
UNCLASSIFIED

UNCLASSIFIED

U.S. ARMY RESEARCH,

DEVELOPMENT AND

ENGINEERING COMMAND

James A. Ross

Computational Scientist

Army Research Laboratory

21 AUG 2018

Scaling OpenSHMEM for Massively Parallel Processor Arrays
James A. Ross (Army Research Lab) and David A. Richie (Brown Deer Technology)

UNCLASSIFIED

UNCLASSIFIED

2

• Epiphany architecture

• Programming models

• Motivation for emulation and simulation

• Epiphany-based SoC emulation

• Simulation of multiple devices

• Simulated OpenSHMEM results

• Conclusions and future work

OUTLINE

UNCLASSIFIED

UNCLASSIFIED

3

• Design emphasizes simplicity, scalability, power-efficiency

• 2D array of RISC cores, 2D Network on Chip (NoC)

• 32-64KB shared global scratch memory per mesh node

• Fully divergent cores

• Minimal un-core functionality, e.g., no data or instruction cache

• Design scales to thousands of cores

• High performance/power efficiency

EPIPHANY RISC ARCHITECTURE

Mesh Node

32/64-bit RISC CPU

DMA

Engines

32-64 KB Local Memory

Network

Interface

Router

Timers
64-Word Register File

Sequencer

Interrupt Handler

Arithmetic Logic Unit

Floating Point Unit

UNCLASSIFIED

UNCLASSIFIED

4

• Scalability of architecture has been demonstrated in silicon:

EPIPHANY RISC ARCHITECTURE

Device Cores Node Address & FPU Power Efficiency

Epiphany-III 16 65nm 32-bit 50 GFLOPS/W

Epiphany-IV 64 28nm 32-bit 70 GFLOPS/W

Epiphany-V 1024 16nm 64-bit TBD

• Epiphany-V fabricated by TSMC

• Numerous firsts demonstrated ...

• Largest number of general-

purpose processor cores per chip

• Highest density HPC chip

• Most efficient chip design team

• Increases motivation to advance

the programming model for this

architecture

UNCLASSIFIED

UNCLASSIFIED

5

• Power-efficiency achieved by simplicity in architecture

• Software supports functionality typically done in hardware

• Distributed memory-mapped cores with limited memory per core

• Epiphany-III has 32 KB local SRAM per core

• Epiphany-V increased to 64 KB, same challenge

• Local memory used for instructions and data

• Non-uniform memory access (NUMA) to mapped local memory

• No hardware data/instruction cache

• Best viewed as a “distributed cluster on chip”

• Device employed as co-processor – requires offload semantics

• Resource constraints prevent running full process image

PROGRAMMING CHALLENGE

UNCLASSIFIED

UNCLASSIFIED

6

• Programming support for Epiphany has developed over time:

• Low-level support: eSDK1, COPRTHR3, PAL1

• Programming methods: GCC2, OpenSHMEM3, OpenCL4,

OpenMP5, MPI3,4, Erlang6, BSP7, Epython8

• Programming software/models used in this work

EPIPHANY SOFTWARE SUPPORT

1Adapteva, 2Embecosm, 3US Army Research Laboratory, 4BDT, 5University of

Ioannina, 6Uppsala University, 7Coduin, 8Nick Brown

• Code is compiled with a GCC front-end

(coprcc)

• Epiphany parallel programming with

OpenSHMEM or MPI

• Host CPU offload support with COPRTHR

• Linux runs on the HOST CPU

• Epiphany proto-OS support with

COPRTHR

• Together provides a complete

programming solution

Linux OS

GCC

COPRTHR

OpenSHMEM MPI

Host CPU Epiphany SoC

UNCLASSIFIED

UNCLASSIFIED

7

• Objective: develop an emulation and simulation capability for

Epiphany-based architectures

• Integrate with real software development workflow

• Seamless development and run-time integration

• Study architecture changes directly with real software

• Study multi-device integration/scaling/performance

• Enable software development before silicon is available

• Support hardware/software co-design for hybrid SoCs

• Desired accuracy: functional correctness, timing metrics

representative of real hardware execution

• Does not reproduce cycle-accurate state across large system

• EDA tools can be used for studying design details, but do not

scale

EMULATION AND SIMULATION

UNCLASSIFIED

UNCLASSIFIED

8

High-level design of Epiphany ISA emulator

EPIPHANY EMULATOR

Jump to IVT (PC= IVT + offset)

Interrupt?

Set interrupt state

Save PC (IRET=PC)

Load Instruction @ PC
16-bit or 32-bit

instruction?

PC += 2

PC += 4

Dispatch Instruction

Dispatch Instruction

Instruction Complete?

Update Instruction Phase

Y

Y

N

N

C
lo

c
k
 C

y
c
le

UNCLASSIFIED

UNCLASSIFIED

9

• Replicate and extend Parallella platform model

• Physical Epiphany SoC is interfaced using a driver and Linux

device special file mounted at /dev/epiphany/mesh0

• COPRTHR API performs reads and writes to multiple memory

mapped regions of this device special file

• global memory, per-core local memory and register file

• We integrate (one or more) emulated Epiphany devices using

POSIX shared memory regions under /dev/shm

• The emulator operates on the shared memory regions

asynchronously with the host APi interactions via COPRTHR

• Integration with user software applications is seamless

• Design avoids stand-alone tool or framework

• Enables a compilation and execution environment identical to a

platform with a physical Epiphany SoC

VIRTUAL EMULATED DEVICE

UNCLASSIFIED

UNCLASSIFIED

10

VIRTUAL EMULATED DEVICE

0x00161000

Local Memory

Shared

DRAM

Registers

0x00001000

0x02161000

0x8e000000

0x00009000

Reserved

0x00011000

0x00000000

Local Memory

Registers

Local Memory

Registers

0x00019000

0x00021000

0x00151000

0x00159000

…

0x80800000

0x80900000

0x8cb00000

0x808f0000

0x809f0000

0x8cbf0000

0x90000000

Core 0

Core 1

Core 15

/dev/shm/e32

Shared

Epiphany

Core

Emulator

Epiphany

Core

Emulator

Epiphany

Core

Emulator

…

emudevd

0x81000000

UNCLASSIFIED

UNCLASSIFIED

11

• Indirect threaded dispatch of 16-bit and 32-bit instructions

• Instruction decoding uses efficiencies in the ISA design

EPIPHANY EMULATOR

161819 17 01234569 8 7

01234569 8 7

0123

161819 17 01234569 8 7

16-bit Instruction32-bit Instruction

•Test lower 4 bits

• Form 10(14)-bit call vector offset for 16(32)-bit instruction

• Dispatch instruction through pre-initialized call vector table

• Additional functionality of emulator:

• Special registers control various functional behaviors

• Dual DMA engines operate independently

• Memory interface is abstracted for experimentation

UNCLASSIFIED

UNCLASSIFIED

12

• Compilation/execution identical for physical and emulated devices

• Output below shows the compilation and execution of an Epiphany

Parallella benchmark on an ordinary x86 workstation

• The Cannon benchmark code was taken directly from a Parallella

platform, compiled, and executed without modification

VIRTUAL EMULATED DEVICE

$ gcc –I. –I$COPRTHR_INC_PATH –c cannon_host.c
$ gcc –rdynamic –o cannon.x cannon_host \

–L$COPRTHR_LIB_PATH –lcoprthr –lcoprthrcc –lm –ldl
$ coprcc –DCOPRTHR_MPI_COMPAT –o cannon_tfunc.e32 cannon_tfunc.c \

-L$COPRTHR_LIB_PATH –lcoprthr_mpi
$./cannon.x –d 4 –n 32

COPRTHR-2 (Anthem) build 20180118.0014
main: Using –n=32, -s=1, -s2=1, -d=4
main: dd=0
main: 0x2248420 0x223f3f0
main: mpiexec time 0.117030 sec
main: # errors: 0

UNCLASSIFIED

UNCLASSIFIED

13

• Emulator is able to configure Epiphany devices with no physical

equivalent

• Number of cores, size of local memory, etc.

• New instructions can be added

• New un-core functionality can be added

• Example configuration of a 256-core Epiphany-III device is shown

below

SIMULATING NEW ARCHITECTURES

device-e32-256.conf
Device specification conf file
This is an emulated device based on Epiphany-III, 32-bit, 256 cores

devices = (
{

name="e32.0"; device_type="e32_emu";
nrows=16; ncols=16; row_offset=32; col_offset=8;
local_mem=0x8000; ext_mem=0x2000000;

}
);

UNCLASSIFIED

UNCLASSIFIED

14

• Instruction dispatch design allows instructions to stall to

support network latency

• Memory and network interfaces separate abstractions

• Network delay for transactions modeled as:

t = 1.5× (|r - r0| + |c - c0|)
where r (c) and r0 (c0) are local and remote row (column)

• Network congestion not presently modeled

SIMULATING NETWORK DELAY

UNCLASSIFIED

UNCLASSIFIED

15

• Test topology with 4 nodes simulated on x86 platform:

• 4 SoCs per node, 4 RISC-V + 16 Epiphany cores per SoC

• Network traffic modeled with NS-3

• Cores executed cross-compiled binaries

SIMULATING NEW PLATFORMS

E core

SoC

RV core

Node

UNCLASSIFIED

UNCLASSIFIED

16

• Enables development of software

for virtual/simulated platform

using same software stack that

will be used for physical platform

SIMULATION OF NEW PLATFORMS

NS-3 Simulation

Cluster

SCore ECore

RISC-V

ISA Sim

Epiphany

ISA Emu

PDES

State

Machine

HPC Simulation

Rack

Board

Multi-Chip Module

SoC

RISC-V SoC Epiphany SoC

Physical

Hardware

HPC Platform

Linux OS

GCC

COPRTHR

OpenSHMEM MPI
Software

Stack

UNCLASSIFIED

UNCLASSIFIED

17

• Target is a system comprised of hybrid RISC-V/Epiphany SoCs

• RISC-V supervisor cores replace host CPUs, e.g., on Parallella

• Large array of Epiphany cores perform computations

• Architecture is scalable

• We want to use larger networked systems to develop software and

study the behavior and performance of the overall system

• We will use the network simulator NS-3 for modeling network traffic

between multiple nodes containing hybrid devices

• RISC-V simulator is available with the RISC-V toolchain

• Epiphany cores emulated with the newly developed emulator

• Represents ongoing work, but first demonstrations have been

performed successfully

SIMULATING NEW PLATFORMS

UNCLASSIFIED

UNCLASSIFIED

18

SIMULATED OPENSHMEM RESULTS

UNCLASSIFIED

UNCLASSIFIED

19

SIMULATED OPENSHMEM RESULTS

UNCLASSIFIED

UNCLASSIFIED

20

SIMULATED OPENSHMEM RESULTS

UNCLASSIFIED

UNCLASSIFIED

21

SIMULATED OPENSHMEM RESULTS

UNCLASSIFIED

UNCLASSIFIED

22

• We have implemented an Epiphany ISA emulator

• 32-bit ISA support (for now)

• Configurable as virtual many-core device for testing and

software development on an ordinary x86 platform

• Design enables seamless interface, software development and

execution is identical to that of a platform with physical Epiphany

device

• Emulation and simulation will allow the study of future architectures

based on the Epiphany architecture

• Ongoing work includes the development of a simulation framework

for large multi-device platforms

• NS-3 is used for network simulating traffic

• RISC-V+Epiphany simulator/emulator for modeling hybrid SoC

• Enables the development and testing of software for future

architectures being investigated

CONCLUSIONS AND FUTURE WORK

