
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

OpenSHMEM Sets and Groups: An
Approach to Worksharing and Memory
Management

Ferrol Aderholdt, ORNL

Swaroop Pophale, ORNL

Manjunath Gorentla Venkata, ORNL

Neena Imam, ORNL

2

Current Look at Collectives in OpenSHMEM

• Collective operations defined over active sets

– Temporary grouping of PEs

– Triple of information: starting PE, log base 2 stride, and size

– Requires Users allocate and initialize their own resources for collectives

• Synchronization (pSync) and scratchpad (pWrk) buffers

• Need to re-evaluate this concept for future systems

– Goal: flexible, persistent groupings of PEs that have library managed
resources

3

Possible solution?

• Teams

– Grouping of PEs

– Created using with strided, 2D, 3D, and color-based split

• Collective operation over PEs of the parent team

– Fulfills the persistent grouping of Pes from our goals

– Did not have library managed resources

• Users required to allocate and initialize resources

• Our solution: Sets and Groups

– Decoupling of definition (i.e., Sets) and creation (i.e., Groups)

• Creation collective postponed until needed, and only over Pes in the Group

– Allocates and initializes resources on Users behalf

– Fulfills all of our goals

4

Sets

• A group of PEs

– Indexed based on positive integers monotonically increasing from zero

• PEs not in the set have a negative index

• Opaque to users

• Created based on:

– Strides and ranges

– Modified with unions, intersections, and differences

• Enables:

– Strided Sets

– Multiple Strided Sets

– Disjoint Sets

5

Sets

• Set creation is a local operation; requires no communication
between PEs

– Local operation: All PEs will calculate the same Set given valid initial
Sets

• Strides and ranges are simple calculations; Unions and Intersections result in the
same set

– Based on a parent Set

• Library provided sets: SHMEM_SET_WORLD, SHMEM_SET_EMPTY

• Set utility interfaces give the user the ability to:

– Query the size of the set

– Get the calling PE’s index

– Translate indices between Sets

6

Sets API (summary)

• Strided creation:

– int shmem_create_set_strided(shmem_set_t * parent_set,

int index_start,

int index_stride,

int size,

shmem_set_t ** new_set);

• Range creation:

– int shmem_create_set_range(shmem_set_t * parent_set,

int low_index,

int high_index,

shmem_set_t ** new_set);

7

Sets API (summary)

• Union/Intersection/Difference

– int shmem_set_union(shmem_set_t * set1,

shmem_set_t * set2,

shmem_set_t ** new_set);

– Intersection and Difference interfaces are similar…

8

Groups

• A grouping of a valid Set with the resources required for
collective operations

– Resources may include: pSync/pWrk buffers, hardware collective
resources, etc.

• Opaque to the user

• Group creation is a collective operation

– Collective over the Set

– Ordering provided by the library

– Blocking operation

9

Groups API (summary)

• Creation operations

– Create Group from Set

– Create Group using a color-based split

– Duplicate valid Group

• Query operations

– Determine the size of the group

– Retrieve the Set the Group is based on

10

Example of the Difference Between Active Sets and
Sets/Groups

• Performing 5 collectives
over 3 active sets

– Active Set of odd PEs

– Active Set of PEs greater
than 0

– Active Set of all the World
PEs

11

Example of the Difference Between Active Sets and
Sets/Groups

Allocate pSync arrays

Initialize pSync arrays

12

Example of the Difference Between Active Sets and
Sets/Groups

• Becomes 5 collectives
with 3 Groups

• Does not really look
like much changed…

13

Example of the Difference Between Active Sets and
Sets/Groups

• More has changed
here

– User no longer needs to
allocate and initialize
the buffers used for the
pSync arrays

– User creates 2 Sets and
3 Groups

• Allocation and
Initialization handled by
library

14

Sets Implementation

• Implementation focuses on minimizing memory usage

– Stores Set as a stride or list of strides depending on mathematical
relationship between Pes

• E.g., A Set with Pes {0, 1, 2, 3} is stored as a strided Set with a stride of 1; A set with
Pes {0, 2, 3, 4} is stored as a list of strides (2)

• Each modification of a set (i.e., Union, Intersection, Difference)
will attempt to collapse the Set to a simpler representation

– The union of sets {0, 2, 3, 4} and {0, 1, 2, 3, 4} results in a single, strided set
{0, 1, 2, 3, 4}

15

Groups Implementation

• Extended collectives interfaces to support Groups

– Barrier, Reductions, Collect, etc.

• As a proof of concept and for the sake of comparison, implemented algorithms
are identical

• Implementation of Groups as proof of concept

– Creation operations linear in nature

• Can be improved with respect to performance

16

Evaluation of the Example

• Testbed: 16 node Turing cluster at ORNL

– Each node: two Intel Xeon processors with 20 logical cores, 128 GB of
RAM and a ConnectX-4 InfiniBand interconnect

• Evaluation: Measure the overall execution time

– Gives us an initial understanding of the performance implications of
Sets and Groups

17

Evaluation of the Example

0

0.2

0.4

0.6

0.8

1

1.2

4 8 16 32 64 128 256

S
e

c
o

n
d

s

Number of PEs

Group-based
Active Set

1/3 of the
execution

time

18

Experimental Evaluation

• Goals of evaluation

1. Evaluate Sets memory usage requirements

2. Overhead of collectives using Groups

3. Demonstration of Sets/Groups with All-Pairs Shortest Path with a
synthetic dataset

• Testbeds at OLCF:

– Eos (1 & 2)

• Each node: two 8-core Intel Xeon processors, 64 GB of memory, and Aries
interconnect

– Titan (3)

• Each node: one 16-core AMD Opteron processors, 32 GB of memory, and the
Gemini interconnect

19

Evaluation: Sets Memory Usage based on representation

0

1000

2000

3000

4000

5000

6000

7000

4 8 16 32 64 128 256 512 1024

M
e
m

o
ry

 i
n
 B

y
te

s

Number of PEs in Set

Stride
List

Worst Case
Memory Usage

Best Case
Memory Usage

20

Evaluation: Group Creation Overhead

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4 8 16 32 64 128 256 512 1024

M
ic

ro
s
e
c
o
n
d
s

Number of PEs

Group Creation

21

Evaluation: Micro-benchmarks of Collective Operations

0

200

400

600

800

1000

1200

4 8 16 32 64 128 256 512 1024

M
ic

ro
s
e
c
o
n
d
s

Number of PEs

Group-based
Active Set

0

500

1000

1500

2000

2500

3000

3500

4000

4 8 16 32 64 128 256 512 1024

M
ic

ro
s
e
c
o
n
d
s

Number of PEs

Group-based
Active Set

Barrier Operation Collect Operation

22

Use Case: All-Pairs Shortest Path

• Briefly Review All-Pairs Shortest Path (APSP)

– Fundamental Graph Problem

– Goal: Find the shortest path between each pair of vertices in a graph

– Results can be used to find the Betweeness Centrality in a graph

– Multiple methods of solving this problem:

1. Iterate over sources using SSSP while filling in a graph

2. Use dynamic programming (i.e., Floyd-Warshall)

23

Use Case: All-Pairs Shortest Path

• Briefly Review All-Pairs Shortest Path (APSP)

– Fundamental Graph Problem

– Goal: Find the shortest path between each pair of vertices in a graph

– Results can be used to find the Betweeness Centrality in a graph

– Multiple methods of solving this problem:

1. Iterate over sources using SSSP while filling in a graph

– SSSP easily parallelizable (e.g., Bellman-Ford)

– Can further parallelize APSP

2. Use dynamic programming (i.e., Floyd-Warshall)

24

Parallelizing APSP with OpenSHMEM

• We parallelized SSSP (i.e., Bellman-Ford/Dijkstra’s) with
OpenSHMEM

• For APSP, we simply:

– Partition the Pes into Sets/Groups where each Set will have a roughly
uniform amount of source vertices

– Each Group has its own copy of the Graph

– Each Group can then:

• Iterates over their sources of the graphs performing the parallel SSSP with
OpenSHMEM on the source

• The resulting distance/predecessor array is stored on stable storage to build the
distance matrix

• Work distribution can be simplified:

– Work queue with Groups taking a source to work on when completing
their own

25

Experimental Evaluation

• Dataset

– Recursive-Matrix (R-MAT) Graphs

• Synthetic, scale-free Graphs

• Parameters for generation

–A = 0.57, b = 0.19, c = 0.19, and d = 0.05

–Average vertex degree of 16

• Using similar scale to Graph500 graphs

– i.e., scale=10 means 210 vertices

• Similar to a social network graph

• Evaluation

– Weak scaling with an initial scale of 10

2626

Weak Scaling Performance of Sets/Groups on R-MAT
Graphs (initial scale=10)

Global Group is the same as
World

94% difference in
performance

2727

Weak Scaling Performance of Sets/Groups on R-MAT
Graphs (cont.)

• Sets are using pSync/pWrk
arrays allocated using
shmem_malloc()

• Groups/Sets have similar
performance

• Obvious observation:
• Grouping of PEs on a

single NUMA is best
performing, but not always
possible

33% increase
in

performance

2828

Set/Group Creation Overhead

• Important note: Group creation
is expensive
• It may be more performant

to leverage Sets if you know
you are going to have global
allocations regardless of
logical PE groupings

• Also, if we were to
performance asynchronous
SSSP as demonstrated in
previous paper, no need for
Groups
• All operations are

Puts/Gets without
collectives

2929

Comparison of Sets/Groups with Cray SHMEM

• Set + Group creation
compared with Cray SHMEM
Team creation

– 92% decrease in latency

– Increased performance due to
Group creation being local to its
Set

• Node and NUMA group creation
takes advantage of shared memory

0

1

2

3

4

5

6

16 32 64 128 256 512 1024

M
ill

is
e
c
o
n
d
s

Number of PEs

Node Team
NUMA Team
Node Group

NUMA Group

3030

Conclusion

• Active Sets provide a useful, but temporary and limiting abstraction
for collective operations

• Discussed the Sets/Groups abstractions as a possible replacement
for Active Sets with library managed resources

• Demonstrated

– Flexibility and utility of Sets and Groups

– Negligible performance overhead related to Groups implementations

– Multiple-levels of parallelism with All-Pairs Shortest Path and Sets/Groups

3131

Conclusion

• Active Sets provide a useful, but temporary and limiting abstraction
for collective operations

• Discussed the Sets/Groups abstractions as a possible replacement
for Active Sets with library managed resources

• Demonstrated

– Flexibility and utility of Sets and Groups

– Negligible performance overhead related to Groups implementations

– Multiple-levels of parallelism with All-Pairs Shortest Path and Sets/Groups

• Hopefully jump started the conversation regarding Teams after lunch!

3232

This work was supported by the United States Department of
Defense (DoD) and used resources of the Computational Research
and Development Programs at Oak Ridge National Laboratory.

Acknowledgements

3333

Questions?

Computational Research & Development
Programs

