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• Motivation: per-object memory tracking
• What is TAU?
• Implementation
– Library wrapping
– Context events
– Allocation classes
– Profiling vs Tracing
– Data analysis

• Preliminary results
• Future work and conclusions
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• Evaluate scalability of OpenSHMEM runtimes in terms of 
runtime memory usage as the number of PEs increases.
– By keeping arrays of sizes proportional to the number of PEs, 

an OpenSHMEM implementation may be limited in its 
scalability to millions of PEs.

• Extend TAU to track memory allocations within 
OpenSHMEM runtimes.
– Trigger atomic events with a value of memory usage from each 

PE.
– Trigger separate events according to the data type of the 

allocated objects, allowing determination of scaling behavior 
for different runtime object types.

• Postprocess data to chart memory usage by object type as 
number of PEs grows.
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• Tuning and Analysis Utilities (25+ year project)
• Comprehensive performance profiling and tracing

– Integrated, scalable, flexible, portable
– Targets all parallel programming/execution paradigms

• Integrated performance toolkit
– Instrumentation, measurement, analysis, visualization
– Widely-ported performance profiling / tracing system
– Performance data management and data mining
– Open source (BSD-style license)

• Integrates with application frameworks
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Profiling Tracing
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Shows
how much time 

was spent in each 
routine

Shows
when events 

take place on a 
timeline
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Direct via Probes Indirect via Sampling

• Exact measurement
• Fine-grain control
• Calls inserted into code

• No code modification
• Minimal effort
• Relies on debug 

symbols (-g option)

call TAU_START(‘name’)
// code
call TAU_STOP(‘name’)



• How much time is spent in each application routine and outer 
loops? Within loops, what is the contribution of each 
statement? 

• How many instructions are executed in these code regions?  
Floating point, Level 1 and 2 data cache misses, hits, branches 
taken, vector instructions? 

• What is the memory usage of the code? When and where is 
memory allocated/de-allocated? Are there any memory leaks? 

• What are the I/O characteristics of the code?  What is the peak 
read and write bandwidth of individual calls, total volume? 

• What is the time spent waiting for collectives?
• How does the application scale?
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•Event types
– Interval events (begin/end events)

• Measures exclusive & inclusive durations between events 
• Metrics monotonically increase

– Atomic events (trigger with data value)
• Used to capture performance data state
• Shows extent of variation of triggered values (total, samples, 

min/max/mean/std. deviation statistics)
– Context Events

• Atomic event + context (disaggregated according to timer stack 
when event triggered)

9



10

Interval events
e.g., routines
(start/stop) show 
duration

Atomic events
(triggered with 
value) show 
extent of variation 
(min/max/mean)

% export TAU_CALLPATH_DEPTH=0
% export TAU_TRACK_HEAP=1



% export TAU_CALLPATH_DEPTH=1

% export TAU_TRACK_HEAP=1

Atomic events

Context events
=atomic event
+ executing 
context
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Controls depth of executing 
context shown in profiles



% export TAU_CALLPATH_DEPTH=2
% export TAU_TRACK_HEAP=1

Context event
=atomic event + 
executing context
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• TAU provides wrapper libraries around malloc, 
free, et al. which replace the system version

• Each wrapper
– Starts a timer
– Records a context event indicating the size and 

source line of the allocation or deallocation
– Call the underlying system version of the function
– Stop the timer

• Loaded into unmodified application with 
LD_PRELOAD or through linker script at link time
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• During configure, TAU
– parses shmem.h
– generates a wrapper library for each function defined in shmem.h

• For each function, the wrapper
– Starts a timer
– For communications, records a context event indicating the size, source, destination and source 

code line of the communication.

• Parsing header works around differences between SHMEM 
implementations and versions.

• Loaded into unmodified application with LD_PRELOAD or through linker 
script at link time
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extern void  __real_shmem_get128(void * a1, const void * a2, size_t a3, int a4) ;
extern void  __wrap_shmem_get128(void * a1, const void * a2, size_t a3, int a4)  {

TAU_PROFILE_TIMER(t,"void shmem_get128(void *, const void *, size_t, int) C", "", 
TAU_USER);

TAU_PROFILE_START(t);
TAU_TRACE_SENDMSG_REMOTE(TAU_SHMEM_TAGID_NEXT, Tau_get_node(), 16*a3, a4);
__real_shmem_get128(a1, a2, a3, a4);
TAU_TRACE_RECVMSG(TAU_SHMEM_TAGID, a4, 16*a3);
TAU_PROFILE_STOP(t);

}

}
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• TAU’s existing memory tracking support gives us 
heap usage overall and per function, but does 
not tell us where in the runtime or of what data 
type the allocation belongs to.



• New calls in TAU for tracking allocations
– Track “flat” allocations (no relationships maintained)

• Tau_track_class_allocation(name, size)
– Track hierarchical allocations

• Maintain allocation stack for context
• Tau_start_class_allocation(name, size, include_in_parent)
• Tau_stop_class_allocation(name, write_record)

– Included in profile alongside timing data
– Option to use context events: show where allocations occurred in the runtime

• Two context stacks: timer stack and allocation stack
• export TAU_MEM_CONTEXT=1

– Default weak empty implementation allows enabling and disabling 
instrumentation at runtime.

Tau_start_class_allocation(“a”, 10, 0);
Tau_start_class_allocation(“b”, 25, 0);
Tau_stop_class_allocation(“b”, 1);
Tau_stop_class_allocation(“a”, 1);
Tau_start_class_allocation(“b”, 10, 0);
Tau_stop_class_allocation(“b”, 1);

10 bytes allocated in object of type A
25 bytes allocated in object of type B (child of A)

10 bytes allocated in object of type B (not child)

alloc a 10
alloc b 35
alloc b <= a 25

Stored in profile:



• OpenMPI OPAL object system allows 
centralized instrumentation of allocations of 
OPAL objects
– Insert Tau_start_class_allocation, 

Tau_stop_class_allocation into opal_obj_new in 
opal/class/opal_object.h

• Tracking child objects requires manual instrumentation at the 
point of allocation
– Dynamically-allocated members are allocated outside the constructor

– Accomplished with dummy allocation regions
• Reopen allocation region with Tau_start_class_allocation as normal.

• Record child allocations

• Close parent allocation region with write_record = 0



• Tracking allocations by type requires one line of 
code inserted into Open MPI runtime
– static inline prevents use of library wrapper

Copyright © ParaTools, Inc.    18

Tracking Memory Usage in OpenSHMEM 5

Our initial implementation added a public API calls to TAU:

void Tau_track_class_allocation(const char * name , size_t size);

This call registers an allocation of a particular type (indicated by the name)
and size by triggering an atomic or context event within TAU. Adding a single
line to the Open MPI runtime code responsible for allocating memory for object
instances (opal obj new in opal/class/opal object.h) allows us to record
those allocations:

static inline opal_object_t *opal_obj_new(opal_class_t * cls)
{

opal_object_t *object;
assert(cls ->cls_sizeof >= sizeof(opal_object_t ));

Tau track class allocation(cls->cls name, cls->cls sizeof);

[...]
}

The initial implementation successfully allowed us to collect data on the
memory usage by data type, but did not allow for collection of hierarchical data.
Open MPI runtime objects often contain pointers to other objects which are
allocated during the initial construction of the first object or shortly thereafter
and are properly considered to be owned by the first object. We wished to 1)
where possible, automatically capture this hierarchical relationship and 2) where
not possible, provide a mechanism for manual instrumentation to define the
relationship. For our second implementation, we added two new API calls to
TAU:

void Tau_start_class_allocation(const char * name , size_t size ,
int include_in_parent );

void Tau_stop_class_allocation(const char * name , int record );

The Tau start class allocation and Tau stop class allocation calls
are used for recording the sizes of objects, including their child objects. When
an allocation region is started, new allocation regions opened within the parent
region are recorded as both a standard atomic event and as a context event indi-
cating, rather than the enclosing functions, the the enclosing allocation regions.
For example,

Tau_start_class_allocation("a", 10, 0);
Tau_start_class_allocation("b", 25, 0);
Tau_stop_class_allocation("b", 1);
Tau_stop_class_allocation("a", 1);
Tau_start_class_allocation("b", 10, 0);
Tau_stop_class_allocation("b", 1);

will record the atomic events

alloc a 10
alloc b 35
alloc b <= a 25
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which indicates that 10 bytes of a objects were allocated, 35 bytes of b objects
were allocated, and 25 bytes of the b objects were child allocations of a objects.

Allocations of most objects in the Open MPI runtime are captured by instru-
menting, as before, the opal obj new function in opal/class/opal object.h,
which is called to construct most objects in the OPAL class hierarchy. In this
implementation, we wrap the call to the class constructors for the object being in-
stantiated, which automatically captures any child allocations which occur inside
the constructor:

static inline opal_object_t *opal_obj_new(opal_class_t * cls)
{

opal_object_t *object;
assert(cls ->cls_sizeof >= sizeof(opal_object_t ));

Tau start class allocation(cls->cls name, cls->cls sizeof, 0);

#if OPAL_WANT_MEMCHECKER
object = (opal_object_t *) calloc(1, cls ->cls_sizeof );

#else
object = (opal_object_t *) malloc(cls ->cls_sizeof );

#endif
if (opal_class_init_epoch != cls ->cls_initialized) {

opal_class_initialize(cls);
}
if (NULL != object) {

object ->obj_class = cls;
object ->obj_reference_count = 1;

opal obj run constructors(object);

}

Tau stop class allocation(cls->cls name, 1);

return object;
}

By using allocation regions, this automatically captures any child allocations
that occur within the constructor of the class. For example, the constructor for
orte rml posted recv t allocates an object of type orte rml recv request t,
and this allocation is recorded as alloc orte rml posted recv t <= orte rml recv request t

in the profile.

This technique does not capture any child objects which are allocated outside
of the constructor for a class. There is no central location where such tracking
could be implemented, so any such child allocations are instrumented manually.
To do this, dummy allocation regions are used to indicate the parent of an alloca-
tion without actually recording an atomic event for the parent, which was already
record through opal obj new. To do this, Tau start class allocation is called
normally, child allocations are recorded, and Tau stop class allocation is then
called with the record parameter set to 0.

Allocations during 
constructors 
automatically 
attributed to 
enclosing 
allocation region
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• We want to use memory 
tracking for scaling studies.

• ParaProf and PerfExplorer
(TAU’s visualizers) do not 
provide the right kind of 
charts for visualizing the 
scaling of context events.

• To increase flexibility, we 
added a parser which 
generates Pandas 
dataframes from TAU profile 
files.
– Allows use of Jupyter

notebooks and the wide 
array of Python 
visualization libraries on 
data collected from TAU.
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• Build your app with the instrumented runtime, 
then run with
<launcher> <launcher args>
tau_exec -T shmem,pdt -shmem -ebs -memory 
<app> <app args>

• Example: GUPS on University of Oregon Talapas
system (Slurm)
– srun tau_exec -T shmem,pdt -shmem -ebs
-memory ./gups

Copyright © ParaTools, Inc.    23

Configuration 
of TAU

SHMEM 
wrapper Sampling

malloc wrapper
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• Scaling GUPS from 16 to 
1024 PEs on Oregon 
Talapas system

• Record allocations of 
objects of interest and 
their child allocations

• Object types with 
largest allocations in 
runtime at 1024 PEs 
among selected types
• ompi_proc_t (117 MB)
• orte_namelist_t (child 

of oshmem_group_t) 
(100 MB)

• ompi_proc_t list (child 
of oshmem_group_t) 
(33.5 MB)

ompi_proc_t

orte_namelist_t in 
oshmem_group_t
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opal_value_t

• Looking at all
runtime types 
shows 
opal_value_t is by 
far the largest user 
of memory
• Usages are spread 

out as children of 
many other object 
types.



• This instrumentation gives us total allocations.
– Sum of all allocations throughout application 

execution.
– Does not distinguish between data types whose 

objects persist for the lifetime of the application and 
those that, for example
• are only used during initialization; or,
• are subject to repeated allocation and deallocation.

• To distinguish these cases, we need to keep 
traces or phase-based profiles, not context 
profiles.
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• OTF2 dramatically improves on SLOG2:

• Smaller trace files

• Richer trace data, e.g. RMA events

• Better trace visualization (Vampir, Ravel)

• TAU can now generate OTF2 files natively:

• No Score-P required!

• Uses OpenSHMEM internally for event reduction

• Writes context events to OTF2 trace
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• Instrumentation of Open MPI destructors 
enables tracking frees by data type as well as 
mallocs, enabling a cumulative allocations 
context event.
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provides event types specifically suited for representing OpenSHMEM one-sided
communication, which are output by TAU when they are encountered in place of
the traditional representation of one-sided communication as if it were two-sided
MPI communication. Generating OTF2 files requires communication at runtime
in order to create a global mapping of function names to local identifiers; this is
implemented in TAU by intercepting the call to shmem finalize and carrying out
this communication prior to the actual shutdown of the OpenSHMEM runtime.
OTF2 is also highly space-optimized, producing smaller files than equivalent
traditional TAU traces. Figure 7 shows a trace visualization of an execution of
GUPS on 128 PEs using the Vampir trace visualizer [7].

We then implemented API calls in TAU to handle deallocation regions analo-
gous to allocation regions but which record when objects are deallocated:

void Tau_track_class_deallocation(const char * name , size_t size);
void Tau_start_class_deallocation(const char * name , size_t size ,

int include_in_parent );
void Tau_stop_class_deallocation(const char * name , int record );

The OPAL object system in Open MPI uses a reference counting system in
which a class destructor is invoked when an object’s reference count reaches zero.
We instrument the code in the runtime which invokes the destructors, ensuring
that we also capture the hierarchical relationship with any child objects that are
freed by the destructor of a parent:

static inline void opal_obj_run_destructors(opal_object_t * object)
{

opal_destruct_t* cls_destruct;

assert(NULL != object ->obj_class );

Tau start class deallocation(object->obj class->cls name,object->obj class->cls sizeof, 0);

cls_destruct = object ->obj_class ->cls_destruct_array;
while( NULL != *cls_destruct ) {

(* cls_destruct )( object );
cls_destruct ++;

}

Tau stop class deallocation(object->obj class->cls name, 1;

}

Every instance of an allocation or deallocation of an OPAL object is sepa-
rately recorded in the OTF2 trace. This allows us to determine, for each PE,
the cumulative bytes currently allocated for each OPAL object type. Figure 8
shows the current memory usage of opal value t objects over time for a run of
GUPS on 128 PEs. Early during shmem init, there are a large number of small
allocations and deallocations, and the total memory usage of these objects fluc-
tuates. As shmem init completes, large allocations occur which push the current
allocation count to 274 kB per PE. The profiling approach described above gives
a value of 407 kB of opal value t objects per PE – the peak usage is 67% of
the total allocated bytes.
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Full view

Zoomed to show 
fluctuation during 
initialization



• Identification of targets for optimization by 
sharing across PEs on a node
– If there are object types which are written to only 

during initialization, or which have fields written to 
only during initialization, these might be shared 
between PEs on the same physical node

– Identification requires tracking writes to allocations 
attributed to particular data types.

• Large scaling studies on Summit, etc.
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• For SC18 release:
– Support for OpenSHMEM 1.4 standard, including 

threading modes and contexts.
– Support for hybrid CUDA/OpenSHMEM applications.
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• With no runtime instrumentation, TAU can 
capture runtime allocations by source line of 
origin.

• With minimal runtime instrumentation (4 lines of 
code), TAU can capture runtime allocations by 
both source line of origin and data type of the 
allocation.

• Now available in TAU v2.27.2:
– http://tau.uoregon.edu/tau.tgz

• Instrumented runtime at:
– https://github.com/paratoolsinc/ompi

Copyright © ParaTools, Inc.    35

http://tau.uoregon.edu/tau.tgz
https://github.com/paratoolsinc/ompi

