
HOOVER: Distributed, Flexible, and Scalable
Streaming Graph Processing on OpenSHMEM

Max Grossman1, Howard Pritchard2, Tony Curtis3, Vivek Sarkar4

1

1Rice University
2Los Alamos National Laboratory

3Stony Brook University
4Georgia Institute of Technology

LA-UR-18-27888



2

Target Class of Problems

Streaming, dynamic graphs with edge and vertex 
additions/removals.

Graph is naturally partitioned across PEs.
• Partitions of graph in different PEs have few 

cross-PE edges.
• PEs are naturally de-coupled by properties of 

the graph.

As graph evolves over time, connectivity may 
grow.

PE 0

PE 2

PE 4

PE 1

PE 3

PE 5



3

Illustrative Example

Financial fraud detection.

Vertices represent transactions.

Vertex attributes may be source acct, destination 
acct, amount, etc.

Streaming transactions for same account to same 
PE leads to natural partitioning – with a few super 
vertices (e.g. large vendors).

PE 0

PE 2

PE 4

PE 1

PE 3

PE 5



4

One Challenge With Distributed Graph Frameworks

New transaction arrives.

How would this be handled in existing graph 
frameworks?

PE 0

PE 2

PE 4

PE 1

PE 3

PE 5



5

One Challenge With Distributed Graph Frameworks

New transaction arrives.

How would this be handled in existing graph 
frameworks?

GraphX (https://spark.apache.org/graphx/):

val transacts : RDD[(VertexID, ...)] = …
val new_transacts = transacts.flatMap(

(vert) -> {
if (insertNewVert) {
return [vert, newVert()]

} else {
return [vert]

}
})

PE 0

PE 2

PE 4

PE 1

PE 3

PE 5

https://spark.apache.org/graphx/


6

One Challenge With Distributed Graph Frameworks

New transaction arrives.

How would this be handled in existing graph 
frameworks?

GraphX (https://spark.apache.org/graphx/):

val transacts : RDD[(VertexID, ...)] = …
val new_transacts = sc.parallelize(local_new)
val next_transacts = transacts.join(new_transacts)

PE 0

PE 2

PE 4

PE 1

PE 3

PE 5

https://spark.apache.org/graphx/


7

One Challenge With Distributed Graph Frameworks

GraphX (https://spark.apache.org/graphx/):

val transacts : RDD[(VertexID, ...)] = …
val new_transacts = sc.parallelize(local_new)
val next_transacts = transacts.join(new_transacts)

Problems:
• Both approaches are globally bulk synchronous, 

imply global barriers and possibly a shuffle.
• Only PE 2 really needs to be involved at this 

point – vertex insertion is entirely local.

PE 0

PE 2

PE 4

PE 1

PE 3

PE 5

https://spark.apache.org/graphx/


8

Introducing HOOVER

Iterative dynamic graph modeling and analysis 
framework.
• Be able to update/mutate graphs
• Then analyze impact those updates have had on 

structure or other properties.

C/C++ library built on OpenSHMEM 1.4 – PGAS-by-design.

Emphasis on de-coupled execution – communication is 
one-sided and localized.

Runtime manages all computation and communication.

Users provide callbacks that implement application-
specific functionality.

0

1
0

0

0
0

0

0 0
1

1 1
0

0
1

1

0
01

1
1

1

1

HOOVER sucking up your dynamic data…

0

1
0

0

0
0

0

0 0
1

1 1
0

0
10

01

1
1

1

1



9

HOOVER API

Vertices expose a sparse vector-like 
API.

APIs for creating, removing, 
updating vertices.

Edges are created/deleted implicitly 
based on vertex distance measures.

Vertices grouped into partitions 
(chunks of the problem space).
• Many more partitions than PEs

hvr_vertex_t *hvr_vertex_create_n(
size_t nvecs, hvr_graph_id_t graph,
hvr_ctx_t ctx);

void hvr_vertex_set(unsigned feature,
double val, hvr_vertex_t *vec,
hvr_ctx_t in_ctx);

double hvr_vertex_get(unsigned feature,
hvr_vertex_t *vec, hvr_ctx_t in_ctx);

void hvr_vertex_delete_n(
hvr_vertex_t *vecs, size_t nvecs,
hvr_ctx_t ctx);



10

HOOVER API
Like other frameworks, callbacks are used to 
implement application-specific functionality.

start_iteration: Hook for logic to be 
executed at the start of every iteration.

update_metadata: Given a vertex and its 
neighborhood, update its attributes.

check_abort: Called at end of iteration, check 
if this PE will exit.

actor_to_partition: Compute actor partition.

might_interact: Check if any actors in two 
given partitions might have an edge.

start_iteration

update_metadata

check_abort

actor_to_partition

actor_to_partition

might_interact

might_interact



11

HOOVER API Example – Fraud Detection
Vertices represent transactions.

Vertex attributes may be source acct, 
destination acct, amount, etc.

Edges represent similarities/relations 
between transactions.

start_iteration

update_metadata

check_abort

start_iteration(vertex_iterator, ctx) {
Injest data from external data streams;

Convert into vertices in the graph;
}

update_metadata(vertex, neighbors) {
Update per-vertex attributes for pattern matching;

}

check_abort(vertex_iterator, ctx) {
Identify normative patterns;

Identify anomalies based on global normative patterns;

Print diagnostics, decide whether to exit;
}



12

HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_metadata

update_partitions

find_interacting_pes

update_edges

check_abort_driver



13

HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_metadata

update_partitions

find_interacting_pes

update_edges

check_abort_driver

Pass start_iteration callback 
an iterator over local vertices.

fetch_neighbors allows 
start_iteration to request 
neighborhood of a given vertex.



14

HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_partitions

find_interacting_pes

update_edges

check_abort_driver

update_metadata
Iterate over each local vertex.

Use fetch_neighbors to collect 
its neighborhood.

Call update_metadata with the 
vertex and its neighborhood.



15

HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_metadata

find_interacting_pes

update_edges

check_abort_driver

update_partitions

Based on updates to vertex 
attributes, recompute the 
partitions that have vertices 
present on the local PE.



16

HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_metadata

update_partitions

find_interacting_pes

update_edges

check_abort_driver

Based on locally active 
partitions, find all other PEs 
containing vertices which my 
vertices may have edges with.



17

HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_metadata

update_partitions

find_interacting_pes

update_edges

check_abort_driver

Update edges for all local vertices 
based on interacting PEs.



18

HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_metadata

update_partitions

find_interacting_pes

update_edges

check_abort_driver

Based on all updates in current 
iteration, perform any cleanup 
and decide if we would like the 
current PE to exit the simulation.



19

Versioned Vertices

Decoupled nature of HOOVER requires remotely 
consistent vertices.

HOOVER is iterative -> sense of ordering 
between iterations.

PE A may access vertices on PE B when PE B is 
many iterations ahead of A in the simulation.
• Some applications may not care, and simply 

want the latest results.
• Others would like to prevent PE A from 

seeing into future iterations.

Every vertex maintains a history going back a 
fixed number of iterations.

iter=1
features

values

iter=2
features

values

iter=3
features

values

iter=4
features

values

…



20

Some HOOVER Optimizations

Remote Vertex Cache

Simple LRU fixed-size remote vertex cache.

Maximum age of members is tunable
• Clearing everything on every iteration ensures 

most up-to-date information, but increases 
communication.

• Not immediately evicting can lead to stale 
information.

Cache is bucketized by vertex ID to improve 
lookup speeds.

Read-Write Locks

Common communication pattern: atomically fetch 
large contiguous remote regions.

RW locks used to protect large memory regions, 
while enabling concurrent accesses.

long *hvr_rwlock_create_n(const int n);

void hvr_rwlock_rlock(long *lock,
int target_pe);

void hvr_rwlock_runlock(long *lock,
int target_pe);

void hvr_rwlock_wlock(long *lock,
int target_pe);

void hvr_rwlock_wunlock(long *lock,
int target_pe);



21

Performance Evaluation

Experiments are run on Edison (CraySHMEM 7.7.0) – 1 PE per core (24 PEs per node).

Two applications developed from scratch:
• Basic infectious disease model – pool of infected/uninfected actors performing random walks.
• Graph-based anomaly detection – Stream random vertices into the graph, search for normative 

patterns, identify anomalies as patterns that are similar but not identical to normative.

Infectious disease model execution time scaling Graph-based anomaly detection processing rate scaling.

*Global barriers on each iteration reduce throughput to ~40% of HOOVER performance.



22

Performance Analysis w/ Jupyter

http://localhost:8888/notebooks/analyze-hoover-logs.ipynb

http://localhost:8888/notebooks/analyze-hoover-logs.ipynb


23

Simple Graph Viz



24

Ongoing Work

Wenbin Lu (SBU): Sophisticated infectious disease model for mosquito-borne illnesses (based on work 
by Manore et al).

Wes Suttle (SBU): Using HOOVER as a use case for exploring fault tolerance in OSSS OpenSHMEM.

Max Grossman (Rice):
• Continued API and performance improvements, primarily motivated by Wenbin’s work on 

mosquito-borne illnesses and work on graph-based anomaly detection
• Cross-OpenSHMEM implementation performance comparisons
• Additional application development (Long Distance Leonard Jones)
• Multi-threading support
• Experiment with accelerators
• Experiment with active messages (supported by work by Jack Snyder, Duke University)



25

Conclusions

Introduced HOOVER: an iterative dynamic graph modeling and 
analysis framework.

Emphasis on de-synchronized, de-coupled execution – one-sided 
and PGAS by default.

This adds complexity to the programming model and runtime.
• Remote consistency becomes a big and important challenge.

But enables scalability in a way that bulk synchronous models 
can’t.

PE 0

PE 2

PE 4

PE 1

PE 3

PE 5

Github: https://github.com/agrippa/hoover
Contact: max.grossman@rice.edu

https://github.com/agrippa/hoover
mailto:max.grossman@rice.edu


26

Acknowledgements

LA-UR-18-27888


