
ORNL is managed by UT-Battelle

for the US Department of Energy

Oak Ridge National Laboratory
Computing and Computational Sciences Directorate

Thomas Naughton, Ferrol Aderholdt, Matt Baker,
Swaroop Pophale, Manjunath Gorentla Venkata
and Neena Imam

Oak Ridge National Laboratory

Oak Ridge OpenSHMEM
Benchmark Suite

August 22, 2018

OpenSHMEM 2018 Workshop, Baltimore, MD, USA

Computational Research &
Development Programs

Talk Summary

• Introduce a set of benchmarks to aid assessment
of OpenSHMEM by users & implementors

• Outline

– Overview of benchmarks in suite

– Highlight multithreaded enhancements

– Basic usage and results for illustration

2

Computational Research &
Development Programs

OpenSHMEM Benchmark (OSB) Suite

• Collection of codes ported to use OpenSHMEM

– Micro-benchmarks

– Mini-applications / compute kernels

• Target users

– System implementors

– Application developers

• Example use cases

– Assess effects of different implementation strategies

– Assess performance of different library implementations

3

Computational Research &
Development Programs

OSB Suite

“Mini” Applications

• Graph500 (search/graphs)

• SSCA1 (search/text)

• NPB (compute kernels)

Synthetic Benchmarks

• GUPS (memory)

• SHOMS (oshmem API)

4

Benchmark Single Threaded Multithreaded

Graph500 YES YES

SSCA1 YES YES

NPB YES NO

GUPS YES YES

SHOMS YES N/A

Computational Research &
Development Programs

Experimental Environments

• “Turing”

– 16-node Linux cluster

– RHEL 7.4

– Intel Xeon E5-2660 2.6Ghz

– 64GB memory / node

– Mellanox ConnectX-5

• “EOS”

– 736-node Cray XC30

– CrayOS 5.2.82

– Intel Xeon E5-2670

– 64GB memory / node

– Aries network

• OpenSHMEMs

– Cray-shmem 7.7.0

– OpenSHMEM-X “devel” (w/ ucx)

– SOS 1.4.1 (w/ libfabric-cray)

Computational Research &
Development Programs

Graph500

• Benchmark to represent data intensive workloads

– Breadth-First Search (BFS) on large undirected graphs

– Fine-grained communication

– Sparse spatial & temporal locality

• Input parameters

– Problem (graph) size : scale_factor & edge_factor

• Number of vertices = 2scale_factor

• Number of edges = 2 x edge_factor

– Memory required:

• Example: (224 x (2 x 16)) x 8 (bytes) = 4MB

scale_factor = 24 edge_factor = 16

6

Computational Research &
Development Programs

Graph500

• Roughly three phases

1. Graph edges generated (Kronecker algorithm)

• Parameters: scale_factor & edge_factor

2. BFS - Randomly designate 64 vertices as “root” vertices,
build tree from the “root” vertex, .

3. BFS is validated for correctness

– Time measured for all three phases

• Metric

– TEPS = Number of Traversed Edges Per Second

– * Also mean_time for BFS steps

7

Computational Research &
Development Programs

Graph500 OpenSHMEM

• OpenSHMEM version

– Adapted from MPI version

– Graph in symmetric heap & partitioned among PEs

– Vertices & edges accessible to all PEs via OSHMEM

– During BFS tracks vertex status (visited/discovered/...)

• Use shmem_put & AMO instead of MPI_Accumulate for updating
queues of vertices (e.g., discovered vertices)

• Multithreaded

– OpenMP threads parallelize workload of BFS

– Partition discovered vertices among threads

– Thread executes BFS on vertices in its partition

– OpenSHMEM context per thread to separate operations

8

Computational Research &
Development Programs

Graph500 Usage & Results

• Environment variables

– SHORT_VALIDATION (8 BFS)

– SKIP_VALIDATION

9

To Execute:
cd mpi/
oshrun –np 32 ./graph500_shmem_one_sided 24 16

Computational Research &
Development Programs

Graph500 Usage & Results

• Time for BFS scaling up #PEs (16-512) & scale_factor (20-25)

• Using OpenSHMEM-X on Turing

10

0

5

10

15

20

25

30

16
(scale:20)

32
(scale:21)

64
(scale:22)

128
(scale:23)

256
(scale:24)

512
(scale:25)

T
im

e
 (

se
c)

Num PEs (16 per node)

Graph500 BFS mean_time

Computational Research &
Development Programs

• SSCA1: Scalable Synthetic Compact Applications 1

– Sequence alignment algorithm with gap scoring

– Implemented as dynamic programming algorithm

– Similarity matrix simulates DNA codon to protein encoding

– Compare characters in text strings for matches (score)

– Scoring sequence based on presence of a gap

• Input parameters

– Problem size: SCALE environment variable (integer)

• Metric

– Time to solution (elapsed time)

11

SSCA1

Computational Research &
Development Programs

SSCA1

• Variants

– Single threaded: OpenSHMEM or MPI-3 one sided

– Multithreaded: OpenSHMEM specific

• Application workflow

– Structure: Outer / Inner loop

– Many small messages (puts & gets) in inner loop

• Inner loop: 5 small gets (must finish on each inner loop)

• Inner loop: 3 small puts (must finish before starting outer loop)

• OpenSHMEM Multithread

– Outer loop solving a diagonal in matrix (not parallelizable)

– Inner (parallel) loop solves each entry in the diagonal

– Inner loop using OpenMP threads
12

Computational Research &
Development Programs

SSCA1 Usage & Results

13

To Execute:
export SCALE=31
export OMP_NUM_THREADS=4 # If using threaded variant
oshrun –np 256 ./ssca1

Computational Research &
Development Programs

SSCA1 Usage & Results

14

OpenSHMEM-X execution line (Turing SSCA1-threaded)
orterun \

–hostfile hosts \
–bind-to socket \
–map-by ppr:2:node \ # Num PEs per node
–np 4 \ # Num PEs (total)
–x OMP_NUM_THREADS=8 \ # Num Threads per PE
–x SCALE=32 \ # Problem size

./ssca1

Computational Research &
Development Programs

NPB

• NPB: NAS Parallel Benchmarks

– Application kernels for common scientific algorithms

– OpenSHMEM versions adapted from MPI variants

– Single threaded OpenSHMEM versions

• Benchmarks / Mini-apps

– BT: Block Tri-diagonal solver, CFD mini-app (Fortran)

– SP: Scalar Penta-diagonal solver, CFD mini-app (Fortran)

– MG: Multi-Grid, long/short distance communication,
memory intensive (Fortran)

– IS: Integer Sort – random memory access (C)

• Metric

– MOPS – Millions of Operations Per Second
15

Computational Research &
Development Programs

NPB

• OpenSHMEM details

– Adapted from MPI variants

– IS: Integer Sort

• Bucket sort, each process sorts random set of keys in their range

• Uses put/get to simulate MPI AlltoAll/AlltoAllv to communicate keys

– MG: Multi-Grid

• Due to 1-sided communication, only require synchronization
(barrier_all) to ensure updates are visible at all PEs & ensures all
PEs at same stage

– BT: Block Tri-diagonal solver

• Uses gets when solving block tridiagonal equations

– SP: Scalar Penta-diagonal

• In OSHMEM case SP has better comp/comm overlap b/c
synchronize only when communicated data is used

16

Computational Research &
Development Programs

NPB Usage & Results

17

To Execute:
oshrun –np <nprocs> ./bin/<benchmark-name>.<class>.<nprocs>

where
<benchmark-name> is "is", "mg", ”bt” or "sp"
<nprocs> is the number of processes
<class> is "S", "W", "A", "B", "C", or "D"

Example:
oshrun –np 32 ./bin/is.C.32

Computational Research &
Development Programs

NPB Usage & Results

18

cray-shmem with ALPS launcher

aprun –d 16 –S 1 –n $NPROCS ./bin/is.C.$NPROCS

Computational Research &
Development Programs

GUPS

• GUPS: Giga Updates per Second

– Adapted from Random Access Benchmark

– Randomly generate address & PE where update occurs

– Number memory locations randomly updated in 1sec/1 billion

• “Randomly” - no relationship between locations in address space

• “Update” – read-modify-write on table (HPCC_Table) of 64bit words

• Input parameters

– (None)

• Number of PEs used to automatically calculate table size

• Metric

– GUPS – Giga Updates Per Second

19

Computational Research &
Development Programs

GUPS

• OpenSHMEM implementation

– Table (HPCC_Table) shared via symmetric heap

– Modify uses get/put/quiet to ensure visible on remote PE

– Based on spec v1.3 – feedback that v1.4 has atomic XOR

• Multithread variant

– Use OpenMP for the threading

– Each thread performs random updates of HPCC_Table

– Use OpenSHMEM contexts to manage thread specific
location information

20

Computational Research &
Development Programs

GUPS Usage & Results

21

To Execute:
oshrun –np 32 ./gups

Computational Research &
Development Programs

GUPS Usage & Results

22

OpenSHMEM-X execution line (Turing GUPS-threaded)
orterun \

–hostfile hosts \
–bind-to socket \
–map-by ppr:2:node \ # Num PEs per node
–np $NPROCS \ # Num PEs (total)
–x OMP_NUM_THREADS=10 \ # Num Threads per PE

./gups

Computational Research &
Development Programs

SHOMS

• SHOMS Micro-benchmark testing suite

– Based on UOMS benchmark for UPC micro operations

– Tests OpenSHMEM API

– Minimal test of each function

• Metric(s)

– Tests report latencies (min/max/avg)

– Tests report bandwidth (when function transfers data)

• Highlights

– Strictly test performance, not test correctness

– “Affinity Mode”: subset of tests run on 2 nodes to identify if a
core is favored by OpenSHMEM on a particular node

23

Computational Research &
Development Programs

SHOMS Usage & Results

24

To Execute:
oshrun –np 2 ./shoms [--input test-FEATURE.txt] [FLAGS…]

SHOMS flags

--off_cache: Shifts the data in the symmetric heap in an effort to disable the effects of caches on CPU.

--warmup: Do N/10 untimed iterations before doing N iterations in the main loop.
Warms up hardware/caches.

--msglen: Points to a file with a set of message lengths. Put one number per line in
the file and it will use N bytes per message for each line in the file.

--minsize: Starts tests a N bytes. Scales up by N*2 bytes on each iteration until it
goes above maxsize. Default minsize is 8.

--maxsize: Ends when N*2 is greater than maxsize. Default maxsize is 16777216

--time: Soft limit of N seconds for each iteration. This will not interrupt network operations.

--output: File to write results to. Default stdout. Will truncate existing files.

--input: File that lists tests to perform. By default SHOMS will run all tests available.
List one test per line.

--affinity: Run affinity test mode.

Computational Research &
Development Programs

SHOMS Usage & Results

25

Using OpenSHMEM version 1.3

Created all test list.

Will be running with 128 different tests

Will be running with 22 different size configurations

Using OpenSHMEM version 1.3

Running tests

...<snip>...

#---

Benchmarking shmem_barrier_all

#processes = 8

#---

#bytes #repetitions t_min[nsec] t_max[nsec] t_avg[nsec]

Bw_aggregated[MB/sec]

N/A 1000 12345 43411

12937.99 N/A

...<snip>...

Computational Research &
Development Programs

SHOMS Usage & Results

26

To Execute:
aprun –d 16 –S 1 –n $NPES ./shoms --input barrier.txt --maxsize 8

Computational Research &
Development Programs

Summary

• Overview of OpenSHMEM Benchmark (OSB) suite

– Included details on usage & example outputs/metrics

– Used OSB with different OpenSHMEM implementations

• Highlight enhancements for multithreaded variants

– Graph500, GUPS & SSCA1

• OSB Suite publicly available

– Encourage community use & improvements

https://github.com/ornl-languages/osb

27

Computational Research &
Development Programs

Publications where OSB codes appeared

• [2] M. Baker, F. Aderholdt, M. Gorentla Venkata, and P. Shamis. OpenSHMEM-
UCX: Evaluation of UCX for Implementing OpenSHMEM Programming
Model. OpenSHMEM’16.

• [3] M. Baker, A. Welch, and M. Gorentla Venkata. Parallelizing the Smith-
Waterman Algorithm Using OpenSHMEM and MPI-3 One-Sided Interfaces.
OpenSHMEM’15.

• [4] A. Bouteiller, S. Pophale, S. Boehm, M. Baker, and M. Gorentla Venkata.
Evaluating Contexts in OpenSHMEM-X Reference Implementation.
OpenSHMEM’17.

• [6] E. F. D’Azevedo and N. Imam. Graph500 in OpenSHMEM. OpenSHMEM’15.

• [11] S. Pophale, R. Nanjegowda, H. Jin, B. Chapman, A. Curtis, S. Poole, and J.
A. Kuehn. OpenSHMEM Performance and Potential: A NPB Experimental
Study. Proc. of PGAS-12, 2012.

• [14] P. Shamis, M. Gorentla Venkata, S. Poole, A. Welch, and T. Curtis.
Designing a High Performance OpenSHMEM Implementation Using
Universal Common Communication Substrate as a Communication
Middleware. OpenSHMEM’14.

28

Computational Research &
Development Programs

This work was supported by the United States Department of Defense
(DoD) and used resources of the Computational Research and
Development Programs at Oak Ridge National Laboratory.

This work was sponsored by the U.S. Department of Energy’s Office of
Advanced Scientific Computing Research.

This research used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

Acknowledgements

Questions?

Computational Research &
Development Programs

