
Microsoft Proprietary

Quantum

Chemistry and Materials

Algorithms

Dave Wecker
QuArC Chief Architect

Microsoft Research

Microsoft Proprietary

Microsoft QuArC and StationQ

Microsoft Proprietary

• Simulation:

– High enough level language to easily implement large quantum algorithms

– Allow as large a simulation on classical computers as possible

– Support abstraction and visualization to help the user

– Implement as an extensible platform so users can tailor to their own requirements

• Compilation:

– Multi-level analysis of circuits to allow many types of optimization

– Circuit re-writing for specific needs (e.g., different gate sets, noise modeling)

– Compilation into real target architectures

LIQ𝑈𝑖|⟩ Goals

Microsoft Proprietary

The LIQ𝑈𝑖|⟩ Simulation Platform

Client Service Cloud

F# Script

Gates …

Universal Stabilizer Hamiltonian

Circuit

Optimize Render…Export

C#

Classical Quantum

QECC Rewrite

Simulators

Language

Runtime Back End …

Noise

LIQUi|>: A Software Design Architecture and Domain-Specific

Language for Quantum Computing. Dave Wecker, Krysta M. Svore

Languages, compilers, and computer-aided design tools will be essential for

scalable quantum computing, which promises an exponential leap in our

ability to execute complex tasks. LIQUi|> is a modular software architecture

designed to control quantum hardware. It enables easy programming,

compilation, and simulation of quantum algorithms and circuits, and is

independent of a specific quantum architecture. LIQUi|> contains an

embedded, domain-specific language designed for programming quantum

algorithms, with F# as the host language. It also allows the extraction of a

circuit data structure that can be used for optimization, rendering, or

translation. The circuit can also be exported to external hardware and software

environments. Two different simulation environments are available to the user

which allow a trade-off between number of qubits and class of operations.

LIQUi|> has been implemented on a wide range of runtimes as back-ends with

a single user front-end. We describe the significant components of the design

architecture and how to express any given quantum algorithm.

http://arxiv.org/abs/1402.4467

http://arxiv.org/abs/1402.4467

Microsoft Proprietary

• Define a function to perform entanglement:

Teleport: User Code

let EPR (qs:Qubits) = H qs; CNOT qs

• The rest of the algorithm:

let teleport (qs:Qubits) =
let qs' = qs.Tail
EPR qs'; CNOT qs; H qs
M qs'; BC X qs'
M qs ; BC Z !!(qs,0,2)

Microsoft Proprietary

Full Teleport Circuit in a Steane7 Code

3 qubits go to 27

Microsoft Proprietary

Noise(circ:Circuit,ket:Ket,models:NoiseModels)
type NoiseModel = {

gate: string // Gate name (ending with "*" for wildcard match)
maxQs: int // Max qubits that gate uses
time: float // floating duration of gate (convention Idle = 1.0)
func: NoiseFunc // Noise Model to execute
gateEvents: NoiseEvents // Stats for normal gates
ecEvents: NoiseEvents // Stats for EC gates

}
member n.DampProb // Get/Set damping probability on a qubit

Advanced Noise Modeling

Microsoft Proprietary

Shor’s algorithm: Full Circuit:

4 bits ≅ 8200 gates

Circuit for Shor’s algorithm using 2n+3 qubits – Stéphane Beauregard

Largest we’ve done:

14 bits (factoring 8193)

14 Million Gates

30 days

Microsoft Proprietary

QFT' bs // Inverse QFT

X [bMx] // Flip top bit

CNOT [bMx;anc] // Reset Ancilla to |0⟩
X [bMx] // Flip top bit back

QFT bs // QFT back

CCAdd a cbs // Finally get Φ|𝑎 + 𝑏 𝑚𝑜𝑑 𝑁⟩

let op (qs:Qubits) =

CCAdd a cbs // Add a to Φ|𝑏⟩
AddA' N bs // Sub N from Φ|𝑎 + 𝑏⟩
QFT' bs // Inverse QFT of Φ|𝑎 + 𝑏 − 𝑁⟩
CNOT [bMx;anc] // Save top bit in Ancilla

QFT bs // QFT of a+b-N

CAddA N (anc :: bs) // Add back N if negative

CCAdd' a cbs // Subtract a from Φ|𝑎 + 𝑏 𝑚𝑜𝑑 𝑁⟩

Shor’s algorithm: Modular Adder

As defined in:

Circuit for Shor’s

algorithm using 2n+3 qubits

– Stéphane Beauregard

Microsoft Proprietary

Shor’s algorithm results

Microsoft Proprietary

• Nitrogen Fixation:

– Making fertilizer uses a process from 1909 and uses lots of energy (400𝑜C/200 atm)

– Cost: 3-5% of the worlds natural gas production (1-2% of the world’s annual energy)

– Design of a new catalyst would take ~100-200 qubits (inexpensive fertilizer)

• Carbon Capture:

– Cost: Capturing at point sources will result in 21-90% increase in energy cost

– Design a new catalyst to extract 𝐶𝑂2 from the air would take ~200-400 qubits

• Design of new chemicals and materials:

– Today 1/3 of all supercomputing time is spent on chemistry and materials modeling

– Designs that can never be done classically are solvable with a few hundred qubits

– Pharmaceuticals, High temperature Super Conductors (energy, transportation…)

• Example: gain back current 6.5% transmission loss in power lines

A Little Motivation

Microsoft Proprietary

Can quantum chemistry be performed on a small quantum

computer: Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B.

Hastings, Matthias Troyer

As quantum computing technology improves and quantum

computers with a small but non-trivial number of N > 100 qubits

appear feasible in the near future the question of possible

applications of small quantum computers gains importance. One

frequently mentioned application is Feynman's original proposal of

simulating quantum systems, and in particular the electronic structure

of molecules and materials. In this paper, we analyze the

computational requirements for one of the standard algorithms to

perform quantum chemistry on a quantum computer. We focus on

the quantum resources required to find the ground state of a

molecule twice as large as what current classical computers can solve

exactly. We find that while such a problem requires about a ten-fold

increase in the number of qubits over current technology, the

required increase in the number of gates that can be coherently

executed is many orders of magnitude larger. This suggests that for

quantum computation to become useful for quantum chemistry

problems, drastic algorithmic improvements will be needed.

http://arxiv.org/abs/1312.1695

Improving Quantum Algorithms for Quantum Chemistry: M. B.

Hastings, D. Wecker, B. Bauer, M. Troyer

We present several improvements to the standard Trotter-Suzuki based

algorithms used in the simulation of quantum chemistry on a quantum

computer. First, we modify how Jordan-Wigner transformations are

implemented to reduce their cost from linear or logarithmic in the

number of orbitals to a constant. Our modification does not require

additional ancilla qubits. Then, we demonstrate how many operations

can be parallelized, leading to a further linear decrease in the parallel

depth of the circuit, at the cost of a small constant factor increase in

number of qubits required. Thirdly, we modify the term order in the

Trotter-Suzuki decomposition, significantly reducing the error at given

Trotter-Suzuki timestep. A final improvement modifies the Hamiltonian

to reduce errors introduced by the non-zero Trotter-Suzuki timestep. All

of these techniques are validated using numerical simulation and

detailed gate counts are given for realistic molecules.

http://arxiv.org/abs/1403.1539

The Trotter Step Size Required for Accurate Quantum Simulation of Quantum Chemistry

David Poulin, M. B. Hastings, Dave Wecker, Nathan Wiebe, Andrew C. Doherty, Matthias Troyer

The simulation of molecules is a widely anticipated application of quantum computers. However,

recent studies \cite{WBCH13a,HWBT14a} have cast a shadow on this hope by revealing that the

complexity in gate count of such simulations increases with the number of spin orbitals N as N8,

which becomes prohibitive even for molecules of modest size N∼100. This study was partly

based on a scaling analysis of the Trotter step required for an ensemble of random artificial

molecules. Here, we revisit this analysis and find instead that the scaling is closer to N6 in worst

case for real model molecules we have studied, indicating that the random ensemble fails to

accurately capture the statistical properties of real-world molecules. Actual scaling may be

significantly better than this due to averaging effects. We then present an alternative simulation

scheme and show that it can sometimes outperform existing schemes, but that this possibility

depends crucially on the details of the simulated molecule. We obtain further improvements

using a version of the coalescing scheme of \cite{WBCH13a}; this scheme is based on using

different Trotter steps for different terms. The method we use to bound the complexity of

simulating a given molecule is efficient, in contrast to the approach of \cite{WBCH13a,HWBT14a}

which relied on exponentially costly classical exact simulation.

http://arxiv.org/abs/1406.4920

Quantum Chemistry 𝐻 =

𝑝𝑞

ℎ𝑝𝑞𝑎𝑝
†𝑎𝑞 +

1

2

𝑝𝑞𝑟𝑠

ℎ𝑝𝑞𝑟𝑠 𝑎𝑝
†𝑎𝑞
†𝑎𝑟𝑎𝑠

On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation

Ryan Babbush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik, Nathan Wiebe

Although the simulation of quantum chemistry is one of the most anticipated applications of

quantum computing, the scaling of known upper bounds on the complexity of these algorithms

is daunting. Prior work has bounded errors due to Trotterization in terms of the norm of the

error operator and analyzed scaling with respect to the number of spin-orbitals. However, we

find that these error bounds can be loose by up to sixteen orders of magnitude for some

molecules. Furthermore, numerical results for small systems fail to reveal any clear correlation

between ground state error and number of spin-orbitals. We instead argue that chemical

properties, such as the maximum nuclear charge in a molecule and the filling fraction of orbitals,

can be decisive for determining the cost of a quantum simulation. Our analysis motivates several

strategies to use classical processing to further reduce the required Trotter step size and to

estimate the necessary number of steps, without requiring additional quantum resources. Finally,

we demonstrate improved methods for state preparation techniques which are asymptotically

superior to proposals in the simulation literature.

http://arxiv.org/abs/1410.8159

Ferredoxin (𝐹𝑒2𝑆2) used in many metabolic reactions

including energy transport in photosynthesis

 Intractable on a classical computer

 Assumed quantum scaling: ~24 billion years (𝑁11 scaling)

 First paper: ~850 thousand years to solve (𝑁9 scaling)

 Second paper: ~30 years to solve (𝑁7 scaling)

 Third paper: ~5 days to solve (𝑁5.5 scaling)

 Fourth paper: ~1 hour to solve (𝑁3, 𝑍2.5 scaling)

http://arxiv.org/abs/1312.1695
http://arxiv.org/abs/1403.1539
http://arxiv.org/abs/1406.4920
http://arxiv.org/abs/1410.8159

Microsoft Proprietary

Simulation Evidence 𝐻 =

𝑝𝑞

ℎ𝑝𝑞𝑎𝑝
†𝑎𝑞 +

1

2

𝑝𝑞𝑟𝑠

ℎ𝑝𝑞𝑟𝑠 𝑎𝑝
†𝑎𝑞
†𝑎𝑟𝑎𝑠

Microsoft Proprietary

𝐻 = −

⟨𝑖,𝑗⟩

𝜎

𝑡𝑖𝑗 𝑐𝑖,𝜎
† 𝑐𝑗,𝜎 + 𝑐𝑗,𝜎

† 𝑐𝑖,𝜎 + 𝑈

𝑖

𝑛𝑖,↑𝑛𝑖,↓ +

𝑖

𝜖𝑖𝜂𝑖

Simulation of Materials (on-going work)

General Circuit Kinetic Energy Measurement

Fermionic Permutations

Basis

Change

See: d-wave resonating valence bond states of fermionic atoms in optical lattices

Microsoft Proprietary

Quantum Algorithms for Quantum Impurity Problems

• Mott Insulators

• Transition Metal Compounds

• Cuprates (e.g., High Tc SC)

• Lanthanides and Actinides

• Kondo Physics (Low temperature

Resistance) from Magnetic

Impurities

• Quantum Dots

Microsoft Proprietary

Materials Modeling
𝐻𝑖𝑚𝑝 = 𝑈𝑛↑𝑛↓ − Σ𝑘,𝜎 𝑡𝑘𝑐𝜎

†𝑎𝑘,𝜎
𝑏𝑎𝑡ℎ + ℎ. 𝑐. + 𝐻𝑏𝑎𝑡ℎ

𝑡𝑘

𝐻𝑏𝑎𝑡ℎ

𝑈

• Solids have regular structure that can be

modeled as lattices

• The Hubbard model only implements 𝐻𝑝𝑝
and 𝐻𝑝𝑞𝑞𝑝 terms

• This doesn’t cover many of the materials

we’re interested in

• One can choose a single site in the lattice to

model

• The effect of the rest of the lattice can be

modeled in terms of its effect on this site

𝐻ℎ𝑢𝑏 = 𝑈Σ𝑖𝑛𝑖↑𝑛𝑖↓ − 𝑡Σ<𝑖,𝑗>,𝜎𝑐𝑖𝜎
† 𝑐𝑗𝜎

𝑈

𝑡

Microsoft Proprietary

• Choose a single place in the lattice to model

(the impurity). This may contain a collection of

local sites

• The impurity is typically a full two-body model

• The effect of the rest of the lattice can be

modeled in terms of its effect on the impurity

(the bath) via a Dynamic Green’s function 𝐺(𝜔)

• The bath may have many sites and

interconnections

Anderson Impurity Model

Bath

Impurity

𝐻 =

𝑖𝑗

𝑡𝑖𝑗𝑎𝑖
†𝑎𝑗 +
1

2

𝑖𝑗𝑘𝑙

𝑤𝑖𝑗𝑘𝑙𝑎𝑖
†𝑎𝑗
†𝑎𝑘𝑎𝑙 +

𝑖𝑝

𝑉𝑖𝑝(𝑎𝑖
†𝑎𝑝 + 𝑎𝑝

†𝑎𝑖) +

𝑝𝑞

𝜖𝑝𝑎𝑝
†𝑎𝑞

Microsoft Proprietary

• We can posit an initial model for a

material

• Measure quantum simulations at many

sites and frequencies deriving a dynamical

Green’s function

• Use feedback to update model

• Repeat until converged

• The resulting model is defined classically

and may be used to efficiently investigate

many questions about the material

Dynamical Mean Field Theory (DMFT)

Quantum

Classical

ModelFeedback

http://arxiv.org/abs/1012.3609

𝐺𝑛 𝜔 → Δ𝑛(𝜔)

𝐺𝑠𝑜𝑙𝑣𝑒𝑟(𝜔)= ⟨ 𝑐𝑖
† 𝜔 𝑐𝑗 −𝜔 ⟩

𝐺𝑠𝑜𝑙𝑣𝑒𝑟 𝜔 → ∑ 𝜔 → 𝐺 𝑘,𝜔 →

http://arxiv.org/abs/1012.3609

Microsoft Proprietary

• Cubic Hydrogen (𝐻2 crystal structure)

• Simulate at 2.5 Å with a bath of 9 orbitals

• Density of States plot for different frequencies. Red

curve is the Hartree-Fock solution (used as initial

guess). DMFT Converges after 7 iterations

• 5-7 total orbitals for a single site is state-of-the-art.

• Example from Gull et al, the diagram shows a 3 shell

degenerate solution (need 5 for D and 7 for F)

• A Quantum Computer could do a 4x larger impurity

or 4x more orbitals than state-of-the-art with 200

qubits

Dynamical Mean Field Theory (DMFT)
𝑮𝒊𝒎𝒑 𝜔

−1 = 𝜔 + 𝜇 + 𝑖0± 𝑺 − 𝒉𝒊𝒎𝒑 − 𝚺 𝜔 − 𝚫 𝜔

Mott Insulator

Spin Freezing

HF Solution

http://arxiv.org/abs/1012.4474

http://arxiv.org/abs/1012.4474

Microsoft Proprietary

SoL𝑖|⟩ - Son of LIQ𝑈𝑖|⟩

300 Kelvin - Room

SoL𝑖|⟩

77K-Nitrogen

.02K-𝑯𝒆𝟑/𝑯𝒆𝟒

4K-Helium

CPU Memory

CMOS

CPU Memory

Control Qubits

Quantum

Superconducting

Microsoft Proprietary

Algorithm
• Mixed Classical and Quantum

• F# Syntax, Domain Specific Language

Compilation • Abstract Syntax Tree

Targeting*

• Symbolic Execution

• Execution Specific Models

• Geometry, timing, resources,

simplification

Execution

• Circuit Simulation

• Hardware Control

• Rendering

Compilation for Hardware Execution

let pkg = Package(<@ QFT @>)

let QFT (qs:Qubits) = …

let sim = CircSimModel()

let impl = sim.Target(pkg)

sim.Run(impl,args)

Microsoft Proprietary

Dave Wecker

QuArC Chief Architect

Microsoft Corporation

Thank You

© 2015 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or

other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft

must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information

provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Referenced papers may be found at:

http://arxiv.org (Search: wecker_d)

