
OpenSHMEM 2018
22 August 2018

Hanover, MD

Nicholas Chaimov (ParaTools), Sameer
Shende (ParaTools), Allen Malony

(ParaTools), Manjunath Gorentla Venkata
(Oak Ridge National Laboratory), and Neena

Imam (Oak Ridge National Laboratory)

• Motivation: per-object memory tracking
• What is TAU?
• Implementation
– Library wrapping
– Context events
– Allocation classes
– Profiling vs Tracing
– Data analysis

• Preliminary results
• Future work and conclusions

2

• Evaluate scalability of OpenSHMEM runtimes in terms of
runtime memory usage as the number of PEs increases.
– By keeping arrays of sizes proportional to the number of PEs,

an OpenSHMEM implementation may be limited in its
scalability to millions of PEs.

• Extend TAU to track memory allocations within
OpenSHMEM runtimes.
– Trigger atomic events with a value of memory usage from each

PE.
– Trigger separate events according to the data type of the

allocated objects, allowing determination of scaling behavior
for different runtime object types.

• Postprocess data to chart memory usage by object type as
number of PEs grows.

3

• Tuning and Analysis Utilities (25+ year project)
• Comprehensive performance profiling and tracing

– Integrated, scalable, flexible, portable
– Targets all parallel programming/execution paradigms

• Integrated performance toolkit
– Instrumentation, measurement, analysis, visualization
– Widely-ported performance profiling / tracing system
– Performance data management and data mining
– Open source (BSD-style license)

• Integrates with application frameworks

4

5

Fortran
C/C++

Java

GNU

MPI
OpenMP

PGI

CUDA UPC

Cray

Python

Intel
LLVM

pthreads

MinGW
Linux Windows AIX

Sun

OpenACC

Insert
yours
here

Intel MIC

BlueGene

GPI

Fujitsu ARM
OpenSHMEMMPCAndroid

Profiling Tracing

6

Shows
how much time

was spent in each
routine

Shows
when events

take place on a
timeline

7

Direct via Probes Indirect via Sampling

• Exact measurement
• Fine-grain control
• Calls inserted into code

• No code modification
• Minimal effort
• Relies on debug

symbols (-g option)

call TAU_START(‘name’)
// code
call TAU_STOP(‘name’)

• How much time is spent in each application routine and outer
loops? Within loops, what is the contribution of each
statement?

• How many instructions are executed in these code regions?
Floating point, Level 1 and 2 data cache misses, hits, branches
taken, vector instructions?

• What is the memory usage of the code? When and where is
memory allocated/de-allocated? Are there any memory leaks?

• What are the I/O characteristics of the code? What is the peak
read and write bandwidth of individual calls, total volume?

• What is the time spent waiting for collectives?
• How does the application scale?

8

•Event types
– Interval events (begin/end events)

• Measures exclusive & inclusive durations between events
• Metrics monotonically increase

– Atomic events (trigger with data value)
• Used to capture performance data state
• Shows extent of variation of triggered values (total, samples,

min/max/mean/std. deviation statistics)
– Context Events

• Atomic event + context (disaggregated according to timer stack
when event triggered)

9

10

Interval events
e.g., routines
(start/stop) show
duration

Atomic events
(triggered with
value) show
extent of variation
(min/max/mean)

% export TAU_CALLPATH_DEPTH=0
% export TAU_TRACK_HEAP=1

% export TAU_CALLPATH_DEPTH=1

% export TAU_TRACK_HEAP=1

Atomic events

Context events
=atomic event
+ executing
context

11

Controls depth of executing
context shown in profiles

% export TAU_CALLPATH_DEPTH=2
% export TAU_TRACK_HEAP=1

Context event
=atomic event +
executing context

12

• TAU provides wrapper libraries around malloc,
free, et al. which replace the system version

• Each wrapper
– Starts a timer
– Records a context event indicating the size and

source line of the allocation or deallocation
– Call the underlying system version of the function
– Stop the timer

• Loaded into unmodified application with
LD_PRELOAD or through linker script at link time

Copyright © ParaTools, Inc. 13

• During configure, TAU
– parses shmem.h
– generates a wrapper library for each function defined in shmem.h

• For each function, the wrapper
– Starts a timer
– For communications, records a context event indicating the size, source, destination and source

code line of the communication.

• Parsing header works around differences between SHMEM
implementations and versions.

• Loaded into unmodified application with LD_PRELOAD or through linker
script at link time

14

extern void __real_shmem_get128(void * a1, const void * a2, size_t a3, int a4) ;
extern void __wrap_shmem_get128(void * a1, const void * a2, size_t a3, int a4) {

TAU_PROFILE_TIMER(t,"void shmem_get128(void *, const void *, size_t, int) C", "",
TAU_USER);

TAU_PROFILE_START(t);
TAU_TRACE_SENDMSG_REMOTE(TAU_SHMEM_TAGID_NEXT, Tau_get_node(), 16*a3, a4);
__real_shmem_get128(a1, a2, a3, a4);
TAU_TRACE_RECVMSG(TAU_SHMEM_TAGID, a4, 16*a3);
TAU_PROFILE_STOP(t);

}

}

15

• TAU’s existing memory tracking support gives us
heap usage overall and per function, but does
not tell us where in the runtime or of what data
type the allocation belongs to.

• New calls in TAU for tracking allocations
– Track “flat” allocations (no relationships maintained)

• Tau_track_class_allocation(name, size)
– Track hierarchical allocations

• Maintain allocation stack for context
• Tau_start_class_allocation(name, size, include_in_parent)
• Tau_stop_class_allocation(name, write_record)

– Included in profile alongside timing data
– Option to use context events: show where allocations occurred in the runtime

• Two context stacks: timer stack and allocation stack
• export TAU_MEM_CONTEXT=1

– Default weak empty implementation allows enabling and disabling
instrumentation at runtime.

Tau_start_class_allocation(“a”, 10, 0);
Tau_start_class_allocation(“b”, 25, 0);
Tau_stop_class_allocation(“b”, 1);
Tau_stop_class_allocation(“a”, 1);
Tau_start_class_allocation(“b”, 10, 0);
Tau_stop_class_allocation(“b”, 1);

10 bytes allocated in object of type A
25 bytes allocated in object of type B (child of A)

10 bytes allocated in object of type B (not child)

alloc a 10
alloc b 35
alloc b <= a 25

Stored in profile:

• OpenMPI OPAL object system allows
centralized instrumentation of allocations of
OPAL objects
– Insert Tau_start_class_allocation,

Tau_stop_class_allocation into opal_obj_new in
opal/class/opal_object.h

• Tracking child objects requires manual instrumentation at the
point of allocation
– Dynamically-allocated members are allocated outside the constructor

– Accomplished with dummy allocation regions
• Reopen allocation region with Tau_start_class_allocation as normal.

• Record child allocations

• Close parent allocation region with write_record = 0

• Tracking allocations by type requires one line of
code inserted into Open MPI runtime
– static inline prevents use of library wrapper

Copyright © ParaTools, Inc. 18

Tracking Memory Usage in OpenSHMEM 5

Our initial implementation added a public API calls to TAU:

void Tau_track_class_allocation(const char * name , size_t size);

This call registers an allocation of a particular type (indicated by the name)
and size by triggering an atomic or context event within TAU. Adding a single
line to the Open MPI runtime code responsible for allocating memory for object
instances (opal obj new in opal/class/opal object.h) allows us to record
those allocations:

static inline opal_object_t *opal_obj_new(opal_class_t * cls)
{

opal_object_t *object;
assert(cls ->cls_sizeof >= sizeof(opal_object_t));

Tau track class allocation(cls->cls name, cls->cls sizeof);

[...]
}

The initial implementation successfully allowed us to collect data on the
memory usage by data type, but did not allow for collection of hierarchical data.
Open MPI runtime objects often contain pointers to other objects which are
allocated during the initial construction of the first object or shortly thereafter
and are properly considered to be owned by the first object. We wished to 1)
where possible, automatically capture this hierarchical relationship and 2) where
not possible, provide a mechanism for manual instrumentation to define the
relationship. For our second implementation, we added two new API calls to
TAU:

void Tau_start_class_allocation(const char * name , size_t size ,
int include_in_parent);

void Tau_stop_class_allocation(const char * name , int record);

The Tau start class allocation and Tau stop class allocation calls
are used for recording the sizes of objects, including their child objects. When
an allocation region is started, new allocation regions opened within the parent
region are recorded as both a standard atomic event and as a context event indi-
cating, rather than the enclosing functions, the the enclosing allocation regions.
For example,

Tau_start_class_allocation("a", 10, 0);
Tau_start_class_allocation("b", 25, 0);
Tau_stop_class_allocation("b", 1);
Tau_stop_class_allocation("a", 1);
Tau_start_class_allocation("b", 10, 0);
Tau_stop_class_allocation("b", 1);

will record the atomic events

alloc a 10
alloc b 35
alloc b <= a 25

Copyright © ParaTools, Inc. 19

6 N. Chaimov et al.

which indicates that 10 bytes of a objects were allocated, 35 bytes of b objects
were allocated, and 25 bytes of the b objects were child allocations of a objects.

Allocations of most objects in the Open MPI runtime are captured by instru-
menting, as before, the opal obj new function in opal/class/opal object.h,
which is called to construct most objects in the OPAL class hierarchy. In this
implementation, we wrap the call to the class constructors for the object being in-
stantiated, which automatically captures any child allocations which occur inside
the constructor:

static inline opal_object_t *opal_obj_new(opal_class_t * cls)
{

opal_object_t *object;
assert(cls ->cls_sizeof >= sizeof(opal_object_t));

Tau start class allocation(cls->cls name, cls->cls sizeof, 0);

#if OPAL_WANT_MEMCHECKER
object = (opal_object_t *) calloc(1, cls ->cls_sizeof);

#else
object = (opal_object_t *) malloc(cls ->cls_sizeof);

#endif
if (opal_class_init_epoch != cls ->cls_initialized) {

opal_class_initialize(cls);
}
if (NULL != object) {

object ->obj_class = cls;
object ->obj_reference_count = 1;

opal obj run constructors(object);

}

Tau stop class allocation(cls->cls name, 1);

return object;
}

By using allocation regions, this automatically captures any child allocations
that occur within the constructor of the class. For example, the constructor for
orte rml posted recv t allocates an object of type orte rml recv request t,
and this allocation is recorded as alloc orte rml posted recv t <= orte rml recv request t

in the profile.

This technique does not capture any child objects which are allocated outside
of the constructor for a class. There is no central location where such tracking
could be implemented, so any such child allocations are instrumented manually.
To do this, dummy allocation regions are used to indicate the parent of an alloca-
tion without actually recording an atomic event for the parent, which was already
record through opal obj new. To do this, Tau start class allocation is called
normally, child allocations are recorded, and Tau stop class allocation is then
called with the record parameter set to 0.

Allocations during
constructors
automatically
attributed to
enclosing
allocation region

20

Copyright © ParaTools, Inc. 21

• We want to use memory
tracking for scaling studies.

• ParaProf and PerfExplorer
(TAU’s visualizers) do not
provide the right kind of
charts for visualizing the
scaling of context events.

• To increase flexibility, we
added a parser which
generates Pandas
dataframes from TAU profile
files.
– Allows use of Jupyter

notebooks and the wide
array of Python
visualization libraries on
data collected from TAU.

22

• Build your app with the instrumented runtime,
then run with
<launcher> <launcher args>
tau_exec -T shmem,pdt -shmem -ebs -memory
<app> <app args>

• Example: GUPS on University of Oregon Talapas
system (Slurm)
– srun tau_exec -T shmem,pdt -shmem -ebs
-memory ./gups

Copyright © ParaTools, Inc. 23

Configuration
of TAU

SHMEM
wrapper Sampling

malloc wrapper

Copyright © ParaTools, Inc. 24

• Scaling GUPS from 16 to
1024 PEs on Oregon
Talapas system

• Record allocations of
objects of interest and
their child allocations

• Object types with
largest allocations in
runtime at 1024 PEs
among selected types
• ompi_proc_t (117 MB)
• orte_namelist_t (child

of oshmem_group_t)
(100 MB)

• ompi_proc_t list (child
of oshmem_group_t)
(33.5 MB)

ompi_proc_t

orte_namelist_t in
oshmem_group_t

Copyright © ParaTools, Inc. 25

opal_value_t

• Looking at all
runtime types
shows
opal_value_t is by
far the largest user
of memory
• Usages are spread

out as children of
many other object
types.

• This instrumentation gives us total allocations.
– Sum of all allocations throughout application

execution.
– Does not distinguish between data types whose

objects persist for the lifetime of the application and
those that, for example
• are only used during initialization; or,
• are subject to repeated allocation and deallocation.

• To distinguish these cases, we need to keep
traces or phase-based profiles, not context
profiles.

Copyright © ParaTools, Inc. 26

Copyright © ParaTools, Inc. 27

• OTF2 dramatically improves on SLOG2:

• Smaller trace files

• Richer trace data, e.g. RMA events

• Better trace visualization (Vampir, Ravel)

• TAU can now generate OTF2 files natively:

• No Score-P required!

• Uses OpenSHMEM internally for event reduction

• Writes context events to OTF2 trace

Copyright © ParaTools, Inc. 28

Copyright © ParaTools, Inc. 29

Copyright © ParaTools, Inc. 30

• Instrumentation of Open MPI destructors
enables tracking frees by data type as well as
mallocs, enabling a cumulative allocations
context event.

Copyright © ParaTools, Inc. 31

10 N. Chaimov et al.

provides event types specifically suited for representing OpenSHMEM one-sided
communication, which are output by TAU when they are encountered in place of
the traditional representation of one-sided communication as if it were two-sided
MPI communication. Generating OTF2 files requires communication at runtime
in order to create a global mapping of function names to local identifiers; this is
implemented in TAU by intercepting the call to shmem finalize and carrying out
this communication prior to the actual shutdown of the OpenSHMEM runtime.
OTF2 is also highly space-optimized, producing smaller files than equivalent
traditional TAU traces. Figure 7 shows a trace visualization of an execution of
GUPS on 128 PEs using the Vampir trace visualizer [7].

We then implemented API calls in TAU to handle deallocation regions analo-
gous to allocation regions but which record when objects are deallocated:

void Tau_track_class_deallocation(const char * name , size_t size);
void Tau_start_class_deallocation(const char * name , size_t size ,

int include_in_parent);
void Tau_stop_class_deallocation(const char * name , int record);

The OPAL object system in Open MPI uses a reference counting system in
which a class destructor is invoked when an object’s reference count reaches zero.
We instrument the code in the runtime which invokes the destructors, ensuring
that we also capture the hierarchical relationship with any child objects that are
freed by the destructor of a parent:

static inline void opal_obj_run_destructors(opal_object_t * object)
{

opal_destruct_t* cls_destruct;

assert(NULL != object ->obj_class);

Tau start class deallocation(object->obj class->cls name,object->obj class->cls sizeof, 0);

cls_destruct = object ->obj_class ->cls_destruct_array;
while(NULL != *cls_destruct) {

(* cls_destruct)(object);
cls_destruct ++;

}

Tau stop class deallocation(object->obj class->cls name, 1;

}

Every instance of an allocation or deallocation of an OPAL object is sepa-
rately recorded in the OTF2 trace. This allows us to determine, for each PE,
the cumulative bytes currently allocated for each OPAL object type. Figure 8
shows the current memory usage of opal value t objects over time for a run of
GUPS on 128 PEs. Early during shmem init, there are a large number of small
allocations and deallocations, and the total memory usage of these objects fluc-
tuates. As shmem init completes, large allocations occur which push the current
allocation count to 274 kB per PE. The profiling approach described above gives
a value of 407 kB of opal value t objects per PE – the peak usage is 67% of
the total allocated bytes.

Copyright © ParaTools, Inc. 32

Full view

Zoomed to show
fluctuation during
initialization

• Identification of targets for optimization by
sharing across PEs on a node
– If there are object types which are written to only

during initialization, or which have fields written to
only during initialization, these might be shared
between PEs on the same physical node

– Identification requires tracking writes to allocations
attributed to particular data types.

• Large scaling studies on Summit, etc.

Copyright © ParaTools, Inc. 33

• For SC18 release:
– Support for OpenSHMEM 1.4 standard, including

threading modes and contexts.
– Support for hybrid CUDA/OpenSHMEM applications.

Copyright © ParaTools, Inc. 34

• With no runtime instrumentation, TAU can
capture runtime allocations by source line of
origin.

• With minimal runtime instrumentation (4 lines of
code), TAU can capture runtime allocations by
both source line of origin and data type of the
allocation.

• Now available in TAU v2.27.2:
– http://tau.uoregon.edu/tau.tgz

• Instrumented runtime at:
– https://github.com/paratoolsinc/ompi

Copyright © ParaTools, Inc. 35

http://tau.uoregon.edu/tau.tgz
https://github.com/paratoolsinc/ompi

