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• Epiphany architecture

• Programming models 

• Motivation for emulation and simulation

• Epiphany-based SoC emulation 

• Simulation of multiple devices

• Simulated OpenSHMEM results

• Conclusions and future work

OUTLINE



UNCLASSIFIED

UNCLASSIFIED

3

• Design emphasizes simplicity, scalability, power-efficiency

• 2D array of RISC cores, 2D Network on Chip (NoC)

• 32-64KB shared global scratch memory per mesh node

• Fully divergent cores

• Minimal un-core functionality, e.g., no data or instruction cache

• Design scales to thousands of cores

• High performance/power efficiency

EPIPHANY RISC ARCHITECTURE

Mesh Node

32/64-bit RISC CPU

DMA 

Engines

32-64 KB Local Memory

Network 

Interface

Router

Timers
64-Word Register File

Sequencer

Interrupt Handler

Arithmetic Logic Unit

Floating Point Unit
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• Scalability of architecture has been demonstrated in silicon:

EPIPHANY RISC ARCHITECTURE

Device Cores Node Address & FPU Power Efficiency

Epiphany-III 16 65nm 32-bit 50 GFLOPS/W

Epiphany-IV 64 28nm 32-bit 70 GFLOPS/W

Epiphany-V 1024 16nm 64-bit TBD

• Epiphany-V fabricated by TSMC

• Numerous firsts demonstrated ...

• Largest number of general-

purpose processor cores per chip

• Highest density HPC chip

• Most efficient chip design team

• Increases motivation to advance 

the programming model for this 

architecture
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• Power-efficiency achieved by simplicity in architecture

• Software supports functionality typically done in hardware

• Distributed memory-mapped cores with limited memory per core

• Epiphany-III has 32 KB local SRAM per core

• Epiphany-V increased to 64 KB, same challenge

• Local memory used for instructions and data

• Non-uniform memory access (NUMA) to mapped local memory 

• No hardware data/instruction cache

• Best viewed as a “distributed cluster on chip”

• Device employed as co-processor – requires offload semantics

• Resource constraints prevent running full process image

PROGRAMMING CHALLENGE
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• Programming support for Epiphany has developed over time:

• Low-level support: eSDK1, COPRTHR3, PAL1

• Programming methods: GCC2, OpenSHMEM3, OpenCL4, 

OpenMP5, MPI3,4, Erlang6, BSP7, Epython8

• Programming software/models used in this work

EPIPHANY SOFTWARE SUPPORT

1Adapteva, 2Embecosm, 3US Army Research Laboratory, 4BDT, 5University of 

Ioannina, 6Uppsala University, 7Coduin, 8Nick Brown

• Code is compiled with a GCC front-end 

(coprcc)

• Epiphany parallel programming with 

OpenSHMEM or MPI

• Host CPU offload support with COPRTHR

• Linux runs on the HOST CPU

• Epiphany proto-OS support with 

COPRTHR

• Together provides a complete 

programming solution

Linux OS

GCC

COPRTHR

OpenSHMEM MPI

Host CPU Epiphany SoC
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• Objective: develop an emulation and simulation capability for 

Epiphany-based architectures

• Integrate with real software development workflow

• Seamless development and run-time integration

• Study architecture changes directly with real software

• Study multi-device integration/scaling/performance

• Enable software development before silicon is available

• Support hardware/software co-design for hybrid SoCs

• Desired accuracy: functional correctness, timing metrics 

representative of real hardware execution

• Does not reproduce cycle-accurate state across large system

• EDA tools can be used for studying design details, but do not 

scale

EMULATION AND SIMULATION
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High-level design of Epiphany ISA emulator

EPIPHANY EMULATOR

Jump to IVT (PC= IVT + offset)

Interrupt?

Set interrupt state

Save PC (IRET=PC)

Load Instruction @ PC
16-bit or 32-bit 

instruction?
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PC += 4

Dispatch Instruction

Dispatch Instruction

Instruction Complete?

Update Instruction Phase
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• Replicate and extend Parallella platform model

• Physical Epiphany SoC is interfaced using a driver and Linux 

device special file mounted at /dev/epiphany/mesh0

• COPRTHR API performs reads and writes to multiple memory 

mapped regions of this device special file

• global memory, per-core local memory and register file

• We integrate (one or more) emulated Epiphany devices using 

POSIX shared memory regions under /dev/shm

• The emulator operates on the shared memory regions 

asynchronously with the host APi interactions via COPRTHR

• Integration with user software applications is seamless

• Design avoids stand-alone tool or framework

• Enables a compilation and execution environment identical to a 

platform with a physical Epiphany SoC

VIRTUAL EMULATED DEVICE
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VIRTUAL EMULATED DEVICE
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• Indirect threaded dispatch of 16-bit and 32-bit instructions 

• Instruction decoding uses efficiencies in the ISA design

EPIPHANY EMULATOR

161819 17 01234569 8 7

01234569 8 7

0123

161819 17 01234569 8 7

16-bit Instruction32-bit Instruction

•Test lower 4 bits

• Form 10(14)-bit call vector offset for 16(32)-bit instruction

• Dispatch instruction through pre-initialized call vector table

• Additional functionality of emulator:

• Special registers control various functional behaviors

• Dual DMA engines operate independently 

• Memory interface is abstracted for experimentation
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• Compilation/execution identical for physical and emulated devices

• Output below shows the compilation and execution of an Epiphany 

Parallella benchmark on an ordinary x86 workstation

• The Cannon benchmark code was taken directly from a Parallella 

platform, compiled, and executed without modification

VIRTUAL EMULATED DEVICE

$ gcc –I. –I$COPRTHR_INC_PATH –c cannon_host.c
$ gcc –rdynamic –o cannon.x cannon_host \

–L$COPRTHR_LIB_PATH –lcoprthr –lcoprthrcc –lm –ldl
$ coprcc –DCOPRTHR_MPI_COMPAT –o cannon_tfunc.e32 cannon_tfunc.c \

-L$COPRTHR_LIB_PATH –lcoprthr_mpi
$ ./cannon.x –d 4 –n 32

COPRTHR-2 (Anthem) build 20180118.0014
main: Using –n=32, -s=1, -s2=1, -d=4
main: dd=0
main: 0x2248420 0x223f3f0
main: mpiexec time 0.117030 sec
main: # errors: 0
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• Emulator is able to configure Epiphany devices with no physical 

equivalent

• Number of cores, size of local memory, etc.

• New instructions can be added

• New un-core functionality can be added

• Example configuration of a 256-core Epiphany-III device is shown 

below

SIMULATING NEW ARCHITECTURES

### device-e32-256.conf
### Device specification conf file
### This is an emulated device based on Epiphany-III, 32-bit, 256 cores

devices = (
{

name="e32.0"; device_type="e32_emu";
nrows=16; ncols=16; row_offset=32; col_offset=8;
local_mem=0x8000; ext_mem=0x2000000;

}
);
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• Instruction dispatch design allows instructions to stall to 

support network latency

• Memory and network interfaces separate abstractions

• Network delay for transactions modeled as:

t = 1.5× (|r - r0| + |c - c0|)
where r (c) and r0 (c0) are local and remote row (column)

• Network congestion not presently modeled

SIMULATING NETWORK DELAY
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• Test topology with 4 nodes simulated on x86 platform:

• 4 SoCs per node, 4 RISC-V + 16 Epiphany cores per SoC

• Network traffic modeled with NS-3

• Cores executed cross-compiled binaries

SIMULATING NEW PLATFORMS

E core

SoC

RV core

Node



UNCLASSIFIED

UNCLASSIFIED

16

• Enables development of software 

for virtual/simulated platform 

using same software stack that 

will be used for physical platform 

SIMULATION OF NEW PLATFORMS

NS-3 Simulation

Cluster

SCore ECore

RISC-V

ISA Sim

Epiphany

ISA Emu

PDES

State

Machine

HPC Simulation

Rack

Board

Multi-Chip Module

SoC

RISC-V SoC Epiphany SoC

Physical

Hardware

HPC Platform

Linux OS

GCC

COPRTHR

OpenSHMEM MPI
Software

Stack
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• Target is a system comprised of hybrid RISC-V/Epiphany SoCs

• RISC-V supervisor cores replace host CPUs, e.g., on Parallella

• Large array of Epiphany cores perform computations

• Architecture is scalable

• We want to use larger networked systems to develop software and 

study the behavior and performance of the overall system

• We will use the network simulator NS-3 for modeling network traffic 

between multiple nodes containing hybrid devices

• RISC-V simulator is available with the RISC-V toolchain

• Epiphany cores emulated with the newly developed emulator

• Represents ongoing work, but first demonstrations have been 

performed successfully

SIMULATING NEW PLATFORMS
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SIMULATED OPENSHMEM RESULTS
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SIMULATED OPENSHMEM RESULTS
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SIMULATED OPENSHMEM RESULTS
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SIMULATED OPENSHMEM RESULTS
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• We have implemented an Epiphany ISA emulator

• 32-bit ISA support (for now)

• Configurable as virtual many-core device for testing and 

software development on an ordinary x86 platform

• Design enables seamless interface, software development and 

execution is identical to that of a platform with physical Epiphany 

device

• Emulation and simulation will allow the study of future architectures 

based on the Epiphany architecture

• Ongoing work includes the development of a simulation framework 

for large multi-device platforms

• NS-3 is used for network simulating traffic

• RISC-V+Epiphany simulator/emulator for modeling hybrid SoC

• Enables the development and testing of software for future 

architectures being investigated

CONCLUSIONS AND FUTURE WORK


