
Subhadeep Bhattacharya*

Shaeke Salman*

Manjunath Gorentla Venkata†

Harsh Kundnani*

Neena Imam†

Weikuan Yu*

*Florida State University

†Oak Ridge National Laboratory

An Initial Implementation of

Libfabric Conduit for OpenSHMEM-X

S-2

Outline

• Background and Motivation

• Design of Libfabric Conduit

– Overview

– Challenges

– Design

• Experiments

• Conclusion and Future Works

S-3

OpenSHMEM and it’s implementations

• OpenSHMEM

– standardize collection of programming libraries

– provide parallel processing capabilities.

– representative of Partitioned Global Address Space Model

• Some of the basic functionalities include:

– Point-to-Point operations

– Atomic operations

– Collective Routines

• OpenSHMEM-X is implemented by Oak Ridge National

Laboratory and it follows the latest OpenSHMEM standard.

S-4

Role of communication layer

• OpenSHMEM takes advantage of one sided communication

using high end interconnects.

• Enable the communication functionalities between different

processing elements.

• Objective:

– Portability

– Improved performance

and scalability

OpenSHMEM-X

network

conduits

UCXGASNet Libfabric

S-5

OpenSHMEM-X + Libfabric

• Libfabric:

– set of network libraries to work with different providers.

– implemented by OpenFabrics Interface (OFI) working group.

– Optimized for various providers

• Goals:

– high-bandwidth

– low-latency

– high scalability

– portable network implementation

S-6

Outline

• Background and Motivation

• Design of Libfabric Conduit

– Overview

– Challenges

– Design

• Experiments

• Conclusion and Future Works

S-7

Design Overview

• Existing

communication

conduits:

– GASNet

– UCX

• Our implementation

introduces

– OFI Libfabric

Provider: Sockets

Out-of-band channel:

Process Management

Interface Exascale

S-8

PE 0 PE n-1PE 1

Provider Discovery (fi_getinfo)

Provider Setup

1. Create
Fabric
Object

2. Create
Domain
Object

4. Create
Endpoint

3. Create
Address
Vector

8. Create counter
for local mem

updates

6. Create
Put/Get

Counters

7. Create
MR

Entries

Initialize SHMEM’s internal functions

...

9. Bind EP with Counter and CQ 10. Bind MR with Counter

5. Create
Completion

Queue

Steps Involved in OpenSHMEM-X Libfabric Conduit

S-9

Initialization of Libfabric conduit

• Provider discovery: fi_getinfo

• Create fabric and domain object

• Endpoint creation

• Address vector initialization

• Create MR(Memory Region) entries for:

– Data Segment

– BSS Segment

– Heap Segment

• Bind completion queue and put/get counters to the endpoint for

completion event

• Bind a counter to the MR to keep track of local memory updates

S-10

PMIx out-of-band Exchange

PE 0 PE n-1PE 1

Provider Discovery (fi_getinfo)

Provider Setup

1. Create
Fabric
Object

2. Create
Domain
Object

4. Create
Endpoint

3. Create
Address
Vector

8. Create counter
for local mem

updates

6. Create
Put/Get

Counters

7. Create
MR

Entries

Endpoint address translation and insert into
Address Vector

Exchange Memory regions address,
key and length

Initialize SHMEM’s internal functions

...

9. Bind EP with Counter and CQ 10. Bind MR with Counter

5. Create
Completion

Queue

Steps Involved in OpenSHMEM-X Libfabric Conduit

S-11

Address Translation

S-12

Memory Management

• Register memory regions using the base address and length of

data, BSS and heap section.

– Scheme used: FI_MR_BASIC

• Exchange memory segment information among other PEs using

PMIx as out-of-band channel.

– fi_rma_iov is used as a container for the base address, length and key.

• Maintain a buffer with memory segment information of all PEs

in each PE.

S-13

Completion Queues and Counters

• All Libfabric communication operations are non-blocking in

nature

– Polling is required for blocking operations of OpenSHMEM.

• Two mechanisms

– Completion Queue

– Counters

Put Cntr

Get Cntr

Local Cntr

Endpoint

Data MR

BSS MR

Heap MR

S-14

PMIx out-of-band Exchange

PE 0 PE n-1PE 1

Provider Discovery (fi_getinfo)

Provider Setup

1. Create
Fabric
Object

2. Create
Domain
Object

4. Create
Endpoint

3. Create
Address
Vector

8. Create counter
for local mem

updates

6. Create
Put/Get

Counters

7. Create
MR

Entries

Endpoint address translation and insert into
Address Vector

Exchange Memory regions address,
key and length

Communication Routines

Initialize SHMEM’s internal functions

...

9. Bind EP with Counter and CQ 10. Bind MR with Counter

5. Create
Completion

Queue

Steps Involved in OpenSHMEM-X Libfabric Conduit

S-15

Remote Memory Access routines

Communication
Routines

Get details of registered
memory region

Find correct segment

Check address range

Adjust offset for remote
address

Break the data into
fragments based on

max buffer size of the
endpoint

Communication operations
(put/get/atomic)

Data

Fragment 0

Fragment 1

Fragment 2

Fragment 3

PE 0 PE 1

S-16

Atomic Operations

• 32 and 64 bit atomic operation support

Atomic Operation Libfabric Function Libfabric Datatype Libfabric Operation

fadd (Fetch and Add) fi_fetch_atomic FI_INT32

FI_INT64

FI_SUM

finc (Fetch and Increment) fi_fetch_atomic FI_INT32

FI_INT64

FI_SUM

add (Add) fi_inject_atomic FI_INT32

FI_INT64

FI_SUM

inc (Increment) fi_inject_atomic FI_INT32

FI_INT64

FI_SUM

cswap (Compare and Swap) fi_compare_atomic FI_INT32

FI_INT64

FI_CSWAP_NE

swap (Swap) fi_fetch_atomic FI_DOUBLE

FI_FLOAT

FI_INT32

FI_INT64

FI_ATOMIC_WRITE

Mapping of OpenSHMEM-X atomic operations with Libfabric

S-17

PMIx out-of-band Exchange

PE 0 PE n-1PE 1

Provider Discovery (fi_getinfo)

Provider Setup

1. Create
Fabric
Object

2. Create
Domain
Object

4. Create
Endpoint

3. Create
Address
Vector

8. Create counter
for local mem

updates

6. Create
Put/Get

Counters

7. Create
MR

Entries

Endpoint address translation and insert into
Address Vector

Exchange Memory regions address,
key and length

Communication Routines

1. Free
Fabric
Object

2. Free
Domain
Object

4. Free
Endpoint

3. Free
Address
Vector

7. Free
Completion

Queue

5. Free
Put/Get

Counters

6. Free MR
Entries

Free fi_info

Memory Cleanup and State Change

Initialize SHMEM’s internal functions

...

9. Bind EP with Counter and CQ 10. Bind MR with Counter

5. Create
Completion

Queue

Steps Involved in OpenSHMEM-X Libfabric Conduit

S-18

Outline

• Background and Motivation

• Design of Libfabric Conduit

– Overview

– Challenges

– Design

• Experiments

• Conclusion and Future Works

S-19

Environment Used

• Eos

– Cray® XC30™ cluster

– Cray’s Aries interconnect &

Dragonfly topology

– 736 compute nodes (Intel®

Xeon® E5-2670 processor)

• 16 cores per node

• Total 11,776 traditional

processor cores

• 23,552 logical cores with Intel

Hyper-Threading

• 64GB memory per node

– https://www.olcf.ornl.gov/for-

users/system-user-

guides/eos/system-overview/

https://www.olcf.ornl.gov/for-users/system-user-guides/eos/system-overview/

S-20

Configuration: SOS and OpenSHMEM-X

Network library

Provider

Polling

Memory registration

Multithreading

Out-of-band

connection

S-21

Benchmark tools

• OpenSHMEM micro-benchmarking suite is used for :

– PUT Bandwidth and Latency

– GET Bandwidth and Latency

• OSU Micro-Benchmarks 5.4.3 is used for :

– FADD Latency

– FINC Latency

– ADD Latency

– INC Latency

– SWAP Latency

– CSWAP Latency

Message Size: 32 bit and 64 bit

Message Size: 8 bytes to 1 MB

S-22

Latency (Put and Get)

• Put Operation:

– SOS latency performance is

slightly better(around 2-5%) for

message size upto 128 bytes

– Upto 29% improvement for 2

KB message size

• Get Operation:

– Gradual improvement in latency

with 10% latency improvement

for 16 KB message size

S-23

Bandwidth (Put and Get)

• Put Operation:

– SOS put operation performance

is 2-5% better for message sizes

upto 128 bytes*

– Up to 42% better bandwidth for

2 KB message size.

• Get Operation:

– Performance improvement up to

11%

*SOS uses fi_inject and bounce buffer for small and medium messages respectively

S-24

Atomic Operations

• Our implementation shows similar or slightly better latency

measurements than Sandia OpenSHMEM for atomic

operations

• fi_inject_atomic helps to reduce the latency of add and inc

operation

64 bit atomic operation32 bit atomic operation

S-25

Outline

• Background and Motivation

• Design of Libfabric Conduit

– Overview

– Challenges

– Design

• Experiments

• Conclusion and Future Works

S-26

Conclusion

• Libfabric offers a set of network library

– minimizes the semantic gap

– maintains application performance

– delivers scalability

• Our initial implementation supports sockets as the provider

– provides a basic visualization of integrating Libfabric with

OpenSHMEM-X.

• Sockets provider is available on many systems.

S-27

Future Works

• Enabling other providers will enhance the portability of

OpenSHMEM-X

• Currently working on enabling the support for uGNI provider to

get the performance measurements using gni in Cray machines

• We are also working on additional tuning and optimizations

S-28

Acknowledgment

