N , this region will have
the form

Σ(τ ) =
∏

1≤n≤N

Σ(n; τn) ⊂ CN ,

where Σ(n; τn) denotes the region bounded by the Bernstein ellipse,

Σ(n; τn) =

{
1

2

(
zn + z−1

n

)
: zn ∈ C, |zn| = τn

}
.

The set Σ(τ ) ⊂ CN is the product of ellipses in the complex plane, with foci zn = ±1,
which are the endpoints of the domain Γn, n = 1, . . . , N . Such ellipses are common
in proving convergence results for global interpolation schemes. The following result
is proved in [13, Theorem 1.2] and [16,35, Lemma 3.3 and Theorem 2.5].

Lemma 5.4. (Analyticity of the PDE solution u) Under the assumption A6, there
exists τ = (τ1, . . . , τN) ∈ (1,∞)N such that the complex extension of u to the polyel-
lipse Σ(τ ), u∗ : Σ(τ ) → H1

0 (D) is well-defined and analytic in an open region con-
taining Σ(τ ).

Note that with less regularity in the solution, we might use local basis functions
such as wavelets or splines to construct the interpolant. For a solution u which ad-
mits an analytic extension, convergence with respect to the total number of collocation
points for the tensor product, sparse isotropic, and anisotropic Smolyak approxima-
tions (see Table 1) was analyzed in [1,31,32]. In what follows, our goal is to prove the
bounds on the interpolation error in the approximate solutions uhk and the function-
als ψ(uhk), for k ∈ N0, and thus verify the convergence assumptions given in A5 and
F2, F3. Under the polyellipse analyticity assumptions and Lemma 5.4, we arrive at
the following result, which is given in [31,32].

Theorem 5.5. Let W denote a general Banach space and let v ∈ C0(Γ;W ) admit
an analytic extension in the complex polyellipse Σ(τ ). Then, with r = min1≤n≤N τn,
there exist constants C(N) and µ(r,N), depending on N , such that

‖v −Ap,gL v‖L2
ρ(Γ;W ) ≤ C(N)M

−µ(r,N)
L ζ(v),

where ML is the number of points used by Ap,gL and

ζ(v) ≡ max
z∈Σ(τ )

‖v(z)‖W . (5.4)

Define the Banach space Λ(Γ;H1
0 (D)) consisting of all functions v ∈ C0(Γ;H1

0 (D))
such that v admits an analytic extension in the region Σ(τ ). It follows from Lemma
5.4 that, under appropriate assumptions on a, we have u ∈ Λ(Γ;H1

0 (D)). Because
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the dependence on y is unchanged in the approximate solution uhk , it also follows
that uhk ∈ Λ(Γ;H1

0 (D)) for all k ∈ N0, and hence also uhk − uhk−1
∈ Λ(Γ;H1

0 (D)) for
all k ∈ N.

Similar to A4, it follows from standard finite element theory [5, 10] that with
W = H1

0 (D) and ζ as in (5.4), ζ(uhk) can be bounded by a constant independent
of k, whereas ζ(uhk − uhk−1

) can be bounded by a constant multiple of hαk for some
α > 0. In general, the constants appearing in these estimates will depend on norms of
a and f as well as on the mesh refinement parameter η. We can hence conclude that
with IMk

= Ap,gLk , assumption A5 is satisfied for the interpolation schemes considered
in Theorem 5.5. Therefore, for the numerical examples presented in Section 6, we
utilize the sparse grid stochastic collocation as the interpolation scheme.

Remark 5.6. Dimension-dependent convergence rate. The asymptotic rate
of convergence µ = µ(r,N) in general deteriorates with growing dimension N of the
stochastic space. For example, we have µ = r/N in the tensor product case, and for
Smolyak sparse grids this is improved to µ = r/ log(N). The use of sparse grid SC
methods is hence only of interest for dimensions N for which µ ≥ 1/2 so that the
error still converges faster than the corresponding Monte Carlo sampling error. The
multilevel approximation presented in this paper suffers from the same deterioration
of convergence rate, and roughly speaking, the MLSC method can improve on the
multilevel Monte Carlo method only when standard SC performs better that standard
Monte Carlo; see [12, Theorem 4.1].

Remark 5.7. Anisotropic sparse grid approximations. To define anisotropic
Smolyak approximations, we introduce a weight vector α = (α1, . . . , αN) into the
definition of g to reflect the relative importance of each dimension when selecting
points, e.g., the anisotropic sparse Smolyak space uses p(l) = 2l−1 + 1, l > 1 and
g(l) =

∑N
n=1

αn
αmin

(ln−1). The weight αn is related to the size of the largest Bernstein

ellipse Σ on which the map u : Γn → C0(
∏

j 6=n Γn,W ) can be analytically extended.
These weights can be computed either a priori or a posteriori; see [32, section 2.2].
For an isotropic grid, all the components of the weight vector α are the same so that
one has to take the worst case scenario, i.e., choose the components of α to all equal
to the minimum αmin.

Now we verify the analyticity assumption in Theorem 5.5 also for the functionals
ψ(u). Because Lemma 5.4 already gives an analyticity result for u, we use the fol-
lowing result, which can be found in [36], about the composition of two functions on
general normed vector spaces.

Theorem 5.8. Let X1, X2, and X3 denote normed vector spaces and let θ : X1 →
X2 and ν : X2 → X3 be given. Suppose that θ is analytic on X1, ν is analytic on X2

and θ(X1) ⊆ X2. Then the composition ν ◦ θ : X1 → X3 is analytic on X1.
Hence, if we can show that ψ is an analytic function of u, we can conclude that

ψ(u) is analytic on Σ(τ ). To this end, we need the notion of analyticity for functions
defined on general normed vector spaces, which we will now briefly recall.
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Given normed vector spaces X1 and X2 and an infinitely Frèchet differentiable
function θ : X1 → X2, we can define a Taylor series expansion of θ at the point ξ in
the following way [6]:

Tθ,ξ(x) =
∞∑
j=0

1

j!
djθ(ξ)(x− ξ)j, (5.5)

where x, ξ ∈ X1, the notation (x − ξ)j denoting the j-tuple (x − ξ, . . . , x − ξ) and
djθ(ξ) denoting the j-linear operator corresponding to the j-th Frèchet differential
Djθ(ξ). The function θ is then said to be analytic in a set Z ⊂ X1 if, for every z ∈ Z,
Tθ,z(x) = θ(x) for all x in a neighbourhood Nr(z) = {x ∈ Z : ‖x − z‖X1 < r}, for
some r > 0. The following result now immediately follows from Theorem 5.8.

Lemma 5.9. Let the assumptions of Lemma 5.4 be satisfied. Suppose ψ, viewed as
a mapping from H1

0 (D) to R, is analytic in the set Σ(u) ⊂ H1
0 (D), and u(z;x) ∈ Σ(u)

for all z ∈ Σ(τ ). Then, ψ ◦ u, viewed as a mapping from Γ to R, admits an analytic
extension to the set Σ(τ ).

Together with Theorem 5.5, now with W = R, it then follows from Lemma 5.9
that assumptions F2 and F3 in Proposition 4.5 are satisfied for the interpolation
schemes considered in this section, provided the functional ψ is an analytic function
of u. Note that the function ζ in Theorem 5.5 acts on ψ(u) instead of u in this case,
leading to optimal convergence rates in h of the stochastic interpolation error.

To finish the analysis, we give some examples of functionals that satisfy the as-
sumptions of Lemma 5.9. We in particular make use of the following result on Taylor
expansions [6].

Lemma 5.10. Let θ : X1 → X2, for normed vector spaces X1 and X2, and let
Z ⊂ X1. If ‖djθ(z)‖ ≤ Cjj! for all z ∈ Z and some C < ∞, where ‖ · ‖ denotes
the usual operator norm, then θ is analytic on Z. In particular, θ is analytic on Z if
‖djf(z)‖ = 0 for all z ∈ Z and all j ≥ j∗, for some j∗ ∈ N.

Example 5.11. (Bounded linear functionals) In this case, for any v, w ∈ H1
0 (D),

we have
dψ(v)(w) = ψ(w) and djψ(v) ≡ 0 ∀ j ≥ 2,

which implies that ψ is analytic on all of (complex-valued) H1
0 (D). Examples of

bounded linear functionals include point evaluations of the solution u in one spatial
dimension and local averages of the solution u in some subdomain D∗ ⊂ D, computed
as 1
|D∗|

∫
D∗
udx, in any spatial dimension.

Example 5.12. (Higher order moments of bounded linear functionals) As a gen-
eralization of the above example, consider the functional ψ(v) = φ(v)q, for some
bounded linear functional φ on H1

0 (D) and some q ∈ N. For any v ∈ H1
0 (D), the
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differentials of ψ are

djψ(v)(w1, . . . , wj) = φ(v)q−j
j∏
i=1

(q − i+ 1)φ(wi), 1 ≤ j ≤ q,

djψ(v) ≡ 0, j ≥ q + 1,

from which it follows that ψ is analytic on all of H1
0 (D).

Example 5.13. (Spatial L2-norm) Consider the functional ψ(v) =
∫
D
v2dx =

‖v‖2
L2(D). For any v ∈ H1

0 (D), the differentials of ψ are

dψ(v)(w1) = lim
δ→0

∫
D

(v + δw1)2 −
∫
D
v2

δ
= lim

δ→0

∫
D
δvw1 +

∫
D
δ2w2

1

δ
= 2

∫
D

vw1,

d2ψ(v)(w1, w2) = lim
δ→0

2
∫
D

(v + δw2)w1 − 2
∫
D
vw1

δ
= 2

∫
D

w2w1,

djψ(v) ≡ 0 ∀ j ≥ 2,

which implies that ψ is analytic on the entire space H1
0 (D). For the functional ψ(v) =

‖v‖L2(D), we use Theorem 5.8 and the analyticity of the square root function on (0,∞)
to conclude that ψ is analytic on any subset Σ(u) ⊆ H1

0 (D) not containing 0.
The analysis in this example can easily be extended to the functionals ‖v‖H1

0 (D)

and ‖v‖2
H1

0 (D)
.

6. Numerical Examples. The aim of this section is to demonstrate numerically
the significant reductions in computational cost possible with the use of the MLSC
approach. As an example, consider the following boundary value problem on either
D = (0, 1) or D = (0, 1)2:{

−∇ · (a(y,x)∇u(y,x)) = 1 for x ∈ D
u(y,x) = 0 for x ∈ ∂D. (6.1)

The coefficient a takes the form

a(y,x) = 0.5 + exp

[
N∑
n=1

√
λnbn(x)yn

]
, (6.2)

where {yn}n∈N is a sequence of independent, uniformly distributed random variables
on [-1,1] and {λn}n∈N and {bn}n∈N are the eigenvalues and eigenfunctions of the covari-
ance operator with kernel function C(x, x′) = exp[−‖x − x′‖1]. Explicit expressions
for {λn}n∈N and {bn}n∈N are computable [19]. In the case D = (0, 1), we have

λ1D
n =

2

w2
n + 1

and b1D
n (x) = An(sin(wnx) + wn cos(wnx)) for all n ∈ N,
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where {wn}n∈N are the (real) solutions of the transcendental equation

tan(w) =
2w

w2 − 1

and the constant An is chosen so that ‖bn‖L2(0,1) = 1. In two spatial dimensions, with
D = (0, 1)2, the eigenpairs can be expressed as

λ2D
n = λ1D

in λ
1D
jn and b2D

n = b1D
in b

1D
jn

for some in, jn ∈ N. In both one and two spatial dimensions, the eigenvalues λn decay
quadratically with respect to n [7].

Let a∗(z,x) = 0.5+exp
[∑N

n=1

√
λnbn(x)zn

]
be the complex extension of a. Given

a multiindex ν ∈ NN
0 , it is easy to see that the mixed partial derivatives of a∗ satisfy

∂νa
∗(z,x) :=

∂|ν|a

∂ν1z1 . . . ∂νN zN
(z,x) = a(z,x)

N∏
n=1

(
√
λnbn(x))νn .

Thus, given z ∈ CN , the power series

a∗(z′,x) =
∑
ν∈NN0

∂νa
∗(z,x)

ν!

N∏
n=1

(z′n − zn)νn

converges for all z′ ∈ CN such that |z′n−zn| < 1√
λn‖bn(x)‖L∞(D)

, n = 1, . . . , N , and thus

a(z,x) satisfies assumption A6.
For spatial discretization, we use continuous, piecewise-linear finite elements on

uniform triangulations of D, starting with a mesh width of h = 1/2. As interpolation
operators, we choose the (isotropic) sparse grid interpolation operator (5.3), using p
and g given by the classic Smolyak approximation in Table 1, based on Clenshaw-
Curtis abscissas; see Section 5.

The goal of the computations is to estimate the error in the expected value of a
functional ψ of the solution of (6.1). For fair comparisons, all values of ε reported are
relative accuracies, i.e., we have scaled the errors by the value of E[ψ(u)] itself. We
consider two different settings: in Section 6.1, we consider problem (6.1) in two spatial
dimensions with N = 10 random variables whereas, in Sections 6.2 and 6.3, we work
in one spatial dimension with N = 20 random variables. Because the exact solution u
is unavailable, the error in the expected value of ψ(u) has to be estimated. In Sections
6.1 and 6.2, we compute the error with respect to an “overkilled” reference solution
obtained using a fine mesh spacing h∗ and high interpolation level L∗. However,
because this is generally not feasible in practice, we show in Section 6.3 how the error
can be estimated when the exact solution is not available and one cannot compute
using a fine spatial mesh and high stochastic interpolation level. The cost of the
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multilevel estimators is computed as discussed in Section 4.2 and Remark 4.4, with
γ = d, i.e., by assuming the availability of an optimal linear solver. For non-optimal
linear solvers for which γ > d, the savings possible with the multilevel approach will
be even greater than demonstrated below.

6.1. d = 2,N = 10. As the quantity of interest, we choose the average value of
u in a neighborhood of the midpoint (1/2, 1/2), computed as ψ(u) = 1

|D∗|

∫
D∗
u(x)dx,

where D∗ denotes the union of the six elements adjacent to the node located at
(1/2, 1/2) of the uniform triangular mesh with mesh size h = 1/256.

We start by confirming, in Figure 1, the assumptions of Proposition 4.5. The
reference values are computed with spatial mesh width h∗ = 1/256 and stochastic
interpolation level L∗ = 5.
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Figure 1: D = (0, 1)2, N = 10. Top left: E[IM5ψ(uh)] and E[IM5(ψ(u1/256)−ψ(uh))]
versus 1/h (assumption F1). Top right: |E[(IM5 − IMl

)ψ(uh)]| and |E[(IM5 −
IMl

)(ψ(uh) − ψ(u2h))]| versus 1/h (assumption F3). Bottom left: |E[(IM5 −
IMl

)ψ(uh)]/h
2
0| and |E[(IM5 − IMl

)(ψ(uh) − ψ(u2h))]/h
2| versus Ml, for various h

(assumption F2). Bottom right: number of samples MK−k versus k.

The top-left plot of Figure 1 shows the convergence of the finite element error in
the expected value of ψ(u), and confirms that assumption F1 of Proposition 4.5 holds
with α = 2.
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The top-right plot of Figure 1 shows the absolute value of the interpolation error
in the quantities ψ(uh) and ψ(uh)−ψ(u2h) for a fixed interpolation level l = 1, i.e. for
fixed Ml, as a function of h. We see that the interpolation error in ψ(uh) is bounded
by a constant independent of h, whereas the interpolation error in ψ(uh) − ψ(u2h)
decays quadratically in h. This confirms assumption F3 with β = 2.

The bottom-left plot of Figure 1 shows the interpolation error in ψ(uh) scaled by
h2

0 and the interpolation error in ψ(uh)− ψ(u2h) scaled by h2 for several values of h.
According to assumptions F2 and F3, these plots should all result in a straight line
CM−µ, where C = CICζ . The best fit which has C = 0.05 and µ = 1.4 is added for
comparison.

The bottom-right plot of Figure 1 shows the number of samples Mk computed
using the formula (4.9), with C = 0.05 and µ = 1.4, for several values of ε. The finest
level K was determined using the estimates on the finite element error from the top-
left plot. Solid lines correspond to numbers rounded up to the nearest integer, as is
done in (4.10), whereas dotted lines correspond to the number of samples rounded up
to the next level of the sparse grid. As stated in Remark 4.4, when the same number
of points are used for consecutive levels, cancellations occur leading to savings in cost.

In Figure 2, we study the cost of the standard and multilevel collocation methods
to achieve a given total accuracy ε. In both plots, the data labeled ‘SC’ and ‘MLSC’
denote standard and multilevel stochastic collocation, respectively. For data labeled
‘formula’, the number of samples was determined by the formula (4.9) with C = 0.05
and µ = 1.4, rounded up to the next sparse grid level (the dotted lines in the bottom
right plot of Figure 1). For data labeled ‘best’, the number of samples was chosen
by trial and error so as to achieve a total accuracy ε for the smallest computational
cost. For all methods, we chose h0 = 1/4.
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Figure 2: D = (0, 1)2, N = 10. Left: computational cost versus relative error ε.
Right: computational cost scaled by ε−1.36 versus relative error ε.

In the left plot of Figure 2, we simply plot the computational cost of the different
estimators against ε. For comparison, we have also added corresponding results for
Monte Carlo (MC) and multilevel Monte Carlo (MLMC) estimators. In both the
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‘formula’ and the ‘best’ case, the multilevel collocation method outperforms standard
SC. Both collocation-based methods outperform both Monte Carlo approaches.

In the right plot in Figure 2, we compare the observed computational cost with
that predicted by Proposition 4.5 for the standard and multilevel collocation methods.
In our computations, we observed α ≈ 2, β ≈ 2, and µ ≈ 1.4, which with γ = 2 gives
computational costs of ε−1 and ε−1.72 for the multilevel and standard SC method,
respectively. We therefore plot the computational cost scaled by ε1. We see that both
multilevel methods indeed seem to grow approximately like ε−1, with the ‘formula’
case growing slightly faster for large value of ε and the ‘best’ case growing slightly
faster for small values of ε. The costs for both standard collocation methods grow a
lot faster with ε.

Figure 3 provides results for a different quantity of interest, ψ(u) = ‖u‖L2(D). The
left plot corresponds to the bottom-left plot in Figure 1 and again confirms that the
interpolation error in ψ(uh)−ψ(u2h) scales with h2. The right plot corresponds to the
left plot of Figure 2, where we plot the computational cost of the different estimators
against ε. We see that all collocation-based methods outperform the Monte Carlo
approaches. In both the ‘formula’ and the ‘best’ case, the multilevel collocation
method again outperforms standard SC.
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Figure 3: D = (0, 1)2, N = 10. Left: E[I5ψ(uh) − IMk
ψ(uh)]/h

2
0 and [I5(ψ(uh) −

ψ(u2h)) − IMk
(ψ(uh) − ψ(u2h)]/h

2 versus Mk, for various h. Right: computational
cost versus relative error ε.

Remark 6.1. Before considering the second model problem, let us briefly comment
on the differences between the ‘best’ and the ‘formula’ multilevel methods. The ‘for-
mula’ multilevel collocation method performs sub-optimally mainly for two reasons.
First, it always rounds up the number of samples Mk to the nearest sparse grid level,
which may be substantially higher than the number of samples actually required. Sec-
ondly, it does not take into account sign changes in the interpolation error, which in
practice can lead to significant reductions in the interpolation error of the multilevel
method. For both of these reasons, the interpolation error is often a lot smaller than
the required ε/2, leading to sub-optimal performance. This issue is partly addressed
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in Section 6.3, where we consider not always rounding up, but rounding the number
of samples either up or down to the nearest sparse grid level.

6.2. d = 1,N = 20. We now repeat the numerical tests done in the previous
section for the case D = (0, 1) and N = 20. For the quantity of interest, we choose
the expected value of the solution u evaluated at x = 3

4
. The reference values are

computed using the mesh width h∗ = 1/1024 and interpolation level L∗ = 5.
We again start by confirming, in Figure 4, the assumptions of Proposition 4.5.

The four plots of that figure convey the same information as do the corresponding
plots in Figure 1 and again confirm assumptions F1, F2, and F3 of that theorem
with α = 2 and β = 2 and, in the bottom-left plot, the best line fit C = CICζ with
C = 0.005 and µ = 0.8.
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Figure 4: D = (0, 1), N = 20. Top left: E[IM5ψ(uh)] and E[IM5(ψ(u1/1024)−ψ(uh))]
versus 1/h (assumption F1). Top right: |E[(IM5 − IMl

)ψ(uh)]| and |E[(IM5 −
IMl

)(ψ(uh) − ψ(u2h))]| versus 1/h (assumption F3). Bottom left: |E[(IM5 −
IMl

)ψ(uh)]/h
2
0| and |E[(IM5 − IMl

)(ψ(uh) − ψ(u2h))]/h
2| versus Ml, for various h

(assumption F2). Bottom right: number of samples MK−k versus k.

Figure 5 conveys the same information and uses the same labeling as does Figure
2. Again, for both the ‘formula’ and ‘best’ cases, the multilevel collocation method
eventually outperforms standard SC and both collocation-based methods also outper-
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form the Monte Carlo approaches. Based on the values α ≈ 2, β ≈ 2, and µ ≈ 0.8,
Proposition 4.5 now predicts the computational costs of ε−1.25 and ε−1.75 for the mul-
tilevel and the standard collocation methods, respectively. The right-plot in Figure 5
indicates that the ‘formula’ multilevel collocation method indeed seems to grow like
ε−1.25 whereas the ‘best’ multilevel method actually seems to grow slower for small
values of ε. This is likely due to the different signs of the interpolation errors in the
multilevel estimator. Also, again, the costs for both standard collocation methods
grow a lot faster with ε.
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Figure 5: D = (0, 1), N = 20. Left: computational cost versus relative error ε.
Right: computational cost scaled by ε−1.25 versus relative error ε.

6.3. Practical implementation. In Sections 6.1 and 6.2, the accuracy of the
computed estimates was assessed by comparison to a reference solution. Of course, in
practice, a fine-grid, high-level reference solution is not available. Therefore, in this
section, we describe how to implement the MLSC method without having recourse to
a reference solution. We suggest the following practical strategy that is similar to the
one proposed in [20]. In order to determine the number of levels we need, we assume
that equality holds on assumption F1, i.e. we assume E[ψ(u)− ψ(uhk)] = Csh

α
k , and

use the equality

E[ψ(uhk)− ψ(uhk−1
)] = E[ψ(u)− ψ(uhk−1

)]− E[ψ(u)− ψ(uhk)]

= Csh
α
k−1 − Cshαk

= (ηα − 1)E[(ψ(u)− ψ(uhk))],

where we recall that η = hk−1/hk. Hence, the condition E[ψ(u) − ψ(uhk)] ≤ ε/2 is
equivalent to the condition E[ψ(uhk) − ψ(uhk−1

)] ≤ (ηα − 1)ε/2. We then have the
following algorithm.

1. Estimate the constants α, β, µ, and C = CI Cζ .

2. Start with K = 1.
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3. Calculate the optimal number of samples Mk, k = 0, . . . , K, according to the
formula (4.9), and round to the nearest sparse grid level.

4. Test for convergence by checking if there holds

E[ψ(uhk)− ψ(uhk−1
)] ≤ (ηα − 1) ε/2.

5. If not converged, set K = K + 1 and return to step 3.

Note that in this procedure, steps 3 and 4 ensure that the interpolation error and the
spatial discretization error are each less than the required tolerance ε/2, respectively.

The estimation of the constants α, β, µ, and C in step 1 can be done relatively
cheaply from computations done using mesh widths h0, h1, and h2 and interpolation
levels k = 0, 1, 2. It is of course also possible to iterate over step 1, in the same
manner as we iterate over steps 3 and 4, and to continuously update our estimates of
these constants as we increase the number of levels in our multilevel estimator. This
approach would eliminate some of the problems related to possible pre-asymptotic
effects. It is also possible to use the idea behind the continuation MLMC (CMLMC)
method in [14] and use a Bayesian approach to estimating the constants.

We test the algorithm using the the model problem from Section 6.2. For the
results provided below, we estimated the convergence rate α from the level 1 inter-
polants IM1 of ψ(u0), ψ(u1), and ψ(u2), resulting in α ≈ 2.1. In light of the results
in Section 5, we assumed β = α. We then used the first three interpolation levels of
ψ(u0) and ψ(u1) − ψ(u0) to obtain the estimates C ≈ 0.01 and µ ≈ 0.8. Note that
the value of µ is the same as in Section 6.2 whereas the value of the constant C is
slightly larger. This is due to the fact that, for the large values of h used to estimate
this constant, the function ζ(ψ(uh) − ψ(u2h)) has probably not yet settled into its
asymptotic quadratic decay.

As mentioned in Section 6.1, always rounding the number of samples resulting
from formula (4.9) up to the next sparse grid level may lead to a substantial increase
in the computational cost and hence a sub-optimal performance of the multilevel
method. In practice, one might therefore consider not always rounding up, but instead
rounding either up or down. As long as we do not round down more frequently than
we round up, or at least not much more often, this approach should still result in an
interpolation error below the required tolerance ε/2.

Table 2 shows the number of samples MK−k resulting from the implementation
described in this section for the model problem with d = 1 and N = 20 from Section
6.2. For each value of ε, the first row, denoted by ‘formula’, corresponds to the
numbers MK−k resulting from formula (4.9) rounded up to the nearest integer. The
second row, denoted ‘up’, are the numbers in the first row rounded up to the next
corresponding sparse grid level. For the final row, denoted ‘up/down’, the rounding
of the number of samples was done in the following way: first, all numbers were
rounded either up or down to the nearest corresponding sparse grid level. If this
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resulted in more numbers being rounded down than up, we chose the number that
was rounded down by the largest amount and then instead rounded this number up.
This procedure was continued iteratively. The same was done when more numbers
were rounded up than down.

ε level 0 1 2 3 4

6.3e-4

formula 191 48 15

up 841 841 41

up/down 841 41 41

7.9e-5

formula 3002 747 233 73

up 11561 841 841 841

up/down 841 841 841 41

1.4e-5

formula 27940 6949 2169 677 212

up 120401 11561 11561 841 841

up/down 11561 11561 841 841 841

4.7e-6

formula 110310 27433 8562 2672 834

up 120401 120401 11561 11561 841

up/down 120401 11561 11561 11561 841

Table 2: D = (0, 1), N = 20. Number of samples MK−k computed using formula
(4.9) and various rounding schemes.

To confirm that the adaptive procedure still achieves the required tolerance on
the total error, we have, for Table 3, computed the stochastic interpolation and finite
element errors (with respect to a reference solution) and the computational cost of
the multilevel approximations from Table 2. For comparison, we have added the
results for the multilevel method which was manually found to give a total error
less than ε at minimal cost, which was already computed in Section 6.2 assuming
a reference solutions was available. Note that for large values of ε, the adaptive
procedure described in this section overestimated the finite element error, leading to a
larger number of levels K compared to that found in Section 6.2. It is clear from Table
3 that not only does the alternative rounding procedure yield the required bound on
the error, it also significantly reduces the computational cost of the multilevel method,
bringing it close to what was manually found to be the minimal cost possible.

7. Concluding remarks. Computing solutions of stochastic partial differential
equations using stochastic collocation methods can become prohibitively expensive
as the dimension of the random parameter space increases. Drawing inspiration from
recent work in multilevel Monte Carlo methods, this work proposed a multilevel
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ε Interpolation error Spatial error Cost

6.3e-4
up 6.7e-5 3.4e-5 8266

up/down 2.8e-4 3.4e-5 4902

best 8.0e-5 2.9e-4 369

7.9e-5
up 2.2e-5 6.3e-6 85558

up/down 3.0e-5 6.3e-6 15650

best 2.4e-5 3.4e-5 4591

1.4e-5
up 2.7e-6 1.6e-6 853207

up/down 8.3e-6 1.6e-6 158714

best 3.9e-6 6.3e-6 119699

4.7e-6
up 7.3e-8 1.6e-6 1519787

up/down 1.2e-6 1.6e-6 1038183

best 1.2e-6 1.6e-6 1038183

Table 3: D = (0, 1), N = 20. Stochastic interpolation and spatial errors (with respect
to the reference solution) and computational cost of various multilevel methods.

stochastic collocation method, based on a hierarchy of spatial and stochastic approx-
imations. A detailed computational cost analysis showed, in all cases, a sufficient
improvement in costs compared to single-level methods. Furthermore, this work pro-
vided a framework for the analysis of a multilevel version of any method for SPDEs
in which the spatial and stochastic degrees of freedom are decoupled.

The numerical results practically demonstrated this significant decrease in com-
plexity versus single level methods for each of the problems considered. Likewise, the
results for the model problem showed multilevel SC to be superior to multilevel MC
even up to N = 20 dimensions.

One of the largest obstacles to the practicality of stochastic collocation methods
is the huge growth in the number of points between grid levels. In the multilevel case,
this can lead to a large amount of computational inefficiency. Certain simple rounding
schemes were proposed to mitigate this effect, and proved to be extremely effective
for the problems considered. Similarly, since most of our example problems involved
computation of a reference solution for the estimation of the necessary constants,
a more practical multilevel stochastic collocation algorithm that dispensed with the
need for a reference solution was proposed and tested.

It is clear that for any sampling method for SPDEs, whether Monte Carlo or
stochastic collocation, multilevel methods are to be preferred over single-level meth-
ods for improved efficiency. Especially in the case of stochastic collocation methods,
multilevel approaches enable one to further delay the curse of dimensionality, temper-
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ing the explosion of computational effort that results when the stochastic dimension
increases. Though Monte Carlo methods are often preferable for problems involving
a large stochastic dimension, multilevel approaches greatly improve the effectiveness
of stochastic collocation methods versus Monte Carlo methods.
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[1] I. Babuška, F. Nobile, and R. Tempone, A Stochastic Collocation Method for
Elliptic Partial Differential Equations with Random Input Data, SIAM J. Numer.
Anal., 45 (2007), pp. 1005–1034.

[2] A. Barth, C. Schwab, and N. Zollinger, Multi-level Monte Carlo Finite Element
method for elliptic PDEs with stochastic coefficients, Numer. Math., 119 (2011),
pp. 123–161.

[3] J. Beck, F. Nobile, L. Tamellini, and R. Tempone, Stochastic spectral galerkin
and collocation methods for PDEs with random coefficients: a numerical compari-
son, Lect. Notes Comp. Sci., 76 (2011), pp. 43–62.

[4] M. Bieri, A sparse composite collocation finite element method for elliptic spdes.,
SIAM Journal on Numerical Analysis, 49 (2011), pp. 2277–2301.

[5] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods,
vol. 15 of Texts in Applied Mathematics, Springer, third ed., 2008.

[6] S. Chae, Holomorphy and calculus in normed spaces, Mg. Txb. Pu. Appl. Math.,
Marcel Dekker Inc, 1985.

[7] J. Charrier, Strong and weak error estimates for the solutions of elliptic partial
differential equations with random coefficients, SIAM J. Numer. Anal., 50 (2012),
pp. 216–246.

[8] J. Charrier, R. Scheichl, and A. Teckentrup, Finite element error analysis
of elliptic PDEs with random coefficients and its application to multilevel Monte
Carlo methods, SIAM J. Numer. Anal., 51 (2013), pp. 322–352.

[9] A. Chkifa, A. Cohen, and C. Schwab, High-dimensional adaptive sparse polyno-
mial interpolation and applications to parametric pdes, Foundations of Computa-
tional Mathematics, 14 (2014), pp. 601–633.

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.



ORNL/TM-2014/621: A. L. Teckentrup, P. Jantsch, M. Gunzburger, C. G. Webster 32

[10] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland,
1978.

[11] C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an
automatic computer, Numer. Math., 2 (1960), pp. 197–205.

[12] K. Cliffe, M. Giles, R. Scheichl, and A. Teckentrup, Multilevel monte carlo
methods and applications to elliptic pdes with random coefficients, Comput. Vis.
Sci., 14 (2011), pp. 3–15.

[13] A. Cohen, R. Devore, and C. Schwab, Analytic regularity and polynomial ap-
proximation of parametric and stochastic elliptic pde’s, Analysis and Applications,
9 (2011), pp. 11–47.

[14] N. Collier, A.-L. Haji-Ali, F. Nobile, E. von Schwerin, and R. Tempone,
A continuation multilevel monte carlo algorithm, BIT Numerical Mathematics,
(2014), pp. 1–34.

[15] S. Dereich and F. Heidenreich, A multilevel Monte Carlo algorithm for Lévy-
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