To Exascale And Beyond:
Intel’s Scalable System Framework and
OpenSHMEM

James Dinan
Extreme Scale Software Pathfinding Team

OpenSHMEM Workshop
August 2016
Legal Notices and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Intel, the Intel logo, Xeon and Xeon Phi and others are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2016 Intel Corporation.
INTEL’S SCALABLE SYSTEM FRAMEWORK

A design foundation enabling a wide range of highly workload-optimized solutions

- Small Clusters Through Supercomputers
- Compute and Data-Centric Computing
- Standards-Based Programmability
- On-Premise and Cloud-Based

Components:
- Intel® Xeon® Processors
- Intel® Xeon Phi™ Coprocessors
- Intel® Xeon Phi™ Processors
- Intel® True Scale Fabric
- Intel® Omni-Path Architecture
- Intel® SSDs
- Intel® Lustre-based Solutions
- Intel® Silicon Photonics Technology
- Intel® Software Tools
- HPC Scalable Software Stack
- Intel® Cluster Ready Program
Intel® Omni-Path Architecture
Accelerating data movement through the fabric

Port latency
(includes error detection!)

100-110ns
port-to-port latency
(with error correction)

195M
messages/sec

160 M
messages/sec
(MPI message rate uni-directional)

Intel® Omni-Path
HFI adapter

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance.
CPU-Fabric Integration
with the Intel® Omni-Path Architecture

KEY VALUE VECTORS
- Performance
- Density
- Cost
- Power
- Reliability

Future Generations
Additional integration, improvements, and features

Future Intel® Xeon® processor (14nm)
Intel® Xeon Phi™ processor
Next generation Intel® Xeon® processor
Next generation Intel® Xeon® Phi™ coprocessor
Intel® Xeon® processor E5-2600 v3
Intel® Omni-Path Architecture
Evolutionary Approach, Revolutionary Features, End-to-End Solution

Building on the industry’s best technologies
- Highly leverage existing Aries and Intel® True Scale Fabric
- Adds innovative new features and capabilities to improve performance, reliability, and QoS
- Re-use of existing OpenFabrics Alliance* software

Robust product offerings and ecosystem
- End-to-end Intel product line
- >100 OEM designs¹
- Strong ecosystem with 70+ Fabric Builders members

¹ Source: Intel internal information. Design win count based on OEM and HPC storage vendors who are planning to offer either Intel-branded or custom switch products, along with the total number of OEM platforms that are currently planned to support custom and/or standard Intel® OPA adapters. Design win count as of November 1, 2015 and subject to change without notice based on vendor product plans. *Other names and brands may be claimed as property of others.
Intel® Omni-Path Architecture Network Layers

Layer 1 – Physical Layer
 – Leverages existing Ethernet and InfiniBand* PHY standards

Layer 1.5 – Link Transfer Protocol
 – Provides reliable delivery of Layer 2 packets, flow control, and link control across a single link

Layer 2 – Data Link Layer
 – Provides fabric addressing, switching, resource allocation, and partitioning support

Layers 4-7 – Transport to Application Layers
 – Provide interfaces between software libraries and HFIs
The HFI segments data into 65-bit containers called Flow Control Digits or “Flits”.

Link Transfer Packets (LTPs) are created by assembling 16 Flits together (plus 14b CRC and 2b credit).

LTPs send Flits sent over the FABRIC until the entire message is transmitted.

8K/10K New MTU Sizes Added

1 Flit = 65 bits

16 Flits = LTP

128B data, 4B overhead => 64/66

PiP (Packet Integrity Protection) – Link error detection/correction in units of LTPs

CRC: Cyclic Redundancy Check
New Intel® OPA Fabric Features: Fine-grained Control Improves Resiliency and Optimizes Traffic Movement

<table>
<thead>
<tr>
<th>Traffic Flow Optimization</th>
<th>Description</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optimizes Quality of Service (QoS) in mixed traffic environments, such as storage and MPI</td>
<td>Ensures high priority traffic is not delayed → Faster time to solution</td>
</tr>
<tr>
<td></td>
<td>Transmission of lower-priority packets can be paused so higher priority packets can be transmitted</td>
<td>Deterministic latency → Lows run-to-run timing inconsistencies</td>
</tr>
</tbody>
</table>

| Packet Integrity Protection | Allows for rapid and transparent recovery of transmission errors on an Intel® OPA link without additional latency | Fixes happen at the link level rather than end-to-end level |
| | Resends 1056-bit bundle w/errors only instead of entire packet (based on MTU size) | Much lower latency than Forward Error Correction (FEC) defined in the InfiniBand* specification⁠¹ |

| Dynamic Lane Scaling | Maintain link continuity in the event of a failure of one of more physical lanes | Enables a workload to continue to completion. **Note:** InfiniBand will shut down the entire link in the event of a physical lane failure |
| | Operates with the remaining lanes until the failure can be corrected at a later time |

¹ Lower latency based on the use of InfiniBand with Forward Error Correction (FEC) Mode A or C in the public presentation titled “Option to Bypass Error Marking (supporting comment #205),” authored by Adee Ran (Intel) and Oran Sela (Mellanox), January 2013. Mode A modeled to add as much as 140ns latency above baseline, and Mode C can add up to 90ns latency above baseline. Link: www.ieee802.org/3/bi/public/lan13/lan13_bbj_01a_0113.pdf
Intel® Omni-Path Fabric Link Level Innovation:
Dynamic Lane Scaling (DLS) Traffic Protection

User Setting (per Fabric):
- Set maximum degrade option allowable
 - 4x – Any lane failure would cause link reset or take down
 - 3x – Still operates at degraded bandwidth (75 Gbps)
 - 2x – Still operates at degraded bandwidth (50 Gbps)
 - 1x – Still operates at degraded bandwidth (25 Gbps)

Link Recovery:
- PIP is used to recover link without reset – An Intel® OPA innovation

Intel® OPA still passing data at reduced bandwidth with link recovery via PIP
Intel® Omni-Path Fabric Link Level Innovation: Traffic Flow Optimization (TFO) - Preemption

Packet A Arrives Slightly Ahead of MPI Packet B

Packet A (VL0) Storage Traffic
Packet B (VL0) MPI Traffic
Packet C (VL0) MPI Traffic

Large Packet with Lower Priority
Packet B is on a Higher Priority VL
Other Traffic on a Lower Priority VL

Host ISL

Intel® Omni-Path Architecture
48 Radix Switch

Suspends Packet A to Send High Priority Packet B then Resumes A

Same Priority Packet C Transmits After Packet A Completes

VL = Virtual Lane (Each Lane Has a Different Priority)

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration.
Knights Landing: Next Intel® Xeon Phi™ Processor

First **self-boot** Intel® Xeon Phi™ processor that is **binary compatible** with main line IA. Boots standard OS.

Significant improvement in scalar and **vector** performance

Integration of **Memory on package**: innovative memory architecture for high bandwidth and high capacity

Integration of **Fabric on package**

Potential future options subject to change without notice.
All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification.
Knights Landing Overview

Chip: 36 Tiles interconnected by 2D Mesh

Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW DDR4: 6 channels @ 2400 up to 384GB

IO: 36 lanes PCIe* Gen3. 4 lanes of DMI for chipset

Node: 1-Socket only

Fabric: Omni-Path on-package (not shown)

Vector¹: up to 2 TF/s Linpack/DGEMM; 4.6 TF/s SGEMM

Streams Triad¹: MCDRAM up to 490 GB/s; DDR4 90 GB/s

Scalar²: Up to ~3x over current Intel® Xeon Phi™ co-processor 7120 (“Knights Corner”)

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance. Configurations:

1. Intel Xeon Phi processor 7250 (16GB, 1.4 GHz, 68-cores) running LINPACK (score 2000 GFLOPS), DGEMM (score 2070 GFLOPS), SGEMM (4605 GFLOPS), STREAM (DDR4 = 90 GB/s and MCDRAM = 490 GB/s), 96 GB DDR4-2133 memory, BIOS R00, ROCS, Cluster Mode = Quad, MCDRAM flat or Cache, RHEL® 7.0, MPSP 1.2.2, Intel MKL 11.3.2, Intel MPI 5.1.2, DGEMM 20K x 20K, LINPACK 100K x 100K size
2. Intel estimates based on estimated 1-user SPECPow2006 comparing configuration 1 to Intel Xeon Phi co-processor 7120A hosted on 2x Intel Xeon processor E5-2697 v3.
Knights Landing Products

KNL
- DDR Channels: 6
- MCDRAM: up to 16 GB
- Gen3 PCIe (Root port): 36 lanes

KNL with Omni-Path
- DDR Channels: 6
- MCDRAM: up to 16 GB
- Gen3 PCIe (Root port): 4 lanes
- Intel® Omni-Path Arch.: 200 Gb/s/dir

KNL Card
- No DDR Channels
- MCDRAM: up to 16 GB
- Gen3 PCIe (End point): 16 lanes
- NTB Chip to create PCIe EP

Potential future options subject to change without notice. Codenames.
All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification.
Intel ISA

KNL implements all legacy instructions

AVX-512 Extensions
- 512-bit FP/Integer Vectors
- 32 regs, & 8 mask regs
- Gather/Scatter

Conflict Detection: Improves Vectorization

Prefetch: Gather and Scatter Prefetch

Exponential and Reciprocal Instructions
Three Memory Modes, Selected at Boot

Cache Mode
- 16GB MCDRAM
- DDR

Flat Mode
- 16GB MCDRAM
- DDR
- Physical Address

Hybrid Mode
- 8 or 12GB MCDRAM
- DDR

• SW-Transparent, Mem-side cache
• Direct mapped. 64B lines.
• Tags part of line
• Covers whole DDR range

• MCDRAM as regular memory
• SW-Managed (e.g. memkind)
• Same address space

• Part cache, Part memory
• 25% or 50% cache
• Benefits of both
KNL Mesh Interconnect – Mesh of Rings

Three Cluster Modes:

1. **All-to-All:** No affinity between Tile, Directory and Memory
2. **Quadrant:** Affinity between Directory and Memory: Default mode. SW transparent
3. **Sub-NUMA Clustering:** Affinity between Tile, Directory, Memory. SW visible
Observations for OpenSHMEM

On-node communication is growing in importance
- OpenSHMEM can and should address both off-node and on-node communication needs
- PGAS can provide coherence alternative

Hybrid processes + threads programming is already important
- Threads have an advantage with sharing on-node resources
- OpenSHMEM is late to the party – let’s bring something good!

Heterogeneous memory has arrived
- HBW, DDR, large pages, NUMA, nonvolatile memory, …
- API should enable access to diverse memory technologies and allow users to control data placement and locality
Why Thread Safety Is Not Enough

Saturating the fabric with small messages
- Message rate of 160M/sec
- Processor with 72 cores
- Assuming all cores are sending messages,
 \[T = T_{\text{inject}} + T_{\text{compute}} = \frac{72}{160M} = 450\text{ns} \]

Low injection time is critical for small message workloads
- OpenSHMEM threading extensions must not burden critical paths
 - Taking a mutex
 - Accessing thread-local storage
 - Issuing an atomic operation

Contexts were designed to integrate threads while avoiding these overheads

Opinions expressed are those of the speaker and do not necessarily reflect the views of Intel Corp.
Contexts: You Want Them

Quiet/fence impacts only the specified context
- Isolation eliminates interference and synchronization within the OpenSHMEM runtime

Threads/PEs use contexts to overlap comm./comp.