
Md. Wasi-ur- Rahman, David Ozog, and James Dinan

2

Legal Disclaimers

OpenSHMEM Workshop 2018

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete information about
performance and benchmark results, visit http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/benchmarks .

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these
updates may make these results inapplicable to your device or system.

Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some parts
to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software,
and system configuration and you can learn more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3
instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

© 2018 Intel Corporation.
Intel, the Intel logo, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as property of others.

3

Outline

‒ Introduction and Motivation

‒ Existing Approaches

‒ Performance Counter APIs

‒ Design and Implementation of a Collector

‒ Experimental Analysis

‒ Conclusion and Future Work

OpenSHMEM Workshop 2018

4

Introduction and Motivation

OpenSHMEM Workshop 2018

• Effective performance profiling and analysis tools for PGAS applications have
been challenging

‒ One-sided high-throughput usage model

‒ Scale of parallel applications

‒ Rate and volume of communication operations generated

• Tracing is the most common approach

‒ Captures a log of each operation for offline analysis

‒ Instrumentation introduce overhead and impact dynamic behavior of applications

• Can an alternative lightweight instrumentation approach be devised that skip
library interposition, yet achieve detailed profiling for communication
performance?

5

Outline

‒ Introduction and Motivation

‒ Existing Approaches

‒ Performance Counter APIs

‒ Design and Implementation of a Collector

‒ Experimental Analysis

‒ Conclusion and Future Work

OpenSHMEM Workshop 2018

6

Existing Approaches

OpenSHMEM Workshop 2018

• A number of tools provide communication
tracing and analysis for OpenSHMEM
applications

– Collect detailed information

– Plug-in/out capabilities

– User-friendly interfaces

• Can generate per-operation overhead

• Requires library interposition

• Using hardware performance counters, e.g. PAPI
is challenging for process-level application
performance analysis

CrayPAT

HPCToolkit

KOJAK

PAPI

Other names and brands may be claimed as property of others

7

Our Approach

• Performance profiling using network and library counters through well-
defined SHMEM APIs

• Associate performance information to process level as well as contexts within
a process

• Simplest design of collector that impose low overhead to the application
runtime

• Profiling analysis and optimization strategies proposed in this work can be
applicable for other PGAS models

8

Outline

‒ Introduction and Motivation

‒ Existing Approaches

‒ Performance Counter APIs

‒ Design and Implementation of a Collector

‒ Experimental Analysis

‒ Conclusion and Future Work

OpenSHMEM Workshop 2018

9

OpenSHMEM Performance Counters

• Unsigned 64-bit integers

• Follow C language rules for unsigned integer arithmetic

• Monotonically increasing over the duration of program execution

• Incremented 0 or more times by SHMEM operations

‒ One single large put operation can be fragmented to several smaller writes

‒ Operation performed through shared memory rather than fabric

OpenSHMEM Workshop 2018

10

Implementation in Sandia OpenSHMEM

• Different design choices available for APIs based on operation type, input
arguments, and return values

• Two class API for per-context counters

‒ Operations reading data from a symmetric object (get, fetch AMO)

‒ Operations writing data to a symmetric object (put, non-fetch AMO)

• Each context utilizes

– Middleware level counters for issued operations

– Fabric level event counters for completed operations

• Tracks number of fabric operations that have completed in the local memory

‒ Associated with local process instead of a particular context

OpenSHMEM Workshop 2018

11

Proposed APIs

OpenSHMEM Workshop 2018

/* Retrieve write operation counters */

int shmemx_pcntr_get_issued_write(shmem_ctx_t ctx, uint64_t *cntr_value);

int shmemx_pcntr_get_completed_write(shmem_ctx_t ctx, uint64_t *cntr_value);

/* Retrieve read operation counters */

int shmemx_pcntr_get_issued_read(shmem_ctx_t ctx, uint64_t *cntr_value);

int shmemx_pcntr_get_completed_read(shmem_ctx_t ctx, uint64_t *cntr_value);

/* Retrieve target operation counters */

int shmemx_pcntr_get_completed_target(uint64_t *cntr_value);

/* Retrieve all operation counters */

int shmemx_pcntr_get_all(shmem_ctx_t ctx, shmemx_pcntr_t *pcntr);

Object to hold all counter values

12

Outline

‒ Introduction and Motivation

‒ Existing Approaches

‒ Performance Counter APIs

‒ Design and Implementation of a Collector

‒ Experimental Analysis

‒ Conclusion and Future Work

OpenSHMEM Workshop 2018

13

Design of a Collector

OpenSHMEM Workshop 2018

Init

Collect data
in sampling

interval

Dump

Close

• Simple design choices to collect the performance counter data

• Initiated as a thread to run alongside with the calling PE

• Sampling Interval defines the rate at which the data is collected;
controlled by a runtime parameter

• Samples are timestamped and stored in memory

• Samples are discarded when there has been no change in the counter
values since the last collection

• By default, collects the data for SHMEM_CTX_DEFAULT

• Additional contexts can be added and removed during runtime;
maximum number of allowable contexts can be controlled via a runtime
parameter

• Stored samples are dumped in a simple CSV format

14

Example program utilizing the Collector

OpenSHMEM Workshop 2018

shmem_init_thread(SHMEM_THREAD_

MULTIPLE, &tl);

start_collect();

shmem_ctx_create(&ctx);

register_context(ctx);

for (rem_pe = 0; rem_pe < npes;

rem_pe++) {

shmem_ctx_put (ctx, dest,

src, nelems, rem_pe);

}

remove_context(ctx);

stop_collect();

shmem_finalize();

shmem_init();

…

shmem_ctx_create(&ctx);

for (rem_pe = 0; rem_pe < npes;

rem_pe++) {

shmem_ctx_put(ctx, dest,

src, nelems, rem_pe);

}

…

shmem_finalize();

Contexts must not be
created with

SHMEM_CTX_PRIVATE/
SHMEM_CTX_SERIALIZED

15

Outline

‒ Introduction and Motivation

‒ Existing Approaches

‒ Performance Counter APIs

‒ Design and Implementation of a Collector

‒ Experimental Analysis

‒ Conclusion and Future Work

OpenSHMEM Workshop 2018

16

Experimental Setup

• Cluster with 14 compute nodes

– Intel® Xeon® E5-2699 V3, 36 cores/node @ 2.3 GHz

– 64 GB DDR4 memory

– Intel® Omni-Path Fabric

• Performance counter APIs are implemented on top of Sandia
OpenSHMEM (SOS), git #908682ee

• Applications

– Integer Sort (ISx)

– Stencil from Parallel Research Kernel (PRK)

OpenSHMEM Workshop 2018

17

Outline

‒ Introduction and Motivation

‒ Existing Approaches

‒ Performance Counter APIs

‒ Design and Implementation of a Collector

‒ Experimental Analysis

 Communication Schedule

 Overlap

 Load Balance

 Weak Scale Analysis

 Overhead

‒ Conclusion and Future Work

OpenSHMEM Workshop 2018

18

Communication Schedule

• Defines the next target PE in an all-to-all key exchange for each PE

• ISx implements three different communication scheduling pattern

– Round-Robin (default): Chooses the next PE based on the given PE’s rank and loops over a
circular array of PEs

– Incast: Iterates over an array of PEs from 0, 1, 2, … n

– Permute: Iterates over a random array of PEs

• Target counter progression follows different trend for different
communication schedule

• Divide the total number of PEs into four groups to highlight the differences in
progression

OpenSHMEM Workshop 2018

Permute and Incast follow a similar pattern
caused by an implementation bug in Permute
communication schedule; created the same

random array of PEs across all PEs

Communication Schedule

0

100

200

300

400

500

600

700

800

900

3 3.5 4 4.5 5 5.5

T
a

rg
e

t
C

o
u

n
te

r

Execution Time (sec)

PE 0 - 31

PE 32 - 63

PE 64 - 95

PE 96 - 127

0

100

200

300

400

500

600

700

800

900

3 3.5 4 4.5 5 5.5

T
a

rg
e

t
C

o
u

n
te

r

Execution Time (sec)

PE 0 - 31

PE 32 - 63

PE 64 - 95

PE 96 - 127

0

100

200

300

400

500

600

700

800

900

3 3.5 4 4.5 5 5.5

T
a

rg
e

t
C

o
u

n
te

r

Execution Time (sec)

PE 0 - 31

PE 32 - 63

PE 64 - 95

PE 96 - 127

0

100

200

300

400

500

600

700

800

900

3 3.5 4 4.5 5 5.5

T
a

rg
e

t
C

o
u

n
te

r

Execution Time (sec)

PE 0 - 31

PE 32 - 63

PE 64 - 95

PE 96 - 127

OpenSHMEM Workshop 2018 19

Round-Robin Incast

Permute Correct Permute
Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device
or system. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit http://www.intel.com/performance. Copyright © 2018, Intel Corporation. *Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

20

Outline

‒ Introduction and Motivation

‒ Existing Approaches

‒ Performance Counter APIs

‒ Design and Implementation of a Collector

‒ Experimental Analysis

 Communication Schedule

 Overlap

 Load Balance

 Weak Scale Analysis

 Overhead

‒ Conclusion and Future Work

OpenSHMEM Workshop 2018

21

Overlap

• Observe the dynamic differences between the posted and completed
operation counters

• Analyze the opportunities to introduce communication overlap

• Use ISx for this analysis and apply different optimization strategies based on
the counter values

• Focus on the counter changes in the key exchange routine through

– Pending read/write operations

– Issued write operations w.r.t. completed read operations

OpenSHMEM Workshop 2018

22

Pending Operations with default ISx

• Pending operation counters (difference between the issued and completed counter values) over
execution time

• Both read (left) and write (right) counter values reveal only one pending operation at any given time –
presenting the opportunity for the usage of non-blocking APIs

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

P
e

n
d

in
g

 R
e

a
d

 O
p

e
ra

ti
o

n
s

Execution Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

P
e

n
d

in
g

 W
ri

te
 O

p
e

ra
ti

o
n

s

Execution Time (sec)

OpenSHMEM Workshop 2018

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device
or system. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit http://www.intel.com/performance. Copyright © 2018, Intel Corporation. *Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

23

Pending Operations with Non-blocking Put

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18

P
e

n
d

in
g

 R
e

a
d

 O
p

e
ra

ti
o

n
s

Execution Time (sec)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18

P
e

n
d

in
g

 W
ri

te
 O

p
e

ra
ti

o
n

s

Execution Time (sec)

OpenSHMEM Workshop 2018

• Replace Blocking Put with Non-blocking API

• Pending read operations are unchanged as no overlap is introduced; Pending write operations increase
to at most 14 during the key exchange execution

• Further overlap is possible through non-blocking read (non-blocking fadd AMO)

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device
or system. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit http://www.intel.com/performance. Copyright © 2018, Intel Corporation. *Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

24

Non-blocking AMO in ISx key exchange

OpenSHMEM Workshop 2018

for (int i=0; i<shmem_n_pes(); i++) {

int dest_pe = peers_iter(i);

shmem_longlong_atomic_fetch_add_nbi(&bucket_offset,

bucket_sizes[dest_pe], &dest_offsets[dest_pe], dest_pe);

}

shmem_quiet();

for (int i=0; i<shmem_n_pes(); i++) {

int dest_pe = peers_iter(i);

shmem_int_put_nb(&bucket_keys[dest_offsets[dest_pe]],…,dest_pe);

}

for (int i=0; i<shmem_n_pes(); i++) {

int dest_pe = peers_iter(i);

long long dest_offset = shmem_longlong_atomic_fetch_add(

&bucket_offset, bucket_sizes[dest_pe], dest_pe);

shmem_int_put_nb(&bucket_keys[dest_offset], … , dest_pe);

}

shmem_quiet()
ensures the

completion of
all fetches

Loop fission

25

Pending Operations with Non-blocking AMO

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18

P
e

n
d

in
g

 R
e

a
d

 O
p

e
ra

ti
o

n
s

Execution Time (sec)

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18

P
e

n
d

in
g

 W
ri

te
 O

p
e

ra
ti

o
n

s

Execution Time (sec)

OpenSHMEM Workshop 2018

• Both pending read and write operations increase to almost 128 (total number of PE)

• Loop fission ensures read and write operations overlap within themselves

• shmem_quiet ensures the completion of all fetches, but prevents any overlap between read
and write

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device
or system. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit http://www.intel.com/performance. Copyright © 2018, Intel Corporation. *Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

26

Overlap between Read and Write

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Is
su

e
d

 W
ri

te

Completed Read

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Is
su

e
d

 W
ri

te

Completed Read

OpenSHMEM Workshop 2018

• Plot issued write v/s. completed read to
present any overlap between read and write

• In both iterations, write and read progress
independently and thus, no overlap

• Replace shmem_quiet with individual wait_until
to wait for each non-blocking fadd to complete
before invoking the corresponding shmem_put

• Both the iterations exhibit overlap between read and
write with wait_until at the end of the loop
execution

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device
or system. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit http://www.intel.com/performance. Copyright © 2018, Intel Corporation. *Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

27

Overlap with Threads

• Alternative approach to pipeline the all-to-all exchange

– Distribute loop iterations to multiple threads

– Launch the threads in parallel

• Use OpenMP threads to the key-exchange routine

– Create a pool of contexts to be used by different threads

– Each thread utilizes it’s own context to invoke SHMEM APIs

• Apply OpenMP threads on both implementations of ISx (with and without loop fission)

OpenSHMEM Workshop 2018

#pragma omp parallel num_threads(T) {

int thread_id = omp_get_thread_num();

int PEs_per_thread = shmem_n_pes()/T;

for (int i = thread_id * PEs_per_thread; i < (thread_id + 1) * PEs_per_thread; i++) {

int dest_pe = peers_iter(i);

long long dest_offset = shmem_longlong_atomic_fetch_add(ctx_pool(thread_id),

&bucket_offset, bucket_sizes[dest_pe], dest_pe);

shmem_int_put_nb(ctx_pool[thread_id], &bucket_keys[dest_offset], … , dest_pe);

}

}

28

Pending Operations with Non-blocking Put and Two Threads

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

P
e

n
d

in
g

 R
e

a
d

 O
p

e
ra

ti
o

n
s

Execution Time (sec)

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

P
e

n
d

in
g

 W
ri

te
 O

p
e

ra
ti

o
n

s

Execution Time (sec)

OpenSHMEM Workshop 2018

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device
or system. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit http://www.intel.com/performance. Copyright © 2018, Intel Corporation. *Other names and brands may be claimed as the property of others.

• Pending read operations are similar to the non-threaded implementation as they use the
blocking API; per thread, it does not increase more than once

• Pending write operations increase more than that of non-threaded implementation; with
multiple threads, overlapping among different write operations can be increased

http://www.intel.com/performance

29

Overlap with Non-blocking Put, AMO and Two Threads

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Is
su

e
d

 W
ri

te

Completed Read

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Is
su

e
d

 W
ri

te

Completed Read

OpenSHMEM Workshop 2018

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device
or system. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit http://www.intel.com/performance. Copyright © 2018, Intel Corporation. *Other names and brands may be claimed as the property of others.

• Apply OpenMP threads on the two distributed loops of key exchange with wait-until

• Both warm-up and trial iterations exhibit more overlap with multiple threads

• Increased pipelining between read and write operations compared to the non-threaded
implementation

http://www.intel.com/performance

30

Outline

‒ Introduction and Motivation

‒ Existing Approaches

‒ Performance Counter APIs

‒ Design and Implementation of a Collector

‒ Experimental Analysis

 Communication Schedule

 Overlap

 Load Balance

 Weak Scale Analysis

 Overhead

‒ Conclusion and Future Work

OpenSHMEM Workshop 2018

31

Load Balance

• Utilize performance counters to detect load balance across all PEs

• Focus on the final operation counter value

• Use Stencil kernel (128 PEs with grid size of 1000 and 100 iterations)

• Observe put and get counters as well as target counter

OpenSHMEM Workshop 2018

32

Load Balance

OpenSHMEM Workshop 2018

0

200

400

600

800

1000

1200

1400

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

F
in

a
l

O
p

e
ra

ti
o

n
 C

o
u

n
te

r

PE

Completed Put Completed Target

• Grid of PEs with 8 rows and 16 columns; PEs with less neighbors (edge) have less load compared to
the PEs with more neighbors (inner)

• Both Put and Target counter exhibit the load imbalance for stencil

• PE0 has a high target counter value because of collective and synchronize operations
Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device
or system. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit http://www.intel.com/performance. Copyright © 2018, Intel Corporation. *Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

33

Outline

‒ Introduction and Motivation

‒ Existing Approaches

‒ Performance Counter APIs

‒ Design and Implementation of a Collector

‒ Experimental Analysis

 Communication Schedule

 Overlap

 Load Balance

 Weak Scale Analysis

 Overhead

‒ Conclusion and Future Work

OpenSHMEM Workshop 2018

34

Different ISx Implementations

OpenSHMEM Workshop 2018

ISx Implementation Description

Default Default implementation with blocking Put and AMO

NB-Put Implementation with non-blocking Put

NB-Put-AMO Implementation with non-blocking Put and AMO in two distributed
loops using shmem_quiet in between

NB-Put-AMO-W Implementation with non-blocking Put and AMO in two distributed
loops using shmem_wait_until

NB-Put-OMP2 Implementation with non-blocking Put and 2 OpenMP threads

NB-Put-OMP4 Implementation with non-blocking Put and 4 OpenMP threads

NB-Put-AMO-W-OMP2 Implementation with non-blocking Put and AMO in two distributed
loops using shmem_wait_until and 2 OMP threads

NB-Put-AMO-W-OMP4 Implementation with non-blocking Put and AMO in two distributed
loops using shmem_wait_until and 4 OMP threads

N
o

n
-t

h
re

a
d

e
d

T
h

re
a

d
e

d

35

Weak Scale Analysis

0.2

0.3

0.4

0.5

0.6

0.7

0.8

32 64 96 128 160 192 224

A
v

e
ra

g
e

 A
ll

-t
o

-a
ll

 t
im

e
 p

e
r

P
E

 (
se

c)

Total Number of PEs

Default NB-Put NB-Put-AMO NB-Put-AMO-W

OpenSHMEM Workshop 2018

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device
or system. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit http://www.intel.com/performance. Copyright © 2018, Intel Corporation. *Other names and brands may be claimed as the property of others.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

32 64 96 128 160 192 224

A
v

e
ra

g
e

 A
ll

-t
o

-a
ll

 t
im

e
 p

e
r

P
E

 (
se

c)

Total Number of PEs

Default NB-Put
NB-Put-OMP2 NB-Put-OMP4
NB-Put-AMO-W-OMP2 NB-Put-AMO-W-OMP4

• Comparison of non-threaded implementations
in 2 to 14 nodes (16 PEs/node)

• NB-Put achieves 16.5% benefit compared to
the Default; NB-Put-AMO-W out-performs NB-
Put-AMO by 8.3%

• Comparison of threaded implementations in 2
to 14 nodes (16 PEs/node) with 2, 4 threads

• NB-Put-OMP2 achieves 10% benefit compared
to the single-threaded NB-Put-AMO-W;
Additional threads degrade performance

http://www.intel.com/performance

36

Outline

‒ Introduction and Motivation

‒ Existing Approaches

‒ Performance Counter APIs

‒ Design and Implementation of a Collector

‒ Experimental Analysis

 Communication Schedule

 Overlap

 Load Balance

 Weak Scale Analysis

 Overhead

‒ Conclusion and Future Work

OpenSHMEM Workshop 2018

37

Collector Overhead

1

10

100

1000

10000

100000

1000000

0 0.01 0.1 1 10 100 1000

N
u

m
b

e
r

o
f

S
a

m
p

le
s

C
o

ll
e

ct
e

d

Sleep Duration (ms)

Default NB-Put-AMO-W NB-Put-OMP2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
e

fa
u

lt

N
B

-P
u

t-
A

M
O

-W

N
B

-P
u

t-
O

M
P

2

D
e

fa
u

lt

N
B

-P
u

t-
A

M
O

-W

N
B

-P
u

t-
O

M
P

2

D
e

fa
u

lt

N
B

-P
u

t-
A

M
O

-W

N
B

-P
u

t-
O

M
P

2

D
e

fa
u

lt

N
B

-P
u

t-
A

M
O

-W

N
B

-P
u

t-
O

M
P

2

D
e

fa
u

lt

N
B

-P
u

t-
A

M
O

-W

N
B

-P
u

t-
O

M
P

2

D
e

fa
u

lt

N
B

-P
u

t-
A

M
O

-W

N
B

-P
u

t-
O

M
P

2

D
e

fa
u

lt

N
B

-P
u

t-
A

M
O

-W

N
B

-P
u

t-
O

M
P

2

0 0.01 0.1 1 10 100 1000

A
v

e
ra

g
e

 T
im

e
 p

e
r

P
E

 (
s)

Sleep Duration (ms)

All-to-all Overhead

OpenSHMEM Workshop 2018

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device
or system. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit http://www.intel.com/performance. Copyright © 2018, Intel Corporation. *Other names and brands may be claimed as the property of others.

• Analysis on three different implementations based on different optimization choices

• Observe 20-100 ms overhead in average all-to-all time per PE for NB-Put-AMO-W

• Additional overheads for threaded implementation, NB-Put-OMP2

• Can collect reasonable number of samples with a sleep duration of 0.1 ms

http://www.intel.com/performance

38

Outline

‒ Introduction and Motivation

‒ Existing Approaches

‒ Performance Counter APIs

‒ Design and Implementation of a Collector

‒ Experimental Analysis

‒ Conclusion and Future Work

OpenSHMEM Workshop 2018

39

Conclusion and Future Work

• Proposed a performance counter API extension to OpenSHMEM specification

• Implemented the APIs in Sandia OpenSHMEM library

• Designed and implemented a low-overhead collector to use these APIs

• Analyzed applications with the performance counters to

‒ Reveal and fix implementation bug in communication scheduling

‒ Characterize load balance

‒ Identify opportunities to improve pipelining and overlapping deficiencies

• Proposed approaches improve the average all-to-all time for ISx by 30%

• Investigation on automated methods for analyzing the collected data

• Use performance counter APIs to aid developers of recent and proposed API extensions

• Identify system-level performance optimization opportunities

OpenSHMEM Workshop 2018

