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ACCELERATING STOCHASTIC COLLOCATION METHODS FOR
PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT

DATA

D. Galindo ∗ P. Jantsch † C. G. Webster ‡ G. Zhang §

Abstract. This work proposes and analyzes a generalized acceleration technique for decreasing the com-
putational complexity of using stochastic collocation (SC) methods to solve partial differential equations
(PDEs) with random input data. The SC approaches considered in this effort consist of a sequentially
constructed multi-dimensional Lagrange interpolant in the random parametric domain, formulated by collo-
cating on a set of points so that the resulting approximation is defined in a hierarchical sequence of polynomial
spaces of increasing fidelity. Our acceleration approach exploits the construction of the SC interpolant to
accelerate the underlying ensemble of deterministic solutions. Specifically, we predict the solution of the
parametrized PDE at each collocation point on the current level of the SC approximation by evaluating
each sample with a previously assembled lower fidelity interpolant, and then use such predictions to provide
deterministic (linear or nonlinear) iterative solvers with improved initial approximations. As a concrete
example, we develop our approach in the context of SC approaches that employ sparse tensor products of
globally defined Lagrange polynomials on nested one-dimensional Clenshaw-Curtis abscissas. This work also
provides a rigorous computational complexity analysis of the resulting fully discrete sparse grid SC approx-
imation, with and without acceleration, which demonstrates the effectiveness of our proposed methodology
in reducing the total number of iterations of a conjugate gradient solution of the finite element systems at
each collocation point. Numerical examples include both linear and nonlinear parametrized PDEs, which
are used to illustrate the theoretical results and the improved efficiency of this technique compared with
several others.

1. Introduction. Modern approaches for predicting the behavior of physical and en-
gineering problems, and assessing risk and informing decision making in manufacturing,
economic forecasting, public policy, and human welfare, rely on mathematical modeling fol-
lowed by computer simulation. Such predictions are obtained by constructing models whose
solutions describe the phenomenon of interest, and then using computational methods to
approximate the outputs of the models. Thus, the solution of a mathematical model can
be viewed as a mapping from available input information onto a desired output of interest;
predictions obtained through computational simulations are merely approximations of the
images of the inputs, that is, of the output of interest. There are several causes for pos-
sible discrepancies between observations and approximate solutions obtained via computer
simulations. The mathematical model may not, and usually does not, provide a totally
faithful description of the phenomenon being modeled. Additionally, when an application
is considered, the mathematical models need to be provided with input data, such as coeffi-
cients, forcing terms, initial and boundary conditions, geometry, etc. This input data may
be affected by a large amount of uncertainty due to intrinsic variability or the difficulty in
accurately characterizing the physical system.
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Such uncertainties can be included in the mathematical model by adopting a proba-
bilistic setting, provided enough information is available for a complete statistical char-
acterization of the physical system. In this effort we assume our mathematical model is
described by a partial differential equation (PDE) and the random input data are modeled
as finite dimensional random fields, parameterized by a vector y = (y1, · · · , yN ) of dimen-
sion N , consisting of uncorrelated real-valued random variables. Therefore, the goal of the
mathematical and computational analysis becomes the approximation of the solution map
y 7→ u(y), or statistical moments (mean, variance, covariance, etc.) of the solution or some
quantity of interest (QoI) of the system, given the probability distribution of the input
random data. A major challenge associated with developing approximation techniques for
such problems involves alleviating the curse of dimensionality, by which the computational
complexity of any näıve polynomial approach will grow exponentially with the dimension
N of the parametric domain.

Monte Carlo (MC) methods (see, e.g., [16]) are the most popular approaches for approx-
imating high-dimensional integrals, based on independent realizations u(yk), k = 1, . . . ,M ,
of the parameterized PDE; approximations of the expectation or other QoIs are obtained by
averaging over the corresponding realizations of that quantity. The resulting numerical error
is proportional to M−1/2, thus achieving convergence rates independent of dimension N , but
requiring a very large number of samples to achieve reasonably small errors. Other ensemble-
based methods, including quasi-MC (QMC) and important sampling (see [23, 28, 38] and
the references therein), have been devised to produce increase convergence rates, e.g., pro-
portional to M−1 log(M)r(N), however, the function r(N) > 0 increases with dimension N .
Moreover, since both MC and QMC are quadrature techniques for QoIs, neither have the
ability to simultaneously approximate the solution map y 7→ u(y), required by a large class
of applications.

In the last decade, two global polynomial approaches have been proposed that of-
ten feature much faster convergence rates: intrusive stochastic Galerkin (SG) methods,
constructed from pre-defined orthogonal polynomials [18, 44], or best M -term and quasi-
optimal approaches [6, 9, 12, 41], and non-intrusive stochastic collocation (SC) methods,
constructed from (sparse) Lagrange interpolating polynomials [1,29,30], or discrete L2 pro-
jections [26, 27]. These methods exploit the underlying regularity of the PDE solution
map u(y) with respect to the parameters y, evident in a wide class of high-dimensional
applications, to construct an approximate solution, and differ only in the choice of basis.

For both SG and SC approaches, the overall computational cost grows rapidly with
increasing dimension. A recent development for alleviating such complexity and accelerat-
ing the convergence of parameterized PDE solutions is to utilize multilevel methods (see
e.g., multilevel Monte Carlo (MLMC) methods [4,5,11,19,39] and the multilevel stochastic
collocation (MLSC) approach [40]). The main ingredient to multilevel methods is the ex-
ploitation of a hierarchical sequence of spatial approximations to the underlying PDE, which
are then combined with discretizations in parameter space in such a way as to minimize the
overall computational cost. The approximation of the solution u on the finest mesh is rep-
resented by the approximation on the coarsest mesh plus a sequence of “correction” terms.
The resulting decrease in complexity with the use of multilevel methods results from the
fact that the dominant behavior of the solution u can be captured with cheap simulations
on coarse meshes, so that the number of expensive simulations computed on fine meshes
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can be considerably reduced.
Nonetheless, the dominant cost in applying any uncertainty quantification (UQ) ap-

proach lies in the solution of the underlying parametrized linear/nonlinear PDEs, for a
given value of the random inputs. Such solutions are often computed using iterative solvers,
e.g., conjugate gradient (CG) methods for symmetric positive-definite linear systems, gen-
eralized minimal residual method (GMRES) for non-symmetric linear systems [36], and
fixed-point iteration methods [35] for nonlinear PDEs. However, many high-fidelity, multi-
physics models can exhaust the resources of the largest machines with a single instantiation
and, as such, are not practical for even the most advanced UQ techniques. As such, several
methods for improving the performance of iterative solvers have been proposed; especially
preconditioner and subspace methods for iterative Krylov solvers. A strategy that utilizes
shared search directions for solving a collection of linear systems based on the CG method
is proposed in [8]. In [32] a technique called Krylov recycling was introduced to solve sets of
linear systems sequentially, based on ideas adapted from restarted and truncated GMRES
(see [37] and the references therein). This approach was later applied to the linear systems
that arise from SG approximations that use the so-called doubly orthogonal bases to solve
stochastic paramterized PDEs [24] . In addition, several preconditioners have been devel-
oped that improve the performance of solving the large linear systems resulting from SG
approximations that employ standard orthogonal polynomials [15,17,20,34].

On the other hand, when a general linear solver is employed to solve the underling SG
or SC approximation, it is straightforward to see that improved initial approximations can
significantly reduce the number of iterations required to reach a prescribed accuracy. A
sequential orthogonal expansion is utilized in [17, 33] such that a low resolution solution
provides an initial guess for the solution of the system with an enriched basis. However,
at each step, all the expansion coefficients must be explicitly recomputed, resulting in
increased costs. Similarly, in [20] an extension of a mean-based preconditioner is applied
to each linear system coming from a sequential SC approach, wherein the solution of the
j-th system is given as the initial vector for the (j + 1)-th system. This approach, as well
as the Krylov recycling method, impose an ordering of the linear systems that appear in
the SC approximation. Consequently, new approaches are needed to amortize the cost
of expensive simulations by reusing both deterministic and stochastic information across
multiple ensembles of solutions.

In this work, we propose to improve the computational efficiency of non-intrusive ap-
proximations, by focusing on SC approaches that sequentially construct a multi-dimensional
Lagrange interpolant in a hierarchical sequence of polynomial spaces of increasing fidelity.
As opposed to multilevel methods that reduce the overall computational burden by taking
advantage of a hierarchical spatial approximation, our approach exploits the structure of
the SC interpolant to accelerate the underlying ensemble of deterministic solutions. Specif-
ically, we predict the solution of the parametrized PDE at each collocation point on the
current level of the SC approximation by evaluating each sample with a previously assem-
bled lower fidelity interpolant, and then use such predictions to provide deterministic (linear
or nonlinear) iterative solvers with improved initial approximations. As a particular appli-
cation, we pose this acceleration technique in the context of hierarchical SC methods that
employ sparse tensor products of globally defined Lagrange polynomials [29,30], on nested
one-dimensional Clenshaw-Curtis abscissas. However, the same idea can be extended to
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other non-intrusive collocation approaches including orthogonal polynomials [44], as well as
piecewise local and wavelet polynomials expansions [7, 21].

The sparse grid SC approximation considered in this work produces a sequence of inter-
polants, where a new set of collocation points is added on each level in order to increase the
accuracy of the interpolant. For each newly added collocation point on the current level, we
predict the solution of the underlying deterministic PDE using the most up to date sparse
grid interpolant available; the previous level’s interpolant. We then use the prediction as
the starting point of the iterative solver. The uniform convergence of the sparse grid in-
terpolant to the true solution results in an increasingly accurate initial guess as the level
increases, so that the overall complexity of the SC method can be dramatically reduced.
We apply our novel approach in the context of solving both linear and nonlinear stochastic
PDEs, wherein, we assume that the parameterized systems are solved by some existing
linear or nonlinear iterative method. Furthermore, in the linear case, this technique can
also be used to efficiently generate improved preconditioners for linear systems associated
to the collocation points on higher levels, which further accelerates the convergence rate of
the underlying solver.

The outline of this paper is as follows: We begin by describing the class of parameterized
linear and nonlinear stochastic PDEs under consideration in §2. In §3 we describe our
acceleration technique in the context of general stochastic collocation methods, defined on
a hierarchical sequence of polynomial spaces, for approximating both linear and nonlinear
stochastic elliptic PDEs using nonlinear iterative solvers. In §4 we briefly recall the sparse
grid SC method, where the sparse grid interpolant is constructed with the use of nested one-
dimensional Clenshaw-Curtis abscissas. The theoretical convergence rates, with respect to
the level of the interpolant and the degrees of freedom are shown in §4.1. In §4.2 we provide
a rigorous computational complexity analysis of the resulting fully discrete sparse grid
SC approximation, with and without acceleration, used to demonstrate the effectiveness
of our proposed methodology in reducing the total number of iterations of a conjugate
gradient solution of the finite element systems at each collocation point. Finally, in §5 we
provide several numerical examples, including both moderately large-dimensional linear and
nonlinear parametrized PDEs, which are used to illustrate the theoretical results and the
improved efficiency of this technique compared with several others.

2. Problem setting. Let D ⊂ Rd, d = 1, 2, 3, be a bounded domain and let (Ω,F ,P)
denote a complete probability space with sample space Ω, σ-algebra F = 2Ω, and probability
measure P : F → [0, 1]. Define L as a differential operator that depends on a coefficient
a(x, ω) with x ∈ D and ω ∈ Ω. Analogously, the forcing term f = f(x, ω) can be assumed
to be a random field as well. In general, a and f belong to different probability spaces
but, for economy of notation, we simply denote the stochastic dependences in the same
probability space. Consider the stochastic boundary value problem. Find a random function
u : D × Ω→ R such that, P-a.e. in Ω, the following equations hold:{

L(a)(u) = f in D,

u = g on ∂D,
(2.1)

where g is a suitable boundary condition. We denote by W (D) a Banach space and assume
the underlying random input data are chosen so that the corresponding stochastic system
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(2.1) is well-posed and has a unique solution u(x, ω) ∈ LqP(Ω;W (D)), the function space
given by

LqP(Ω;W (D)) :=

{
u : D × Ω→ R

∣∣∣ u is strongly measurable and

∫
Ω
‖u‖qW (D) dP(ω) < +∞

}
.

In this setting, the approximation space consists of Banach-space valued functions that have
finite q-th order moments. Two example problems posed in this setting are given as follows.

Example 2.1. (Linear elliptic problem). Find a random field u : D × Ω → R such that
P-a.e. {

−∇ · (a(x, ω)∇u(x, ω)) = f(x, ω) in D × Ω,
u(x, ω) = 0 on ∂D × Ω,

(2.2)

where ∇ denotes the gradient operator with respect to the spatial variable x ∈ D. The
well-posedness of (2.2) is guaranteed in L2

P(Ω;H1
0 (D)) with a(x, ω) uniformly elliptic, i.e.,

P
(
ω ∈ Ω : amin ≤ a(x, ω) ≤ amax ∀x ∈ D

)
= 1 with amin, amax ∈ (0,∞), (2.3)

and f(x, ω) square integrable, i.e.,∫
D
E[f2]dx :=

∫
D

∫
Ω
f2(x, ω) dP(ω)dx < +∞.

Example 2.2. (Nonlinear elliptic problem). For k ∈ N, find a random field u : D×Ω→
R such that P-a.e.{

−∇ · (a(x, ω)∇u(x, ω)) + u(x, ω)|u(x, ω)|k = f(x, ω) in D,
u(x, ω) = 0 on ∂D.

(2.4)

The well-posedness of (2.4) is guaranteed in L2
P (Ω;W (D)) with a, f as in Example 2.1 and

W (D) = H1
0 (D) ∩ Lk+2 (D) [30].

In many applications, the source of randomness can be approximated with only a finite
number of uncorrelated, or even independent, random variables. For instance, the random
input data a and f in (2.1) may have a piecewise representation, or in other applications
may have spatial variation that can be modeled as a correlated random field, making them
amenable to approximation by a Karhunen-Loève (KL) expansion [25]. In practice, one has
to truncate such expansions according to the desired accuracy of the simulation. As such,
we make the following assumption regarding the random input data a and f (cf [22, 30]).

Assumption 2.3. (Independence and finite dimensional noise). The random fields a(x, ω)
and f(x, ω) have the form:

a(x, ω) = a(x,y(ω)) and f(x, ω) = f(x,y(ω)) on D × Ω,

where y(ω) = [y1(ω), . . . , yN (ω)] : Ω → RN is a vector of independent and uncorrelated
real-valued random variables.

We note that Assumption 2.3 and the Doob-Dynkin lemma [31] guarantee that a(x,y(ω))
and f(x,y(ω)) are Borel-measurable functions of the random vector y : Ω → RN . In our
setting, we denote by Γn = yn(Ω) ⊂ R the image of the random variable yn, and set
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Γ =
∏N
n=1 Γn, where N ∈ N+. If the distribution measure of y(ω) is absolutely continuous

with respect to Lebesgue measure, then there exists a joint probability density function of
y(ω) denoted by

%(y) : Γ→ R+, with %(y) =
N∏
n=1

%n(yn) ∈ L∞(Γ).

Therefore, based on Assumption 2.3, the probability space (Ω,F ,P) is mapped to (Γ,B(Γ), %(y)dy),
where B(Γ) is the Borel σ-algebra on Γ and %(y)dy is a probability measure on B(Γ). By
assuming the solution u of (2.1) is σ-measurable with respect to a and f , the Doob-Dynkin
lemma guarantees that u(x, ω) can also be characterized by the same random vector y, i.e.,

u(x, ω) = u(x, y1(ω), . . . , yN (ω)) ∈ Lq%(Γ;W (D)),

where Lq%(Γ;W (D)) is defined by

Lq%(Γ;W (D)) =

{
u : D × Γ→ R

∣∣∣ u strongly measurable and

∫
Γ
‖u‖qW (D)%(y)dy <∞

}
.

Note that the above integral will be replaced by the essential supremum when q =∞:

L∞(Γ;W (D)) =

{
u : D × Γ→ R

∣∣∣ u strongly measurable and ess supy ‖u(y)‖W (D) <∞
}
.

2.1. Weak formulation. In what follows, we treat the solution to (2.1) as a parame-
terized function u(x,y) of the N -dimensional random variables y ∈ Γ ⊂ RN . This leads to
a Galerkin weak formulation [22] of the PDE in (2.1), with respect to both physical and
parameter space, i.e., seek u ∈ Lq%(Γ;W (D)) such that

∫
Γ

∫
D

 ∑
ν∈Λ1∪Λ2

Sν(u;y)Tν(v)

 % dxdy =

∫
Γ

∫
D
f v% dxdy, ∀v ∈ Lq%(Γ;W (D)),

where Tν , ν ∈ Λ1 ∪ Λ2 are linear operators independent of y, while the operators Sν are
linear for ν ∈ Λ1, and nonlinear for ν ∈ Λ2. Moreover, since the solution u can be viewed
as a mapping u : Γ → W (D), for convenience we may omit the dependence on x ∈ D and
write u(y) to emphasize the dependence of u on y. As such, we may also write the problem
(2.1) in the alternative weak form

∫
D

 ∑
ν∈Λ1∪Λ2

Sν(u(y);y)Tν(v)

 dx =

∫
D
f(y) v dx, ∀v ∈W (D), %-a.e. in Γ. (2.5)

Therefore, the stochastic boundary-value problem (2.1) has been converted into a deter-
ministic parametric problem (2.5). The acceleration technique proposed in §3 and the
sparse-grid SC method discussed in §4 will be based on the solution of the weak form (2.5)
above.
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3. Accelerating stochastic collocation methods. Our acceleration scheme will be pro-
posed in the context of both linear and nonlinear elliptic PDEs. A general SC approach
requires the semi-discrete solution uh(·,y) ∈Wh(D) ⊂W (D) at a set of collocation points
{yL,j}ML

j=1 ⊂ Γ, given by

uh(x,yL,j) =

Mh∑
ξ=1

cL,j,ξ ϕξ(x), j = 1, . . . ,ML. (3.1)

Here {ϕξ}Mh
ξ=1 is a predefined finite element basis of Wh(D), and for j = 1, . . . ,ML, the

coefficient vector cL,j := (cL,j,1, . . . , cL,j,Mh
)> is the solution of the following system of

equations:

Mh∑
ξ=1

cL,j,ξ

∫
D

∑
ν∈Λ1

Sν (ϕξ;yL,j) Tν(ϕi′) dx (3.2)

=
∫
D f(yL,j)ϕi′ −

∑
ν∈Λ2

Sν

(∑Mh
ξ=1 cL,j,ξ ϕξ;yL,j

)
Tν(ϕi′) dx, i′ = 1, . . . ,Mh,

with Sν and Tν defined as above. Note that (3.2) is equivalent to (2.5) with the nonlinear
operators subtracted on the right hand side. When Λ2 = ∅, the PDE is linear, and a
standard FEM discretization leads to a linear system of equations.

For L ∈ N+, we denote by IL an interpolation operator that utilizes ML collocation
points, defined by HL = {yL,j}ML

j=1. More generally, assume that we have a family of
interpolation operators {IL}L∈N+ , which for each L ∈ N+ approximates the solution uh(x, ·)
in polynomial spaces

P1(Γ) ⊂ . . . ⊂ PL(Γ) ⊂ PL+1(Γ) ⊂ . . . ⊂ L2
%(Γ),

of increasing fidelity, defined on sets of sample points HL ⊂ Γ. Assume further that the
fully discrete solution uh,L ∈Wh(D)⊗ PL(Γ) has Lagrange interpolating form

uh,L(x,y) := IL[uh](x,y) =

ML∑
j=1

(
Mh∑
i=1

cL,j,ξϕi(x)

)
ΨL,j(y), (3.3)

where {ΨL,j}ML
j=1 is a basis for PL(Γ). The approximation (3.3) can be constructed by

solving for uh(x,yL,j) independently at each sample point yL,j ∈ HL. In §4, we construct
a specific example of an interpolation scheme satisfying (3.3), namely global sparse grid
collocation.

For each L ∈ N, the bulk of the computational cost in using (3.3) goes into solving the
ML systems of equations (3.2) corresponding to each collocation point yL,j , j = 1, . . . ,ML.
Since the systems are independent and deterministic, they can be solved separately using
existing FEM solvers, providing a straightforward path to parallelization compared to intru-
sive methods such as stochastic Galerkin methods. In this work, we consider iterative solvers
for the system in (3.2), and propose an acceleration scheme to reduce the total number of
iterations necessary to the collection of systems over the set of sample parameters.

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.



ORNL/TM-2015/219: D. Galindo, P. Jantsch, C. G. Webster, G. Zhang 8

Denoting by ũh the output of the selected iterative solver for the system (3.2), for
yL,j ∈ HL the semi-discrete solution uh(x,yL,j) is approximated by

uh(x,yL,j) =

Mh∑
ξ=1

cL,j,ξ ϕξ(x) ≈ ũh(x,yL,j) =

Mh∑
ξ=1

c̃L,j,ξ ϕξ(x),

where we define c̃L,j = (c̃L,j,1, . . . , c̃L,j,Mh
)>, and therefore the final SC approximation is

given by a perturbation of (3.3), i.e.,

ũh,L(x,y) :=

ML∑
j=1

Mh∑
ξ=1

c̃L,j,ξ ϕξ(x)

ΨL,j(y). (3.4)

We observe that the performance of the underlying iterative solver can be improved by

proposing a good initial guess, denoted c
(0)
L,j , or constructing an effective preconditioner to

reduce the condition number of the system. Here, we propose our approach for improving
initial deterministic approximations, remarking that the same idea can be also utilized to
construct preconditioners. To start the iterative solver for the system in (3.2), it is common

to use a zero initial guess, i.e., c
(0)
L,j = (0, . . . , 0)>. However, we can predict the solution

at level L using lower level approximations to construct improved initial solutions c
(0)
L,j .

Assume that we first obtain ũh,L−1(x,y) by collocating solutions to (3.2) over HL−1. Then

at level L, for each new point yL,j ∈ HL \ HL−1, the initial guess c
(0)
L,j can be given by

interpolating the solutions from level L− 1, i.e.,

c
(0)
L,j =

(
ũh,L−1(x1,yL,j), . . . , ũh,L−1(xMh

,yL,j)
)>

=

ML−1∑
j′=1

c̃L−1,j′ΨL−1,j′(yL,j). (3.5)

For a convergent interpolation scheme, we expect the necessary number of iterations to
compute c̃L,j to become smaller as the level L increases to an overall maximum level, denoted
Lmax. As such, the construction of the desired solution ũh,Lmax is accelerated through the
intermediate solutions {ũh,L}Lmax−1

L=1 . Note that this approach reduces computational cost
by improving initial guesses, but does not depend on the specific solver used. Thus, our
scheme may be combined with other techniques for accelerating convergence, such as faster
nonlinear solvers or better preconditioners. When the underlying PDE is nonlinear with
respect to u, iterative solvers are commonly used for the solution of (3.2). In Algorithm 1,
we outline the acceleration procedure described above, using a general nonlinear iterative
method for the solution of (3.2).

The efficiency of the proposed algorithm will depend crucially on the number of times
the iterative solver is utilized, i.e., how many sample points are in the set ∆HL = HL \(⋃L−1

l=1 Hl
)

for each level L. In fact, if the sample points are not nested, it could be the

case that ∆HL = HL, and the algorithm may be very inefficient. Hence, in the following
sections we will assume:

Assumption 3.1. Assume that the multidimensional point sets HL, L = 1, . . . , Lmax are
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Algorithm 1: The accelerated SC algorithm

Goal: Compute ũh,Lmax(x,y) :=
∑MLmax

j=1

(∑Mh
ξ=1 c̃Lmax,j,ξ ϕξ(x)

)
ΨLmax,j(y)

1: Define M0 = 1 and c̃0,1 = (0, . . . , 0)>

2: for L = 1, . . . , Lmax do

3: for yL,j ∈ HL \
(⋃L−1

l=1 Hl
)
do

4: Compute the initial guess according to (3.5):

5: c
(0)
L,j =

∑ML−1

j′=1 c̃L−1,j′ΨL−1,j′(yL,j)

6: Initialize: k = 1

7: repeat

8: Compute residual r
(k)
L,j = (r

(k)
L,j,1, . . . , r

(k)
L,j,Mh

)>:

9: for i = 1, . . . ,Mh do

10: r
(k)
L,j,i =

∫
D f (yL,j)ϕi −

∑
ν∈Λ1∪Λ2

Sν

(∑Mh
i′=1 c

(k)
L,j,i′ ϕi′(x),yL,j

)
Tν(ϕi) dx

11: end for

12: Update the solution: c
(k+1)
L,j = c

(k)
L,j + S (r

(1)
L,j , . . . , r

(k)
L,j)

13: k = k + 1

14: until ‖c(k)
L,j − c

(k−1)
L,j ‖ < τ

15: c̃L,j = c
(k)
L,j

16: end for

17: end for

nested, i.e.,
H1 ⊂ H2 ⊂ . . . ⊂ HLmax ⊂ Γ.

Then ∆HL = HL \ HL−1, and we can construct the intermediate solutions {ũh,L}Lmax−1
L=1

using a subset of the information needed to approximate ũh,Lmax.
In §4 we construct an interpolant using a point set which satisfies Assumption 3.1. Next,

we give several examples of Algorithm 1, using iterative solvers for both nonlinear and linear
elliptic PDEs.

Example 3.2. Consider the weak form of the nonlinear elliptic PDE in Example 2.2,
letting S1(v;y) = a(x,y)∇v, T1(v) = ∇v, S2(v,y) = v(x,y)|v(x,y)|s, and T2(v) = v (note
that Λ1 = {1}, Λ2 = {2}). When using the fixed point iterative method in Algorithm 1, for
the update step we define

S (r
(1)
L,j , . . . , r

(k)
L,j) = A−1

L,jr
(k)
L,j ,
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where the matrix AL,j = A(yL,j), j = 1, . . . ,ML is defined by

[AL,j ]i,i′ =

∫
D
a(yL,j)∇ϕi′∇ϕi dx, for i, i′ = 1, . . . ,Mh. (3.6)

With u
(k)
h,L(x,yL,j) =

∑Mh
i=1 c

(k)
L,j,ξ ϕi(x), this update is equivalent to solving the following

linear system∫
D
a(yL,j)∇u(k+1)

h,L ∇v dx =

∫
D

[
f(yL,j)− u(k)

h,L(yL,j)|u(k)
h,L(yL,j)|s

]
v dx ∀v ∈Wh(D),

to update u
(k)
h to u

(k+1)
h at the (k + 1)-th iteration. Note that each iteration of the solver

in Algorithm 1 requires the solution of this linear system, which is not accelerated by our
algorithm.

Example 3.3. As a special case of the example above, consider the weak form of the
linear elliptic problem in Example 2.1 with Λ1 = {1}, Λ2 = ∅, S1(v;y) = a∇v and T1(v) =
∇v in (3.2). Due to the linearity, at each collocation point the solution uh(x,yL,j) =∑Mh

i=1 cL,j,ξϕi(x) can be approximated by solving the following linear system

AL,jcL,j = fL,j , (3.7)

with AL,j = A(yL,j), j = 1, . . . ,ML as in (3.6), and (fL,j)i =
∫
D f(x,yL,j)ϕi(x)dx for

ξ = 1, . . . ,Mh. Under our assumptions on the coefficient a, the linear system (3.7) is
symmetric positive definite, and we can use the CG method [36] to find its solution. For
k ∈ N+, by recursively defining

p
(k)
L,j = r

(k)
L,j −

∑
k′<k

p
(k′)>
L,j AL,jr

(k)
L,j

p
(k′)>
L,j AL,jp

(k′)
L,j

p
(k′)
L,j ,

we get the update function

S (r
(1)
L,j , . . . , r

(k)
L,j) =

p
(k)>
L,j r

(k)
L,j

p
(k)>
L,j AL,jp

(k)
L,j

p
(k)
L,j .

Recall the following well-known error estimate for CG:∥∥∥cL,j − c(k)
L,j

∥∥∥
AL,j

≤ 2

(√
κL,j − 1
√
κL,j + 1

)k ∥∥∥cL,j − c(0)
L,j

∥∥∥
AL,j

, (3.8)

where κL,j = κ(yL,j) denotes the condition number of AL,j, c
(0)
L,j is the vector of initial guess

and c
(k)
L,j is the output of the k-th iteration of the CG solver. As opposed to Example 3.2,

for this example Algorithm 1 accelerates the solution of the linear system (3.7).
To evaluate the efficiency of the accelerated SC method, we define cost metrics for the

construction of standard and accelerated SC approximations. In general, the computational
cost in floating point operations (flops) is the total number iterations to solve (3.2) summed
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over each of the sample points—denoted by Kzero and Kacc for the standard and accelerated
SC methods, respectively—multiplied by the cost of performing one iteration, denoted Citer.
Let Cint be the additional cost of interpolation incurred by using the accelerated initial
vectors (3.5). Then, we define

Czero = CiterKzero, (3.9)

for the standard SC approach, and

Cacc = CiterKacc + Cint, (3.10)

for the accelerated SC approximation, respectively.
In Example 3.3 the discretization of the linear PDE leads to ML sparse systems of

equations of size Mh ×Mh. When solving these systems with a CG solver, Kzero and Kacc

are the sum of solver iterations contributed from each sample system. In this case, the cost
of one iteration is just the cost of one matrix vector product, i.e., Citer = CDMh, where CD
depends on the domain D and the type of finite element basis.

Remark 3.4. (Relationship to multilevel methods). Multilevel methods reduce the com-
plexity of stochastic sampling methods by balancing errors and computational cost across
a sequence of stochastic and spatial approximations. Let uhk ∈ Vk, k = 0, . . . ,K, be a
sequence of semi-discrete approximations built in nested spaces, i.e., V0 ⊂ . . . ⊂ VK . Mul-
tilevel methods are based on the following identity:

uhK =

K∑
k=0

(uhk − uhk−1
).

Letting QLK−k
, k = 0, . . . ,K, denote the chosen method of stochastic approximation, a gen-

eral multilevel method might be written as

u
(ML)
K =

K∑
k=0

QLK−k
[uhk − uhk−1

].

The main idea is that highly resolved, expensive stochastic approximations, e.g., QLK
, in

combination with coarse deterministic approximations, that is, uh0, and vice versa. In a
similar way, collocation with nested grid points provides a natural multilevel hierarchy which
we use in our method to accelerate each PDE solve (3.5). A combination of these methods
could involve using our algorithm to accelerate the construction of the operators QLK−k

, as
well as reusing information from level to level, thus improving further the performance of
SC methods.

Remark 3.5. (Interpolation costs). Note that many adaptive interpolation schemes al-
ready require evaluation of the intermediate interpolation operators as in (3.5), e.g., to
compute residual error estimators. Thus, these methods will incur the interpolation cost
Cint even in the case of zero initial vectors. Furthermore, for most nonlinear problems the
deterministic solver is expensive, thus reducing the number of iterations is the most impor-
tant element in reducing the cost. In each of these settings, we can define the cost metrics
to simply be Kzero and Kacc.

Remark 3.6. (Hierarchical preconditioner construction). When solving linear systems
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using iterative methods, convergence properties can be improved by considering the condition
number of the system. As with initial vectors, an interpolation algorithm can be used to
construct good, cheap preconditioners. We consider preconditioner algorithms where an
explicit preconditioner matrix, or its inverse, is constructed. In this case, for some low
collocation level LPC, we construct a strong preconditioner, PLPC,j := P (yLPC,j), for each
individual iterative solver, j = 1, . . . ,MLPC

. Then, these lower level preconditioners are
interpolated for the subsequent levels. More specifically, for L > LPC, and yL,j ∈ HL\HLPC

,
we use the preconditioner

P̃L,j := P̃ (yL,j) =

MLPC∑
j′=1

PLPC,j′ ΨLPC,j′(yL,j). (3.11)

Numerical illustrations of this approach are given in §5.

4. Applications to sparse grid stochastic collocation. In this section, we provide a
specific example of an interpolation scheme satisfying the assumptions described in §3, i.e., a
generalized sparse grid SC approach for a fixed level L. In what follows, we briefly review the
construction of sparse grid interpolants, and rigorously analyze the approximation errors
and the complexities of both the standard and accelerated SC approaches, in order to
demonstrate the improved efficiency of the proposed acceleration technique when applied
to iterative linear solvers.

The fully discrete SC approximation is built by polynomial interpolation of the semi-
discrete solution uh(x,y) on an appropriate set of collocation points in Γ. In our setting,
such an interpolation scheme is based on a sparse tensor products of one-dimensional La-
grange interpolating polynomials with global support. Specifically, in the one-dimensional
case, N = 1, we introduce a sequence of Lagrange interpolation operators U m(l) : C0(Γ)→
Pm(l)−1(Γ), with Pm(l)−1(Γ) the space of degree m(l) − 1 polynomials over Γ. Given a
general function v ∈ C0(Γ), these operators are defined by

U m(l)[v](y) =

m(l)∑
j=1

v(ylj) ψ
l
j(y).

Here l ∈ N represents the resolution level of the operator, m(l) ∈ N+ denotes the number
of interpolation points on level l, ψ1

1(y) = 1 and for l > 1,

ψlj(y) =

m(l)∏
i=1
i 6=j

y − yli
ylj − yli

for j = 1, . . . ,m(l),

are the global Lagrange polynomials of degree m(l)− 1 associated with the point set ϑl =
{yl1, . . . , ylm(l)}. To satisfy Assumption 3.1, we need nestedness of the one-dimensional sets,

i.e., ϑl−1 ⊂ ϑl, which is determined by the choice of interpolation points and the definition
of m(l). In addition, we remark that similar constructions for U m(l) can be built based on
wavelets [21] or other locally supported polynomial functions [22].

In the multi-dimensional case, i.e., N > 1, using the convention that U m(0) = 0, we
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introduce the difference operator

∆m(l1) ⊗ · · · ⊗∆m(lN ) =

N⊗
n=1

(
U m(ln) −U m(ln−1)

)
, (4.1)

and define the multi-index l = (l1, . . . , lN ) ∈ NN+ . The desired approximation is defined by a
linear combination of tensor-product operators (4.1) over a set of multi-indices, determined
by the condition g(l) ≤ L, for L ∈ N+, and g(l) : NN+ → N+ a strictly increasing function.
For v ∈ C0(Γ) , we now define the generalized SC operator Im,gL by

Im,gL [v](y) =
∑
g(l)≤L

(
∆m(l1) ⊗ · · · ⊗∆m(lN )

)
[v](y)

=
∑
g(l)≤L

∑
i∈{0,1}N

(−1)|i|
(
U m(l1−i1) ⊗ · · · ⊗U m(lN−iN )

)
[v](y),

(4.2)

where i = (i1, . . . , iN ) is a multi-index with in ∈ {0, 1}, |i| = i1 + · · · + iN , and L ∈
N+ represents the approximation level. This approximation lives in the tensor product
polynomial space given by

PΛm,g
L

= span

{
N∏
n=1

ylnn

∣∣∣∣ l ∈ Λm,gL

}
,

where the multi-index set is defined as follows

Λm,gL =

{
l ∈ NN

∣∣∣∣ g(m†(l + 1)) ≤ L
}
.

Here m(l) = (m(l1), . . . ,m(lN )), and m†(l) := min{w ∈ N+ : m(w) ≥ l} is the left inverse
of m (see [2]).

Specific choices for the one-dimensional growth rate m(l) and the function g(l) are
needed to define the multi-index set Λm,gL and the corresponding polynomial space PΛm,g

L
for

the approximation. In this work, we construct the interpolant in (4.2) using the anisotropic
Smolyak construction, i.e.,

m(1) = 1, m(l) = 2l−1 + 1 for l > 1 and g(l) =
N∑
n=1

αn
αmin

(ln − 1), (4.3)

where α = (α1, . . . , αN ) ∈ RN+ is a vector of weights reflecting the anisotropy of the system,
i.e., the relative importance of each dimension, with αmin := minn αn (see [29] for more
details). Our analysis does not depend strongly on this choice of m and g, and we could use
other functions, e.g., m(l) = l and g(l) = maxn αnln define the anisotropic tensor product
approximation.

When Γ is a bounded domain in RN , a common choice is the Clenshaw-Curtis abcsissas
[10] given by the sets of extrema of Chebyshev polynomials including the end-point extrema.
For a sample set of any size m(l) > 1, the abscissas in the standard domain [−1, 1] are given
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by

ϑl =

{
ylj ∈ [−1, 1]

∣∣∣∣ ylj = − cos

(
π (j − 1)

m(l)− 1

)
for j = 1, . . . ,m(l)

}
. (4.4)

By taking y1
1 = 0 and letting m(l) grow according to the rule in (4.3), one gets a sequence

of nested sets ϑl ⊂ ϑl+1 for l ∈ N+. In addition, with g(l) defined as in (4.3), the resulting
set of N -dimensional abscissas is a Clenshaw-Curtis sparse grid. Other nested families of
sparse grids can be constructed from, e.g., the Leja points [13], Gauss-Patterson [42], etc.

Remark 4.1. (Specific Choice of m, g). For the remainder of the paper, we will assume
that the functions m and g are given as in (4.3), and use an underlying Clenshaw-Curtis
sparse grid. For simplicity, we will also only consider isotropic collocation methods, i.e.
α1 = α2 = . . . = αN . We then lighten the notation by defining IL := Im,gL .

Construction of the approximation IL[v] := Im,gL [v] requires evaluation of v on a set
of collocation points HL ⊂ Γ with cardinality ML. In our case, since the one-dimensional
point sets are nested, i.e., ϑl ⊂ ϑl+1 for l ∈ N+, so that the multi-dimensional point set
used by IL[v] is given by

HL =
⋃

g(l)=L

(
ϑl1 ⊗ · · · ⊗ ϑlN

)
,

and the nested structure is preserved, i.e., HL ⊂ HL+1, to satisfy assumption 3.1. Define
the difference of the sets ∆HL := HL \ HL−1, and the number of new collocation points
∆ML = #(∆HL). With this nestedness condition, the approximation IL[v] is a Lagrange
interpolating polynomial [30], and thus (4.2) can be rewritten as a linear combination of
Lagrange basis functions,

IL[v](y) =

ML∑
j=1

v(yL,j)ΨL,j(y)

=

ML∑
j=1

v(yL,j)
∑

l∈J (L,j)

∑
i∈{0,1}N

(−1)|i|
N∏
n=1

ψln−inkn(j) (yn)

︸ ︷︷ ︸
ΨL,j(y)

,
(4.5)

where the index set J (L, j) is defined by

J (L, j) =

{
l ∈ NN+

∣∣∣∣∣ g(l) ≤ L and yL,j ∈
N⊗
n=1

ϑln−in with i ∈ {0, 1}N
}
.

For a given L and j, this represents the subset of multi-indices corresponding to the tensor-
product operators U m(l1−i1) ⊗ · · · ⊗ U m(lN−iN ) in (4.2) with the supporting point yL,j .

Then for each l ∈ J (L, j) and i ∈ {0, 1}N , the function
∏N
n=1 ψ

ln−in
kn(j) (yn) with kn(j) ∈

{1, . . . ,m(ln − in)}, n = 1, . . . , N , represents the unique Lagrange basis function for the
operator U m(l1−i1) ⊗ · · · ⊗ U m(lN−iN ) corresponding to yL,j . Therefore, the functions

{ΨL,j}ML
j=1 are given by a linear combination of tensorized Lagrange polynomials satisfying

the “delta property”, i.e., ΨL,j′(yL,j) = δjj′ for j, j′ = 1, . . . ,ML, and is in the required
form of (3.3).
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Finally, to construct the fully-discrete approximation in the space Wh(D)⊗PΛm,g
L

(Γ) we

apply the interpolation operator IL[·], given by (4.5), to the semi-discrete solution uh(x,y)
in (3.1) to obtain:,

uh,L(x,y) = IL[uh](x,y) =

ML∑
j=1

Mh∑
ξ=1

cL,j,ξϕξ(x)

ΨL,j(y). (4.6)

Due to the delta property of the basis function ΨL,j(y), the interpolation matrix for IL[uh]
is a diagonal matrix, and thus the coefficient vectors cL,j = (cL,j,1, . . . , cL,j,Mh

) for j =
1, . . . ,ML can be computed by independently solving ML systems of type (3.2).

4.1. Error estimates for fixed L. In what follows, we focus on the linear elliptic prob-
lem (2.2) described in Examples 2.1 and 3.3, and present a detailed convergence and com-
plexity analysis of a fully discrete SC approximation, denoted ũh,L, for any fixed level,
1 ≤ L ≤ Lmax. As specified in Remark 4.1, in this section we consider only the isotropic
Smolyak version of SC interpolant given by (4.2), defined on Clenshaw-Curtis abscissas,
for solving the parameterized linear elliptic PDE. However, our analysis can be extended
without any essential difficulty to anisotropic SC methods and more complicated underlying
PDEs.

The parameterized elliptic PDE (2.2) admits a weak form that is a symmetric, uniformly
coercive and continuous bilinear operator on H1

0 (D); i.e., there exist α, β > 0, depending
on amin and amax but independent of y, such that for every v, w ∈ H1

0 (D),∣∣∣∣ ∫
D
a(y)∇v∇w dx

∣∣∣∣ ≤ α‖v‖H1
0 (D)‖w‖H1

0 (D) and β‖v‖2H1
0 (D) ≤

∫
D
a(y)|∇v|2 dx.

In this case, the bilinear form induces a norm ‖v‖2 =
∫
D a(y)|∇v|2 dx, which for functions

v(x) =
∑Mh

i=1 ciφi(x) ∈ Wh(D), with c = (c1, . . . , cMh
), coincides with the discrete norm

‖c‖A(y), where the matrix A(y) is defined in (3.6). Thus we have

Continuity: ‖c‖A(y) = ‖v‖ ≤
√
α‖v‖H1

0 (D), and, (4.7a)

Ellipticity:
√
β‖v‖H1

0 (D) ≤ ‖v‖ = ‖c‖A(y). (4.7b)

We next state some regularity conditions on the parameterized solution u : Γ→ H1
0 (D) to

the parameterized elliptic PDE in Examples 2.1 and 3.3.
Assumption 4.2. (Polyellipse analyticity). Let γ = (γ1, . . . , γN ) ∈ (1,∞)N , and assume

that u : Γ → H1
0 (D) admits a complex extension u∗ : CN → H1

0 (D), which is analytic on
the polyellipse

Σ(γ) =
∏

1≤n≤N
Σ(n; γn) ⊂ CN ,

where Σ(n; γn) denotes the region bounded by the Bernstein ellipse,

Σ(n; γn) =

{
1

2

(
zn + z−1

n

)
: zn ∈ C, |zn| ≤ γn

}
.
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The set Σ(γ) ⊂ CN is the product of ellipses in the complex plane, with foci zn = ±1,
which are the endpoints of the domain Γn, n = 1, . . . , N . Such ellipses are common in
proving convergence results for global interpolation schemes. Conditions under which u
satisfies Assumption 4.2 can be found in [12, Theorem 1.2] and [41, Theorem 2.5].

In order to investigate the complexity of the fully discrete approximation ũh.L, L ∈ N+,
we first need to derive sufficient conditions for the error ‖u− ũh,L‖L2

%
to achieve a tolerance

of ε > 0, where L2
% := L2

%(Γ;H1
0 (D)). Using the triangle inequality, the total error can be

split into three parts, i.e.,

‖u− ũh,L‖L2
%
≤ ‖u− uh‖︸ ︷︷ ︸

e1

L2
%

+ ‖uh − uh,L‖︸ ︷︷ ︸
e2

L2
%

+ ‖uh,L − ũh,L‖︸ ︷︷ ︸
e3

L2
%
. (4.8)

The contributions of e1 and e2 correspond to the FEM and SC errors, respectively, and
have been previously examined [30]. The error e3 contributed by the linear solver is often
omitted from the analysis in the literature, and in practice can be controlled by setting a
tight tolerance on the iterative solver. However, the analysis presented here is focused on
providing cost estimates for the iterative solver and requires careful consideration of this
term. First, we recall error estimates for e1 and e2, given from [30].

Lemma 4.3. Let Th be a uniform finite element mesh over D ⊂ Rd, d = 1, 2, 3, with
Mh = O(1/hd) grid points. For the random elliptic PDE in Example (2.1), when u(x,y) ∈
L2
%(Γ;H1

0 (D)∩Hs+1(D)), s ∈ N+, the error of the finite element approximation uh is bounded
by

‖u− uh‖L2
%
≤ Cfem h

s, (4.9)

where the constant Cfem is independent of h and y.
Lemma 4.4. Let u satisfy Assumption 4.2. For L ∈ N+, the interpolation error u−IL[u]

of the sparse grid SC method using Clenshaw-Curtis abscissas can be bounded as

‖u− IL[u]‖L∞(Γ;H1
0 (D)) ≤ Csce

−rN2L/N
, (4.10)

where, for a constant 0 < δ < 1, the rate r = (1 − δ) min1≤n≤N log γn, and the constant
Csc > 0 depends on N , u, and δ.

We remark that the projection of u into the finite element subspace, denoted uh, also
satisfies Assumption 4.2 with the same region of analyticity, and therefore the application
of the interpolant, IL, to the semidiscete solution uh will converge as in (4.10).

We now turn our attention to the global solver error e3 in (4.8), which is the error
incurred from approximating the solution to (3.7) at each sample point. The difference
uh,L − ũh,L can be written as an interpolant of the solver error, i.e.,

uh,L − ũh,L = IL[uh − ũh],

which represents the solver error amplified by the interpolation operator. For the operator
IL[·] in (4.5), we have

‖uh,L − ũh,L‖L∞(Γ;H1
0 (D)) ≤ CL max

j=1,...,ML

‖uh(yL,j)− ũh(yL,j)‖H1
0 (D).
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Thus, from the ellipticity condition in (4.7b),

e3 ≤ CL max
j=1,...,ML

‖uh(yL,j)− ũh(yL,j)‖H1
0 (D) ≤ CL

1√
β

max
j=1,...,ML

‖cL,j − c̃L,j‖A(yL,j) ≤
τ√
β
CL,

where τ is defined to be the tolerance of the linear solver. Note that the expression uh−ũh is
only defined at collocation points. The solver error for each fixed yL,j ∈ HL is controlled by
the CG convergence estimate (3.8). The Lebesgue constant of the operator IL[·] is defined
by CL = maxy∈Γ

∑ML
j=1 |ΨL,j(y)| where ΨL,j is given in (4.5). We now provide an upper

bound of CL in the following lemma.
Lemma 4.5. The Lebesgue constant for the isotropic sparse-grid interpolation operator

IL[·] in (4.5) using the Clenshaw-Curtis rule on Γ =
∏N
n=1 Γn = [−1, 1]N is bounded by

CL ≤ [(L+ 1)(L+ 2)]N , (4.11)

where L and N are the level of the interpolation operator and dimension of the parameter
space, respectively.

Proof. For each n = 1, . . . , N , recall that the Lebesgue constants λln of the one-dimensional
operators U m(ln) are given by [43]

λln = max
z∈Γn

m(ln)∑
j=1

∣∣∣ψlnj (z)
∣∣∣ .

For Lagrange interpolants based on Clenshaw-Curtis abscissas (4.4), we have [14]

λln ≤
2

π
log (m (ln)− 1) + 1 for ln ≥ 2.

Combining this with the growth rate m(ln) = 2ln−1 + 1 for ln ≥ 2 given by (4.3), it is easy
to obtain that

λln ≤ 2ln − 1 for ln ≥ 2.

For v ∈ C0(Γn), the difference operator ∆m(ln) for ln = 1 satisfies

‖∆m(1)[v]‖L∞(Γn) = ‖U m(1)[v]‖L∞(Γn) ≤ λ1 max
yn∈ϑ1

|v(yn)|.

For ln ≥ 2, the triangle inequality yields

‖∆m(ln)[v]‖L∞(Γn) = ‖U m(ln)[v]−U m(ln−1)[v]‖L∞(Γn)

≤ (λln + λln−1) max
yn∈ϑln

|v(yn)|.
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Finally, for v ∈ C0(Γ), we bound the interpolant IL[v] by

‖IL[v]‖L∞(Γ) =

∥∥∥∥∥∥
∑
g(l)≤L

∆m(l1) ⊗ · · · ⊗∆m(lN )[v]

∥∥∥∥∥∥
L∞(Γ)

≤

2N
∑
g(l)≤L

N∏
n=1

ln

 max
j=1,...,ML

|v(yL,j)| ≤ 2N

(
L+1∑
l=1

l

)N
max

j=1,...,ML

|v(yL,j)|

= [(L+ 1)(L+ 2)]N max
j=1,...,ML

|v(yL,j)|,

which gives the desired estimate.

4.2. Complexity analysis. Now we analyze the cost of constructing ũh,Lmax , Lmax ∈ N+,
with the prescribed accuracy ε. Here we assume ε > 0 is sufficiently small, and study the
asymptotic growth of the total costs (3.10) for the accelerated construction of ũh,Lmax ,
described in §3. For comparison, we will also analyze the cost (3.9) associated with the
standard SC method, where iterative solvers for the sequence of solutions to the linear
systems (3.7) are seeded with the zero vector as an initial guess. According to the error
estimates discussed in §4.1, a sufficient condition to ensure ‖u− ũh,Lmax‖L2

%
≤ ε is that

‖e1‖L2
%
≤ Cfemh

s ≤ ε

3
, (4.12a)

‖e2‖L2
%
≤ ‖e2‖L∞% ≤ Csc e−rN2Lmax/N ≤ ε

3
, (4.12b)

‖e3‖L2
%
≤ ‖e3‖L∞% ≤ (Lmax + 2)2N τ√

β
≤ ε

3
. (4.12c)

In section §3 we defined Kzero and Kacc as the total number of solver iterations used by
the standard and accelerated SC methods, respectively, to solve (3.7) at each sample point.
Now let Kzero(ε) and Kacc(ε) represent the minimum values of Kzero and Kacc, respectively,
needed to satisfy the inequalities (4.12). Here we aim to estimate upper bounds of Kzero(ε)
and Kacc(ε). Note that, for fixed dimension N , level Lmax, and mesh size h, the total
number of iterations is determined by the inequality (4.12c). Larger values of Lmax and
1/h, lead to higher costs. Thus, the estimation of Kzero(ε) and Kacc(ε) has two steps: (i)
Given N and ε, estimate the maximum possible h to satisfy (4.12a) and the minimum Lmax

that achieves (4.12b); (ii) Substitute the obtained values into (4.12c) to estimate upper
bounds on Kzero(ε) and Kacc(ε) according to the CG error estimate (3.8). For (i), we have
the following lemma, that follows immediately from Lemmas 4.3 and 4.4.

Lemma 4.6. Given the assumptions of Lemmas 4.3 and 4.4, the error bounds (4.12a)
and (4.12b) can be achieved by choosing finite element mesh size h and the sparse-grid level
Lmax according to

h(ε) =

(
ε

3Cfem

)1/s

and Lmax(ε) =

⌈
N

log 2
log

(
1

rN
log

(
3Csc

ε

))⌉
. (4.13)

For convenience, we treat the integer quantities Kzero(ε), Kacc(ε), and Lmax(ε) as pos-
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itive real numbers in the rest of this section. Now, based on the estimate in Lemma 4.5
for the Lebesgue constant CLmax , we state the following lemma related to the choice of an
appropriate tolerance τ(ε) to satisfy the error bounds (4.12c).

Lemma 4.7. Let ε > 0. Given the assumptions of Lemmas 4.3 and 4.4, a sufficient
condition to ensure e3 < ε/3 is that

τ(ε) =

√
β ε

3(Lmax(ε) + 2)2N
. (4.14)

Moreover, it holds

1√
β

(L+ 2)2Nτ(ε) ≤ Csc e−rN2L/N
for L = 0, . . . , Lmax(ε)− 1,

where Lmax(ε) is the minimum level given in (4.13).

Proof. It is easy to see that (4.14) is an immediate result of (4.12c). For L = 0, . . . , Lmax(ε)−
1, we have

1√
β

(L+ 2)2Nτ(ε) ≤ 1√
β

(Lmax(ε) + 2)2Nτ(ε) ≤ ε

3
≤ Csg e−rN2(Lmax(ε)−1)/N ≤ Csg e−rN2L/N

,

which completes the proof.

Using the selected h := h(ε), Lmax := Lmax(ε), and τ := τ(ε), we now estimate the
upper bounds on the number of CG iterations needed to solve a linear system at a point
yLmax,j ∈ HLmax . To proceed, define

kzero := max
yLmax,j∈HLmax

kLmax,j and kLacc := max
yL,j∈∆HL

kL,j for L = 1, . . . , Lmax,

where kL,j is the number of CG iterations required to achieve ‖cL,j − c
(kL,j)
L,j ‖AL,j

≤ τ(ε),

which, in general, depends on the choice of initial vector. Note that, in the case c
(0)
L,j =

(0, . . . , 0)>, there is no improvement in the iteration count as the level L increases, so kzero

does not depend on L. Now we give the following estimates on kzero and {kLacc}Lmax
L=1 .

Lemma 4.8. Under the conditions of Lemmas 4.3 and 4.4, for any yLmax,j ∈ HLmax, if
the CG method with zero initial vector is used to solve (3.7) to tolerance τ > 0, then kzero

can be bounded by

kzero ≤ log

(
2
√
α‖uh‖L∞(Γ;H1

0 (D))

τ

)/
log

(√
κ̄+ 1√
κ̄− 1

)
. (4.15)

Here κ = supy∈Γ κ(y), with κ(y) the condition number of the matrix A(y) corresponding
to (3.2). Alternatively, if the initial vector is given by the acceleration method as in (3.5),
then kLacc can be bounded by

kLacc ≤ log

(
4
√
αCsc e−rN2(L−1)/N

τ

)/
log

(√
κ̄+ 1√
κ̄− 1

)
, (4.16)
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for L = 1, . . . , Lmax.

Proof. Let yL,j be an arbitrary point in HL, 1 ≤ L ≤ Lmax. Given an initial guess c
(0)
L,j ,

the minimum number of CG iterations needed to achieve tolerance τ > 0 can be obtained
immediately from (3.8), that is,

kL,j =

⌈
log

2‖cL,j − c(0)
L,j‖AL,j

τ

/ log

(√
κL,j + 1
√
κL,j − 1

)⌉
,

where AL,j = A(yL,j) is the FE system matrix corresponding to parameter yL,j , and

κL,j = κ(yL,j) is the condition number of AL,j (See Example 3.3). In the case that c
(0)
L,j =

(0, . . . , 0)>, the estimate in (4.15) can be obtained from (4.7a), i.e.,∥∥∥cL,j − c(0)
L,j

∥∥∥
AL,j

= ‖cL,j‖AL,j
≤
√
α‖uh‖L∞(Γ;H1

0 (D)).

Alternatively, when using ũh,L−1 for L = 1, . . . Lmax to provide initial vectors for the CG
solver (based on (3.5)), for yL,j ∈ ∆HL we use Lemma 4.7 and (4.7a) to get the following
estimate:∥∥∥cL,j − c(0)

L,j

∥∥∥
AL,j

≤
√
α‖uh − ũh,L−1‖L∞(Γ;H1

0 (D))

≤
√
α
(
‖uh − uh,L−1‖L∞(Γ;H1

0 (D)) + ‖uh,L−1 − ũh,L−1‖L∞(Γ;H1
0 (D))

)
≤
√
α

(
Csc e−rN2(L−1)/N

+
1√
β

(L+ 1)2Nτ

)
≤ 2
√
αCsc e−rN2(L−1)/N

.

This leads directly to the estimate in (4.16).

In the accelerated case, the sparse-grid interpolant ILmax [uh] must be constructed in the
following fashion: before solving the system (3.7) corresponding to a sample point yL,j ∈
∆HL, we must first solve the systems for all sample points in HL−1. With a total number
∆ML = #(∆HL) of new linear systems at level L, the total number of CG iterations for the
newly added points at level L can be bounded by ∆MLkzero and ∆MLk

L
acc, for the standard

and the accelerated cases, respectively. Then since MLmax =
∑Lmax

L=1 ∆ML, we find that the
total number of iterations for the standard and accelerated schemes can be bounded as

Kzero(ε) ≤MLmax kzero, and Kacc(ε) ≤
Lmax∑
L=1

∆ML k
L
acc.

This leads to the following estimates.
Theorem 4.9. Given Assumption 4.2, and the conditions of Lemmas 4.3 and 4.4, for

ε > 0, the minimum total number of CG iterations Kzero(ε) to achieve ‖u− ũh,Lmax‖L2
%
< ε,
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using zero initial vectors is bounded by

Kzero(ε) ≤ C1

[
log

(
3Csc

ε

)]N [
C2 +

1

log 2
log log

(
3Csc

ε

)]N−1

× 1

log
(√

κ+1√
κ−1

) {log

(
C3

ε

)
+ C4 + 2N log log

[
1

rN
log

(
3Csc

ε

)]}
,

(4.17)

where κ is as defined in Lemma 4.8, and the constants C1, C2, C3 and C4 are defined by

C1 =

(
e

log 2

)N−1( 2

rN

)N
, C2 = 1 +

1

log 2
log

(
1

rN

)
,

C3 = 6

√
α

β
‖uh‖L∞(Γ;H1

0 (D)), C4 = 2N log

(
2N

log 2

)
.

(4.18)

Proof. To achieve the prescribed error, we balance the three error sources that contribute
to the total error (4.8). To control e1 and e2, set h = h(ε) and Lmax = Lmax(ε) according
to Lemma 4.6. For the solver error e3, we choose the solver tolerance τ = τ(ε) according to
Lemma 4.7. Then, the total number of iterations Kzero(ε) can be bounded by

Kzero(ε) =

MLmax∑
j=1

≤MLmax kzero. (4.19)

From Lemma 4.7 and 4.8, we have

kzero ≤ log

(
2
√
α‖uh‖L∞(Γ;H1

0 (D))

τ

)/
log

(√
κ+ 1√
κ− 1

)

≤ log

(
6
√
α‖uh‖L∞(Γ;H1

0 (D))(Lmax + 2)2N

√
βε

)/
log

(√
κ+ 1√
κ− 1

)
(4.20)

≤
[
log

(
C3

ε

)
+ 2N log (Lmax + 2)

]/
log

(√
κ+ 1√
κ− 1

)

≤
{

log

(
C3

ε

)
+ C4 + 2N log log

(
1

rN
log

(
3Csc

ε

))}/
log

(√
κ+ 1√
κ− 1

)
.

In addition, following [30, Lemma 3.9], we bound the number of interpolation points:

MLmax ≤
Lmax∑
L=1

2L
(
N − 1 + L

N − 1

)
≤

Lmax∑
L=1

2L
(

1 +
L

N − 1

)N−1

eN−1

≤ eN−12Lmax+1

(
1 +

Lmax

N − 1

)N−1

(4.21)

≤ 2eN−1

{
log

(
3Csc

ε

)}N {
C2 +

1

log 2
log log

(
3Csc

ε

)}N−1

,
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where in the last line we have used (4.13) to replace Lmax. Substituting (4.20) and (4.21)
into (4.19) concludes the proof.

Theorem 4.10. Given Assumption 4.2, and the conditions of Lemmas 4.3 and 4.4, for
ε > 0, the minimum total number of CG iterations Kacc(ε), to achieve ‖u− ũh,Lmax‖L2

%
< ε,

in Algorithm 1, is bounded by

Kacc(ε) ≤ C1

[
log

(
3Csc

ε

)]N [
C2 +

1

log 2
log log

(
3Csc

ε

)]N−1

× 1

log

(√
κ+ 1√
κ− 1

) {C5 + 2
(

2
1
N − 1

)
log

(
3Csc

ε

)
+ 2N log log

[
1

rN
log

(
3Csc

ε

)]}
,

(4.22)
where κ = supy∈Γ(κ(y)) as in Lemma 4.8, C1 and C2 are defined as in (4.18), and C5 is
defined by

C5 = 2N log

(
2N

log 2

)
+ log

(
4

√
α

β

)
.

Proof. To achieve the prescribed error, we again choose h = h(ε), Lmax = Lmax(ε) and
τ = τ(ε) as in Lemmas 4.6 and 4.7. Then, the total number of iterations Kacc(ε) can be
bounded by

Kacc(ε) =

Lmax∑
L=1

∑
yL,j∈∆HL

kL,j ≤
Lmax∑
L=1

∆ML k
L
acc.

From Lemma 4.7 and 4.8, for L = 1, . . . , Lmax, we have

kLacc ≤ log

(
4
√
αCsc e−rN2(L−1)/N

τ

)/
log

(√
κ+ 1√
κ− 1

)

≤ 1

log
(√

κ+1√
κ−1

) log

(
12
√
αCscCLmaxe−rN2(L−1)/N

√
βε

)

=
1

log
(√

κ+1√
κ−1

) log

[(
3Csce

−rN2L/N

ε

)
4

√
α

β
CLmaxerN2L/N−rN2(L−1)/N

]

≤ 1

log
(√

κ+1√
κ−1

) log

(
4

√
α

β
CLmaxerN(2L/N−2(L−1)/N)

)

=
1

log
(√

κ+1√
κ−1

) [log

(
4

√
α

β
CLmax

)
+ rN

(
2L/N − 2(L−1)/N

)]
.
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Hence,

Kacc(ε) ≤MLmax

log
(

4
√
α/βCLmax

)
log
(√

κ+1√
κ−1

) +
rN

log
(√

κ+1√
κ−1

) Lmax∑
L=1

∆ML

(
2Lmax/N − 2(L−1)/N

)
︸ ︷︷ ︸

S

,

where S can be bounded using results from geometric sums, i.e.,

S ≤
Lmax∑
L=1

2L
(
N − 1 + L

N − 1

)(
2Lmax/N − 2(L−1)/N

)
≤ eN−1

(
1 +

Lmax

N − 1

)N−1 Lmax∑
L=1

(
2Lmax/N − 2(L−1)/N

)
2L

= eN−1

(
1 +

Lmax

N − 1

)N−1{(
1− 1

21+1/N

)
2Lmax+12Lmax/N +

2

21+1/N − 1
− 21+Lmax/N

}
≤ eN−1

(
1 +

Lmax

N − 1

)N−1 (
21/N − 1

)
2Lmax+22Lmax/N .

Combining the last two inequalities, along with (4.21), we get

Kacc(ε) ≤ eN−1

(
1 +

Lmax

N − 1

)N−1

2Lmax+1

× 1

log
(√

κ+1√
κ−1

) log

(
4

√
α

β

)
+ 2N log (Lmax + 2) + 2rN

(
21/N − 1

)
2Lmax/N

Substituting (4.13) for Lmax concludes the proof.

In the case of the accelerated SC method, an interpolant IL−1[ũh], defined by (4.5) and
(3.4), must be evaluated for each of the ∆ML collocation points in ∆HL. Each interpolant
evaluation costs 2ML−1−1 operations, i.e., additions and multiplications, and must be eval-
uated for each of the Mh components of the FEM coefficient vector. Then the interpolation
cost on each level is Mh∆ML(2ML−1− 1) for L = 1, . . . , Lmax(ε). Now we give an estimate
of the total interpolation cost Cint(ε) for our algorithm to achieve the prescribed accuracy
ε.

Theorem 4.11. Given Assumption 4.2 and the conditions of Lemma 4.3, for sufficiently
small ε > 0, the total cost of interpolation when using the sparse grid interpolation method
in (3.5) is bounded by

Cint(ε) ≤MhC8

(
1

rN
log

(
3Csc

ε

))2N {
C2 +

1

log 2
log log

(
3Csc

ε

)}2(N−1)

,

where C2 are defined as in Theorem 4.9, and C8 = 64 e2(N−1).
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Proof. The total interpolation cost is bounded by

Cint(ε) ≤ 2Mh

Lmax(ε)∑
L=2

∆MLML−1

≤ 2Mh

Lmax(ε)∑
L=2

2L
(
N − 1 + L

N − 1

) L∑
l=1

2l
(
N − 1 + l

N − 1

)

≤ 2Mh

Lmax(ε)∑
L=2

2L
(
N − 1 + L

N − 1

) L∑
l=1

2l
(
N − 1 + l

N − 1

)

≤ 2Mh

Lmax(ε)∑
L=2

2L
{(

N − 1 + L

N − 1

)}2

2L+1

≤ 4Mh

{(
N − 1 + Lmax(ε)

N − 1

)}2

4Lmax(ε)+1

≤ 16Mhe2(N−1)4Lmax(ε)

(
1 +

Lmax(ε)

N − 1

)2(N−1)

. (4.23)

Substituting the definition of Lmax(ε) from Lemma 4.6 into (4.23) concludes the proof.

Based on Theorems 4.9, 4.10 and 4.11, we finally discuss the savings of the accelerated
SC method proposed in §3. By comparing the estimates of Kzero(ε) and Kacc(ε), we see
that the acceleration technique reduces log(C3/ε) in (4.17) to 2

(
21/N − 1

)
log (3Csc/ε) in

(4.22). Here both terms are of the same asymptotic order with respect to ε, but the savings
from acceleration increases with dimension N since (21/N − 1) → 0 as N → ∞. On the
other hand, when taking into account the cost of interpolation Cint, we must consider the
cost Citer of performing each iteration. In the case of using CG solvers, Citer is the cost of
one matrix-vector multiplication, and will be determined by the size of the unknown vector,
Mh, and the sparsity of the mass matrix A(y). Thus Citer is proportional to the size of
the finite element vector, i.e., Citer = CDMh, where CD depends on the dimension d of
the physical domain and choice of finite element basis. For example, without the use of a
preconditioner, we can assume that the condition numbers of the matrices A(y), for y ∈ Γ,
satisfy

κ := sup
y∈Γ

κ(y) ≤
(
Cκ
h

)2

,

where the constant Cκ > 0 is independent of y ∈ Γ [3]. Then we can examine the
contribution of the condition number in Theorems 4.9 and 4.10: using the inequality
log(x) ≥ (x − 1)/x and Lemmas 4.3 and 4.6, we bound the terms involving the condi-
tion number as

1

log
(√

κ+1√
κ−1

) ≤ √κ+ 1

2
≤ Cκ

(
3Cfem

ε

)1/s

.
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Now as ε → 0, the asymptotic iterative solver costs, Czero = CDMhKzero are of the order

Mh

(
1
ε

)1/s {
log
(

1
ε

)}N+1 {
log log

(
1
ε

)}N−1
, while in the accelerated case, the estimate for

CDMhKacc, is of the same order with respect to ε, but with an improvement to the constant
of
(
21/N − 1

)
. For the accelerated method, the additional interpolation costs Cint are of order

Mh

{
log
(

1
ε

)}2N {
log log

(
1
ε

)}2(N−1)
, which is negligible compared to the iterative solver

complexity. It is clear that, asymptotically, the accelerated method leads to a net reduction
in computational cost. We remark that for many adaptive interpolation methods, the
addition of new points already involves evaluation of the current (coarse) interpolant. In
this case, the cost of interpolation can be ignored, and the accelerated method should be
used.

5. Numerical examples. The goal of this section is to demonstrate the reduction in
computational cost of SC methods using the proposed acceleration technique. In Example
5.1, we first use the accelerated SC method to solve an stochastic elliptic PDE with one
spatial dimension, and compute the overall cost and iteration savings gained by acceleration.
Example 5.2 considers a similar problem and looks at the number of CG iterations versus
the collocation error, comparing the implementation of the method using isotropic and
anisotropic sparse grids, and demonstrating the effect of varying stochastic dimension N
on the convergence of the individual systems. In addition, as described in Remark 3.6,
we extend our acceleration technique to interpolated preconditioners, which also exhibit
the convergence improvements of the method. Finally, Example 5.3 applies the accelerated
method to iterative solvers for nonlinear parametrized PDEs.

The analysis in section 4.1 consisted of two components: (i) estimates for the reduction
in solver iterations from using acceleration, and (ii) interpolation costs. The interpolation
costs can be computed exactly for non-adaptive methods, and for adaptive implementa-
tions of sparse grid SC the interpolation costs can be ignored. In Example 5.1, all error
contributions are balanced, and the total cost is examined, including both solver iterations
and interpolation construction. In Examples 5.2 and 5.3 we focus only on the number of
iterations of the CG solver.

Example 5.1. We consider the following elliptic stochastic PDE{
−∇ · (a (x,y)∇u (x,y)) = 10 in D × Γ,

u(x,y) = 0 on ∂D × Γ,
(5.1)

where D = [0, 1], y = (y1, y2, y3, y4)>, Γn = [−1, 1], n = 1, . . . , 4, and the coefficient a is
given by:

log (a (x,y)− 1) = e−1/8 (y1 cosπx+ y2 sinπx+ y3 cos 2πx+ y4 sin 2πx) . (5.2)

The random variables {yi}4i=1 are independent and identically distributed uniform random
variables in [−1, 1]. In the one-dimensional physical domain, a finite element discretization
using linear elements yields tridiagonal, symmetric positive-definite systems. While this
type of system could be solved efficiently by direct methods, nevertheless we use CG solvers
to demonstrate the convergence properties of the acceleration method.

Table 1 compares the standard and the accelerated SC methods, where the error for each
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approximate solution, ũh,Lmax , is computed against a highly refined approximate reference
solution ũh∗,L∗ with h∗ = 2−14, L∗ = 10. In Figure 1 we plot the savings of the accelerated
SC method, computed according to the cost metrics (3.9) and (3.10). Since the constants
Cfem and Csc in Lemma 4.6 are not known a priori, to balance the error contributions in
(4.12) we use trial and error to determine sufficient values h, Lmax, and τ to achieve the
desired overall error ε in the L2

% norm. Especially for the larger systems, i.e., those with a
large number of spatial degrees of freedom, significant savings are achieved. The percent
savings in the number of iterations versus the cost of interpolation are calculated according
to

Czero − Cacc

Czero
=
MhCD(Kzero −Kacc)− Cint

MhCDKzero
,

where CD = 5, since the matrices are tridiagonal.

Tot. Err FE DoFs SC Pts CG tol Kzero Kacc Savings

1× 10−2 255 137 1× 10−3 28,259 21,123 19.4 %

5× 10−3 511 401 5× 10−3 173,671 83,884 42.4%

1× 10−3 2,047 1,105 1× 10−4 2,001,905 626,215 62.3%

5× 10−4 4,095 2,929 5× 10−5 10,878,352 1,842,703 74.5%

1× 10−4 16,383 7,537 1× 10−5 114,570,175 12,345,968 75.1%

Table 1: Comparison in computational cost between the standard and the accelerated SC
methods for solving (5.1)–(5.2).
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Figure 1: Cost (left axis) and percent savings (right axis) of the accelerated SC method
versus the standard SC method for solving (5.1)–(5.2). Costs are computed according to
(3.9) and (3.10).
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Example 5.2. We consider the following stochastic linear elliptic problem{
−∇ · (a (x,y)∇u (x,y)) = cos(x1) sin(x2) in D × Γ,

u(x,y) = 0 on ∂D × Γ,
(5.3)

where D = [0, 1] × [0, 1], Γn = [−
√

3,
√

3], n = 1, . . . , N , and x = (x1, x2) is the spatial
variable. The random diffusion term has one-dimensional spatial dependence given by

log(a(x,y)− 0.5) = 1 + y1

(√
πR/2

)1/2
+

N∑
n=2

ζnϕn(x)yn, (5.4a)

where

ζn := (
√
π R)1/2 exp

(
− (bn/2cπR)2

8

)
, n > 1 (5.4b)

and

ϕn(x) :=


sin

(
bn/2cπx1

Rp

)
, n even

cos

(
bn/2cπx1

Rp

)
, n odd.

(5.4c)

The random variables {yn}Nn=1 are i.i.d. and are each uniformly distributed in [−
√

3,
√

3],
with zero mean and unit variance, i.e., E[yn] = 0, and E[ynym] = δnm, for n,m ∈ N+. The
finite dimensional stochastic diffusion a represents the N -term truncation of an expansion
of a random field with stationary covariance function, given by

Cov [log (a− 0.5)] (x1, x
′
1) = exp

(
−(x1 − x′1)2

R2
c

)
, (5.5)

where x1, x
′
1 ∈ [0, 1], and Rc is the physical correlation length for the random field a. The

parameter Rp in (5.4c) is given by Rp = max{1, 2Rc} and R is given by R = Rc/Rp. Then
ζn and ϕn(x) are the eigenvalues and eigenfunctions associated with (5.5). Here we will
consider two correlation lengths, namely Rc = 1/2, and Rc = 1/64, where Figure 2 shows
the corresponding decay of eigenvalues. For the spatial discretization, we use a finite element
approximation on a regular triangular mesh with linear finite elements and 4225 degrees of
freedom. The CG method is used for the linear solver with diagonal preconditioners and a
tolerance of 10−14.

First, for Rc = 1/64, the error and total iteration count of both the standard case, using
zero initial vectors, and accelerated SC construction, computed using several dimensions N ,
are summarized in Table 2. The error is measured using the expectation of the approximate
solutions, ‖E[uh,Lmax ] − E[uh,L∗ ]‖L2(D), for Lmax = 1, . . . , 7, where the “exact” solution
E[uh,L∗ ] is computed using L∗ = 8. We compare these errors against the cumulative total
number of iterations, Kzero and Kacc, needed to construct E[uh,Lmax ].

An alternative approach to accelerating SC methods is found in [20]. For a particular SC
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Figure 2: First 19 eigenvalues for (5.5) for correlation length Rc = 1/64, 1/2.

Error SC Pts Kzero Kacc Savings in K

N=3

3.83e-8 25 6,780 5,991 11.6%

9.57e-10 69 18,893 14,628 22.6%

9.86e-12 177 48,691 27,765 43.0%

N=5

5.28e-07 61 17058 15095 11.6%

1.03e-08 241 67,955 53,992 20.6%

1.44e-10 801 226,597 150,241 33.7%

N=7

2.43e-08 589 168,237 136,072 19.1%

6.63e-10 2,465 706,049 500,718 29.1%

1.94e-11 9,017 2,585,970 1,496,391 42.1%

N=9

1.68e-07 1,177 338,428 277,583 18.0%

7.83e-09 6,001 1,729,337 1,273,895 26.3%

8.86e-11 26,017 7,505,343 4,719,820 37.1%

N=11

2.59e-07 2,069 596,368 495,705 16.9%

2.43e-08 12,497 3,608,185 2,736,615 24.2%

1.95e-09 63,097 18,231,420 12,139,658 33.4%

Table 2: Iteration counts and savings of the accelerated SC method for solving (5.3)–(5.4)
with correlation length Rc = 1/64, and stochastic dimensions N = 5, 7, 9, and 11.
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level Lmax, this method orders the collocation points lexicographically, with each dimension
ordered according to the decay of the eigenvalues in (5.4a). We also implemented a similar
method without the sequential ordering; for a given level L, at each new collocation point in
∆HL the solution at the nearest collocation point from lower levels is given as an initial guess
to accelerate the CG solver. We refer to this method as the “nearest neighbor” approach.
Figure 3 shows the average number of iterations needed to solve the linear system (3.7),
where the average is taken over the new points at level L, i.e., ∆HL, for L = 1, . . . , 7.
We compare our interpolated acceleration algorithm, the nearest neighbor approach, and
standard SC method without acceleration, for N = 3 and N = 11, using Rc = 1/64. The
interpolated initial vector provided by the acceleration algorithm yields a reduction in the
average number of iterations at each level, which increases with L. Figure 3 also shows
the effect of using the nearest neighbor solution as the initial vector, which provides some
improvement over the standard case using zero initial vectors, but the savings do not match
those of our acceleration scheme. Note that since the number of new collocation points
grows exponentially with each level (cf (4.3)), there is an increase in total iteration savings
over successive levels in both the nearest neighbor and accelerated case.

The left plot of Figure 4 shows the total iteration savings achieved by the acceleration
algorithm with different maximum collocation levels Lmax = 1, . . . , 6. The savings are
measured as the percentage reduction in the cumulative iteration count up to level Lmax,
relative to standard case using zero initial vectors, i.e., (Kzero −Kzero)/Kzero. Here we also
see the effect of stochastic dimension on the convergence of SC methods: as N increases,
our algorithm provides less accurate initial guesses for a given maximum SC level Lmax.
This can also be seen by comparing the left and right plots of Figure 3, which show how the
average number of iterations at a given SC level L changes from N = 3 to N = 11. On the
other hand, the right plot of Figure 4 shows the same total iteration savings now plotted
versus error. As above, the error is measured as ‖E[uh,Lmax ]− E[uh,L∗ ]‖L2(D), with L∗ = 7.
These results are in agreement with the theoretical asymptotic estimates from Theorem
4.10, which predict an increased savings vs error for larger dimensions.

Next we examine the effect of the correlation length, Rc, on our acceleration algorithm.
Larger correlation lengths result in faster decay of eigenvalues of the covariance function
(5.5) (see Figure 2), and implies that u(y) depends on certain components of the vector y
more than others, which reduces the effectiveness of isotropic methods. Figure 5 plots the
convergence of the error in E[uh,L] versus the total number of CG iterations for N = 3 and
N = 11, and for both Rc = 1/2 and Rc = 1/64. The larger correlation length, Rc = 1/2,
results in slower convergence of the SC interpolant than for Rc = 1/64, but note that the
accelerated method reduces the total iteration count in both cases.

On the other hand, we can employ anisotropic methods to increase the efficiency of SC in
the case of larger correlation lengths [29]. Anisotropic SC methods will place more points in
directions corresponding to large eigenvalues of (5.5), and the importance of each dimension
is encoded in a weight vector (see (4.3)). Figure 6 plots the average number of iterations for
problem (5.3)–(5.4) with a relatively large correlation length Rc = 1/2, and N = 11. Here
we employ the weights given by an a posteriori selection described in [29], i.e., the weight
vector α ∈ RN , with α1 = 0.85, α2 = α3 = 0.8, α4 = α5 = 1.0, α6 = α7 = 1.6, α8 = α9 =
2.6, α10 = α11 = 3.7. The acceleration method decreases the average number of iterations
needed to solve the linear system, but the effect is not as pronounced as in the case of an
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Figure 3: Comparison of the average CG iterations per level for solving problem (5.3)–(5.4)
with dimensions N = 3 (left) and N = 11 (right), and correlation length Rc = 1/64.
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Figure 4: Percentage cumulative reduction in CG iterations vs level (left) and error (right)
for solving (5.3)–(5.4) using our accelerated approach, with N = 5, 7, 9, and 11 and for
correlation length Rc = 1/64.
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Figure 5: The convergence of the SC approximation for solving (5.3)–(5.4), using CG, with
and without acceleration, for correlation lengths Rc = 1/64, 1/2, and dimensions N = 3
(left), and N = 11 (right).
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Figure 6: Average CG iterations per level for solving problem (5.3)–(5.4) for N = 11 and
with correlation length Rc = 1/2, using an isotropic SC (left) and anisotropic SC (right).
The inefficiencies from using an isotropic grid are partially offset by increased gains from
acceleration.
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CG iterations for standard SC

Level No PC Diag PC Inc. Chol. LPC = 1 LPC = 2 LPC = 3

1 243 243 55 55 – –

2 311.8 278.4 54.7 60.7 54.7 –

3 332.3 284.9 54.6 63.5 54.9 54.6

4 341.0 286.1 54.6 65.2 55.3 54.6

5 345.8 286.7 54.6 66.2 55.5 54.6

6 348.4 286.9 54.6 66.7 55.6 54.6

CG iterations for accelerated SC

Level No PC Diag PC Inc. Chol. LPC = 1 LPC = 2 LPC = 3

1 243 243 55 55 – –

2 299.3 264.6 52.9 58.4 52.9 –

3 295.8 251.3 49.1 57.1 49.4 49.1

4 270.8 225.8 43.7 52.3 44.2 43.7

5 237.0 194.3 37.3 45.8 38.0 37.3

6 186.1 151.9 28.9 36.0 29.5 28.9

Table 3: Average iteration counts for the standard SC method (top), and the accelerated
SC method (bottom) using six preconditioner schemes to solve (5.3)–(5.4) with N = 7,
and Rc = 1/64. From left to right: no preconditioner, diagonal preconditioners, incomplete
Cholesky preconditioners, and accelerated preconditioners (3.11) built using incomplete
Cholesky preconditioners with LPC = 1, 2, 3.

isotropic SC method. This occurs because the isotropic method places far too many points
in relatively unimportant directions, thus the dependence of u(y) on a certain component
yn of y may be well approximated at very low levels. Anisotropic methods exhibit better
convergence with respect to MLmax (and lower interpolation costs) versus isotropic methods,
yet we see here that the acceleration algorithm helps to somewhat offset the inefficiency of
isotropic methods for anisotropic problems.

In the preceding results we have used a simple diagonal preconditioner strategy. As
described in Remark 3.6, we can also construct efficient preconditioners with our acceleration
scheme. Table 3 shows the effectiveness of the preconditioning strategy for solving equations
(5.3)–(5.4), with N = 7 and Rc = 1/64, where we compare the average number of iterations
needed to solve (3.7) at each new point yL,j ∈ ∆HL at a given level L. Here we compute
an incomplete Cholesky preconditioner for each linear system on the levels L = 1, . . . , LPC,
for LPC = 1, 2, and 3, and use these to provide an “accelerated” preconditioner (3.11)
for the systems on the remaining levels LPC + 1, . . . , Lmax. We compare this against the
cases where a simple diagonal preconditioner and an incomplete Cholesky preconditioner
are used for each system. The three-level accelerated preconditioner reduces the average
number of iterations to within a decimal point of the incomplete Cholesky preconditioner,
and the cost of computing the low-level preconditioners and interpolating is relatively cheap
in comparison.
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SC Level 2 3 4 5 6

F [u] = u5, acc .03018 .113832 .2746 .7039 2.33314
F [u] = u5, zero .025976 .119256 .339678 .949184 2.61958

% Savings -16.2 4.5 19.2 25.8 10.9

F [u] = uu′, acc .027754 .089082 .22706 .629451 2.05741
F [u] = uu′, zero .026527 .090435 .273355 .895027 2.4008

% Savings -4.6 1.5 16.9 29.7 14.3

Table 4: Computational time in seconds for computing solution to problem 5.6.

Example 5.3. The preceding experiments demonstrate the benefits of using acceleration to
improve the convergence of individual iterative linear solvers. In the case of a nonlinear
PDE, the possibilities for savings can be even greater than the linear cases above, since
convergence of a nonlinear solver may be slow or even unattainable from a poor initial
vector. In this example, we consider the problem

−∇ · (a (x,y)∇u (x,y)) + F [u](x,y) = x in D × Γ,

u(0,y) = 0 in Γ,

u′(1,y) = 1 in Γ,

where a is given by (5.2), D = [0, 1], Γn = [−1, 1], n = 1, . . . , 4, and F [u] is some nonlinear
function of u. In what follows, we consider the nonlinear functions F [u] = u5, and F [u] =
uu′.

Nonlinear problems are typically solved with the use of iterative methods such as Picard
iterations or Newton’s method. We implement a combination of these methods that begins
with Picard iterations, then utilizes Newton’s method once the relative errors are small.
For spatial discretization, we use piecewise linear finite elements on [0, 1] with a mesh size
of h = 1/500, and solved the resulting systems at each iteration using exact methods. The
stopping criterion for the solver is a relative tolerance of 10−8 in the l2 norm.

Results for these experiments are given in Figure 7. For each SC level, L = 1, . . . , 8, we
plot the average number of nonlinear iterations, where the average is taken over the set of
points which are new to level L, namely ∆HL. Finally, we show the total computational
time in Table 4, for different maximum levels of stochastic approximation, measured on a
workstation with 1.7GHz dual core processors and 8 GB of RAM. We note that in Table 4,
the size of the finite element system is fixed. Thus, as we move to higher levels of collocation,
the stochastic approximation becomes relatively more expensive to compute compared to
the solving the finite element systems. This is why the savings begin to decrease after level
5, even though Figure 7 shows dramatic savings in iterations for higher levels. Furthermore,
the reason for the negative savings for a level L = 2 stochastic approximation is that the
interpolant is not yet accurate enough to overcome the additional cost of the acceleration.

6. Conclusion. In this work, we proposed and analyzed an acceleration method for con-
struction of sparse interpolation-based approximate solutions to PDEs with random input
parameters. The acceleration method exploits the sequence of increasingly accurate ap-
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Figure 7: Average number of Newton iterations per level for solving problem (5.6) with
F [u] = uu′ (left) and F [u] = u5 (right).

proximate solutions to provide increasingly good initial guesses for the underlying iterative
solvers that are used at each sample point. We have developed this method using a global
Lagrange polynomial basis but the method can easily be extended to other non-intrusive
methods.

While our method takes advantage of the natural structure provided by hierarchical
SC methods, we do not take advantage of any hierarchy in the spatial approximation. As
explained in Remark 3.4, our method may be used in combination with the multilevel
method to accelerate the construction of stochastic operators, and reuse information from
level to level. The combination of the acceleration scheme with multilevel methods will be
the subject of future work.

We rigorously studied error estimates in the special the case of linear elliptic PDEs
with random inputs, providing complexity estimates for the proposed method. Several
numerical examples confirm the expected performance. While the analysis of §4.1 applies to
linear stochastic PDEs, the acceleration method may be even more well suited to nonlinear
problems, as convergence rates may be improved, based on the choice of a good initial guess
for nonlinear iterative solvers. A final numerical example demonstrates the advantage of
our approach to nonlinear problems. A more rigorous study of acceleration for nonlinear
solvers and extension to time dependent problems may provide interesting opportunities in
the future.
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