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Target Class of Problems

Streaming, dynamic graphs with edge and vertex 
additions/removals.

Graph is naturally partitioned across PEs.
• Partitions of graph in different PEs have few 

cross-PE edges.
• PEs are naturally de-coupled by properties of 

the graph.

As graph evolves over time, connectivity may 
grow.
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Illustrative Example

Financial fraud detection.

Vertices represent transactions.

Vertex attributes may be source acct, destination 
acct, amount, etc.

Streaming transactions for same account to same 
PE leads to natural partitioning – with a few super 
vertices (e.g. large vendors).
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One Challenge With Distributed Graph Frameworks

New transaction arrives.

How would this be handled in existing graph 
frameworks?
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One Challenge With Distributed Graph Frameworks

New transaction arrives.

How would this be handled in existing graph 
frameworks?

GraphX (https://spark.apache.org/graphx/):

val transacts : RDD[(VertexID, ...)] = …
val new_transacts = transacts.flatMap(

(vert) -> {
if (insertNewVert) {
return [vert, newVert()]

} else {
return [vert]

}
})
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One Challenge With Distributed Graph Frameworks

New transaction arrives.

How would this be handled in existing graph 
frameworks?

GraphX (https://spark.apache.org/graphx/):

val transacts : RDD[(VertexID, ...)] = …
val new_transacts = sc.parallelize(local_new)
val next_transacts = transacts.join(new_transacts)
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One Challenge With Distributed Graph Frameworks

GraphX (https://spark.apache.org/graphx/):

val transacts : RDD[(VertexID, ...)] = …
val new_transacts = sc.parallelize(local_new)
val next_transacts = transacts.join(new_transacts)

Problems:
• Both approaches are globally bulk synchronous, 

imply global barriers and possibly a shuffle.
• Only PE 2 really needs to be involved at this 

point – vertex insertion is entirely local.
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Introducing HOOVER

Iterative dynamic graph modeling and analysis 
framework.
• Be able to update/mutate graphs
• Then analyze impact those updates have had on 

structure or other properties.

C/C++ library built on OpenSHMEM 1.4 – PGAS-by-design.

Emphasis on de-coupled execution – communication is 
one-sided and localized.

Runtime manages all computation and communication.

Users provide callbacks that implement application-
specific functionality.
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HOOVER API

Vertices expose a sparse vector-like 
API.

APIs for creating, removing, 
updating vertices.

Edges are created/deleted implicitly 
based on vertex distance measures.

Vertices grouped into partitions 
(chunks of the problem space).
• Many more partitions than PEs

hvr_vertex_t *hvr_vertex_create_n(
size_t nvecs, hvr_graph_id_t graph,
hvr_ctx_t ctx);

void hvr_vertex_set(unsigned feature,
double val, hvr_vertex_t *vec,
hvr_ctx_t in_ctx);

double hvr_vertex_get(unsigned feature,
hvr_vertex_t *vec, hvr_ctx_t in_ctx);

void hvr_vertex_delete_n(
hvr_vertex_t *vecs, size_t nvecs,
hvr_ctx_t ctx);
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HOOVER API
Like other frameworks, callbacks are used to 
implement application-specific functionality.

start_iteration: Hook for logic to be 
executed at the start of every iteration.

update_metadata: Given a vertex and its 
neighborhood, update its attributes.

check_abort: Called at end of iteration, check 
if this PE will exit.

actor_to_partition: Compute actor partition.

might_interact: Check if any actors in two 
given partitions might have an edge.

start_iteration

update_metadata

check_abort

actor_to_partition

actor_to_partition

might_interact

might_interact
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HOOVER API Example – Fraud Detection
Vertices represent transactions.

Vertex attributes may be source acct, 
destination acct, amount, etc.

Edges represent similarities/relations 
between transactions.

start_iteration

update_metadata

check_abort

start_iteration(vertex_iterator, ctx) {
Injest data from external data streams;

Convert into vertices in the graph;
}

update_metadata(vertex, neighbors) {
Update per-vertex attributes for pattern matching;

}

check_abort(vertex_iterator, ctx) {
Identify normative patterns;

Identify anomalies based on global normative patterns;

Print diagnostics, decide whether to exit;
}
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HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_metadata

update_partitions

find_interacting_pes

update_edges

check_abort_driver
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HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_metadata

update_partitions

find_interacting_pes

update_edges

check_abort_driver

Pass start_iteration callback 
an iterator over local vertices.

fetch_neighbors allows 
start_iteration to request 
neighborhood of a given vertex.
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HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_partitions

find_interacting_pes

update_edges

check_abort_driver

update_metadata
Iterate over each local vertex.

Use fetch_neighbors to collect 
its neighborhood.

Call update_metadata with the 
vertex and its neighborhood.
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HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_metadata

find_interacting_pes

update_edges

check_abort_driver

update_partitions

Based on updates to vertex 
attributes, recompute the 
partitions that have vertices 
present on the local PE.
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HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_metadata

update_partitions

find_interacting_pes

update_edges

check_abort_driver

Based on locally active 
partitions, find all other PEs 
containing vertices which my 
vertices may have edges with.
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HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_metadata

update_partitions

find_interacting_pes

update_edges

check_abort_driver

Update edges for all local vertices 
based on interacting PEs.
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HOOVER Runtime
Responsible for coordination of all communication and computation.

start_iteration

check_abort

start_iteration_driver fetch_neighbors

update_metadata_driver fetch_neighbors

update_metadata

update_partitions

find_interacting_pes

update_edges

check_abort_driver

Based on all updates in current 
iteration, perform any cleanup 
and decide if we would like the 
current PE to exit the simulation.
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Versioned Vertices

Decoupled nature of HOOVER requires remotely 
consistent vertices.

HOOVER is iterative -> sense of ordering 
between iterations.

PE A may access vertices on PE B when PE B is 
many iterations ahead of A in the simulation.
• Some applications may not care, and simply 

want the latest results.
• Others would like to prevent PE A from 

seeing into future iterations.

Every vertex maintains a history going back a 
fixed number of iterations.

iter=1
features

values

iter=2
features

values

iter=3
features

values

iter=4
features

values

…
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Some HOOVER Optimizations

Remote Vertex Cache

Simple LRU fixed-size remote vertex cache.

Maximum age of members is tunable
• Clearing everything on every iteration ensures 

most up-to-date information, but increases 
communication.

• Not immediately evicting can lead to stale 
information.

Cache is bucketized by vertex ID to improve 
lookup speeds.

Read-Write Locks

Common communication pattern: atomically fetch 
large contiguous remote regions.

RW locks used to protect large memory regions, 
while enabling concurrent accesses.

long *hvr_rwlock_create_n(const int n);

void hvr_rwlock_rlock(long *lock,
int target_pe);

void hvr_rwlock_runlock(long *lock,
int target_pe);

void hvr_rwlock_wlock(long *lock,
int target_pe);

void hvr_rwlock_wunlock(long *lock,
int target_pe);
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Performance Evaluation

Experiments are run on Edison (CraySHMEM 7.7.0) – 1 PE per core (24 PEs per node).

Two applications developed from scratch:
• Basic infectious disease model – pool of infected/uninfected actors performing random walks.
• Graph-based anomaly detection – Stream random vertices into the graph, search for normative 

patterns, identify anomalies as patterns that are similar but not identical to normative.

Infectious disease model execution time scaling Graph-based anomaly detection processing rate scaling.

*Global barriers on each iteration reduce throughput to ~40% of HOOVER performance.
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Performance Analysis w/ Jupyter

http://localhost:8888/notebooks/analyze-hoover-logs.ipynb

http://localhost:8888/notebooks/analyze-hoover-logs.ipynb
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Simple Graph Viz
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Ongoing Work

Wenbin Lu (SBU): Sophisticated infectious disease model for mosquito-borne illnesses (based on work 
by Manore et al).

Wes Suttle (SBU): Using HOOVER as a use case for exploring fault tolerance in OSSS OpenSHMEM.

Max Grossman (Rice):
• Continued API and performance improvements, primarily motivated by Wenbin’s work on 

mosquito-borne illnesses and work on graph-based anomaly detection
• Cross-OpenSHMEM implementation performance comparisons
• Additional application development (Long Distance Leonard Jones)
• Multi-threading support
• Experiment with accelerators
• Experiment with active messages (supported by work by Jack Snyder, Duke University)
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Conclusions

Introduced HOOVER: an iterative dynamic graph modeling and 
analysis framework.

Emphasis on de-synchronized, de-coupled execution – one-sided 
and PGAS by default.

This adds complexity to the programming model and runtime.
• Remote consistency becomes a big and important challenge.

But enables scalability in a way that bulk synchronous models 
can’t.
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Github: https://github.com/agrippa/hoover
Contact: max.grossman@rice.edu

https://github.com/agrippa/hoover
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