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Current Look at Collectives in OpenSHMEM

• Collective operations defined over active sets

– Temporary grouping of PEs

– Triple of information: starting PE, log base 2 stride, and size

– Requires Users allocate and initialize their own resources for collectives

• Synchronization (pSync) and scratchpad (pWrk) buffers

• Need to re-evaluate this concept for future systems

– Goal: flexible, persistent groupings of PEs that have library managed 
resources
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Possible solution?

• Teams

– Grouping of PEs 

– Created using with strided, 2D, 3D, and color-based split

• Collective operation over PEs of the parent team

– Fulfills the persistent grouping of Pes from our goals

– Did not have library managed resources

• Users required to allocate and initialize resources

• Our solution: Sets and Groups

– Decoupling of definition (i.e., Sets) and creation (i.e., Groups)

• Creation collective postponed until needed, and only over Pes in the Group

– Allocates and initializes resources on Users behalf

– Fulfills all of our goals
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Sets

• A group of PEs

– Indexed based on positive integers monotonically increasing from zero

• PEs not in the set have a negative index

• Opaque to users

• Created based on:

– Strides and ranges

– Modified with unions, intersections, and differences

• Enables: 

– Strided Sets

– Multiple Strided Sets

– Disjoint Sets
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Sets 

• Set creation is a local operation; requires no communication 
between PEs

– Local operation: All PEs will calculate the same Set given valid initial 
Sets

• Strides and ranges are simple calculations; Unions and Intersections result in the 
same set

– Based on a parent Set

• Library provided sets: SHMEM_SET_WORLD, SHMEM_SET_EMPTY

• Set utility interfaces give the user the ability to:

– Query the size of the set

– Get the calling PE’s index

– Translate indices between Sets
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Sets API (summary)

• Strided creation:

– int shmem_create_set_strided(shmem_set_t * parent_set,

int index_start,

int index_stride,

int size,

shmem_set_t ** new_set);

• Range creation:

– int shmem_create_set_range(shmem_set_t * parent_set,

int low_index,

int high_index,

shmem_set_t ** new_set);
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Sets API (summary)

• Union/Intersection/Difference

– int shmem_set_union(shmem_set_t * set1,

shmem_set_t * set2,

shmem_set_t ** new_set);

– Intersection and Difference interfaces are similar…
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Groups

• A grouping of a valid Set with the resources required for 
collective operations

– Resources may include: pSync/pWrk buffers, hardware collective 
resources, etc.

• Opaque to the user

• Group creation is a collective operation

– Collective over the Set

– Ordering provided by the library

– Blocking operation
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Groups API (summary)

• Creation operations

– Create Group from Set

– Create Group using a color-based split

– Duplicate valid Group

• Query operations

– Determine the size of the group

– Retrieve the Set the Group is based on
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Example of the Difference Between Active Sets and 
Sets/Groups

• Performing 5 collectives 
over 3 active sets

– Active Set of odd PEs

– Active Set of PEs greater 
than 0

– Active Set of all the World 
PEs
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Example of the Difference Between Active Sets and 
Sets/Groups

Allocate pSync arrays

Initialize pSync arrays
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Example of the Difference Between Active Sets and 
Sets/Groups

• Becomes 5 collectives 
with 3 Groups

• Does not really look 
like much changed…
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Example of the Difference Between Active Sets and 
Sets/Groups

• More has changed 
here

– User no longer needs to 
allocate and initialize 
the buffers used for the 
pSync arrays 

– User creates 2 Sets and 
3 Groups

• Allocation and 
Initialization handled by 
library
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Sets Implementation

• Implementation focuses on minimizing memory usage

– Stores Set as a stride or list of strides depending on mathematical 
relationship between Pes

• E.g., A Set with Pes {0, 1, 2, 3} is stored as a strided Set with a stride of 1; A set with 
Pes {0, 2, 3, 4} is stored as a list of strides (2) 

• Each modification of a set (i.e., Union, Intersection, Difference) 
will attempt to collapse the Set to a simpler representation

– The union of sets {0, 2, 3, 4} and {0, 1, 2, 3, 4} results in a single, strided set 
{0, 1, 2, 3, 4}
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Groups Implementation

• Extended collectives interfaces to support Groups

– Barrier, Reductions, Collect, etc.

• As a proof of concept and for the sake of comparison, implemented algorithms 
are identical

• Implementation of Groups as proof of concept

– Creation operations linear in nature

• Can be improved with respect to performance



16

Evaluation of the Example

• Testbed: 16 node Turing cluster at ORNL

– Each node: two Intel Xeon processors with 20 logical cores, 128 GB of 
RAM and a ConnectX-4 InfiniBand interconnect

• Evaluation: Measure the overall execution time

– Gives us an initial understanding of the performance implications of 
Sets and Groups
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Evaluation of the Example
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Experimental Evaluation

• Goals of evaluation

1. Evaluate Sets memory usage requirements

2. Overhead of collectives using Groups

3. Demonstration of Sets/Groups with All-Pairs Shortest Path with a 
synthetic dataset

• Testbeds at OLCF:

– Eos (1 & 2)

• Each node: two 8-core Intel Xeon processors, 64 GB of memory, and Aries 
interconnect

– Titan (3)

• Each node: one 16-core AMD Opteron processors, 32 GB of memory, and the 
Gemini interconnect



19

Evaluation: Sets Memory Usage based on representation
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Evaluation: Group Creation Overhead
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Evaluation: Micro-benchmarks of Collective Operations
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Use Case: All-Pairs Shortest Path

• Briefly Review All-Pairs Shortest Path (APSP)

– Fundamental Graph Problem

– Goal: Find the shortest path between each pair of vertices in a graph

– Results can be used to find the Betweeness Centrality in a graph

– Multiple methods of solving this problem:

1. Iterate over sources using SSSP while filling in a graph

2. Use dynamic programming (i.e., Floyd-Warshall)
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Use Case: All-Pairs Shortest Path

• Briefly Review All-Pairs Shortest Path (APSP)

– Fundamental Graph Problem

– Goal: Find the shortest path between each pair of vertices in a graph

– Results can be used to find the Betweeness Centrality in a graph

– Multiple methods of solving this problem:

1. Iterate over sources using SSSP while filling in a graph

– SSSP easily parallelizable (e.g., Bellman-Ford)

– Can further parallelize APSP

2. Use dynamic programming (i.e., Floyd-Warshall)
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Parallelizing APSP with OpenSHMEM

• We parallelized SSSP (i.e., Bellman-Ford/Dijkstra’s) with 
OpenSHMEM

• For APSP, we simply:

– Partition the Pes into Sets/Groups where each Set will have a roughly 
uniform amount of source vertices

– Each Group has its own copy of the Graph

– Each Group can then:

• Iterates over their sources of the graphs performing the parallel SSSP with 
OpenSHMEM on the source

• The resulting distance/predecessor array is stored on stable storage to build the 
distance matrix

• Work distribution can be simplified:

– Work queue with Groups taking a source to work on when completing 
their own
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Experimental Evaluation

• Dataset

– Recursive-Matrix (R-MAT) Graphs

• Synthetic, scale-free Graphs

• Parameters for generation

–A = 0.57, b = 0.19, c = 0.19, and d = 0.05

–Average vertex degree of 16

• Using similar scale to Graph500 graphs

– i.e., scale=10 means 210 vertices

• Similar to a social network graph

• Evaluation

– Weak scaling with an initial scale of 10
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Weak Scaling Performance of Sets/Groups on R-MAT 
Graphs (initial scale=10)

Global Group is the same as 
World

94% difference in 
performance
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Weak Scaling Performance of Sets/Groups on R-MAT 
Graphs (cont.)

• Sets are using pSync/pWrk
arrays allocated using 
shmem_malloc()

• Groups/Sets have similar 
performance

• Obvious observation:
• Grouping of PEs on a 

single NUMA is best 
performing, but not always 
possible

33% increase 
in 

performance
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Set/Group Creation Overhead

• Important note: Group creation 
is expensive
• It may be more performant 

to leverage Sets if you know 
you are going to have global 
allocations regardless of 
logical PE groupings

• Also, if we were to 
performance asynchronous 
SSSP as demonstrated in 
previous paper, no need for 
Groups
• All operations are 

Puts/Gets without 
collectives
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Comparison of Sets/Groups with Cray SHMEM

• Set + Group creation 
compared with Cray SHMEM 
Team creation

– 92% decrease in latency

– Increased performance due to 
Group creation being local to its 
Set

• Node and NUMA group creation 
takes advantage of shared memory
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Conclusion

• Active Sets provide a useful, but temporary and limiting abstraction 
for collective operations

• Discussed the Sets/Groups abstractions as a possible replacement 
for Active Sets with library managed resources

• Demonstrated

– Flexibility and utility of Sets and Groups 

– Negligible performance overhead related to Groups implementations

– Multiple-levels of parallelism with All-Pairs Shortest Path and Sets/Groups
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Conclusion

• Active Sets provide a useful, but temporary and limiting abstraction 
for collective operations

• Discussed the Sets/Groups abstractions as a possible replacement 
for Active Sets with library managed resources

• Demonstrated

– Flexibility and utility of Sets and Groups 

– Negligible performance overhead related to Groups implementations

– Multiple-levels of parallelism with All-Pairs Shortest Path and Sets/Groups

• Hopefully jump started the conversation regarding Teams after lunch!
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