ReALE - Reconnection-Based ALE

Mikhail J. Shashkov

XCP-4, Methods & Algorithms,
Los Alamos National Laboratory,
Los Alamos, New Mexico, 87545, USA

e-mail: shashkov@lanl.gov; webpage: cnls.lanl.gov/~shashkov

Raphaël Loubére - CNRS at Université de Toulouse, France
Pierre-Henri Maire - CEA-CESTA BP 2, France
Jérôme Breil - CELIA, Université de Bordeaux, France
Stéphane Galera - INRIA, Team Bacchus, France

This work was performed under the auspices of the US Department of Energy at Los Alamos National Laboratory, under contract DE-AC52-06NA25396 - LA-UR-09-02990.

The authors acknowledge the partial support of the ASC Program at LANL and DOE Office of Science ASCR Program. Thanks to A. Soloviev, J. Dukowicz, A. Barlow, G. Ball, M. Kucharik, T. Ringler, D. Burton, J. Fung, R. Lowrie, M. Berndt, M. Gunzburger.
Arbitrary Lagrangian-Eulerian (ALE) Methods

- Explicit Lagrangian (solving Lagrangian equations) phase — grid is moving with fluid

- Rezone phase — changing the mesh (improving geometrical quality, smoothing, adaptation) — mesh movement

- Remap phase (conservative interpolation) — remapping flow parameters from Lagrangian grid to rezoned mesh
Rayleigh-Taylor Instability — Limitation of ALE

Solution: ReALE - Reconnection-based ALE

Rezone phase — Mesh is allowed to change connectivity
ReALE — Reconnection-based ALE

- **Lagrangian phase** — General polygonal meshes
- **Rezone phase** — Allows mesh reconnection
- **Remap phase** — Remapping from one polygonal mesh to another

The Devil is in the Details
Multimaterial Lagrangian Hydrodynamics

● Method of Concentrations
 * Transport equations for evolving concentrations, rescaling.
 * Mixture assumption - iso-pressure, iso-temperature, leads to effective γ for mixture of ideal gasses

● Volume-of-fluid (VOF); Moment-of-Fluid (MOF)
 ○ Interface Reconstruction
 ○ Closure models for mixed cells
ReALE - Flowchart

Initialization
- Construction of initial Voronoi mesh $\text{Mesh } I^{n=0}$
- Cleaning
- Initial distribution of physical parameters $U^{n=0}$

$n := n+1$

Lagrangian phase
- Solving Lagrangian equations on general polygonal mesh
- Start $\text{Mesh } I^n$ U^n
- End $\text{Mesh } L^{n+1}$ U^{n+1}
- Same connectivity meshes

Rezone phase
- Definition of generator position for cell c:
 \[\{ G^{n+1}_c \} \]
- Construction of associated Voronoi tessellation
- Cleaning
- $\text{Mesh } R^{n+1}$
- Resized mesh is a general polygonal mesh

Remap phase
- Remap from Lagrangian mesh onto Rezoned mesh
- L^{n+1} R^{n+1}
- U_L^{n+1} U^{n+1}
- Requires intersection-based remap

$n := n+1$

Start a new time step
Voronoi Tessellation - Definition

Set of generators: $g_i = (x_i, y_i)$
Voronoi cell: $V_i = \{ r = (x, y) : |r - g_i| < |r - g_j|, \text{ for all } j \neq i \}$

Centroid of the cell

$$c_i = \frac{\int_{V_i} r \, dx \, dy}{\int_{V_i} dx \, dy},$$

If $g_i = c_i$ - centroidal Voronoi tessellation (CVT)

Distance between generators and centroids - measure of mesh smoothness
Voronoi Tessellation - Lloyd’s Algorithm

1) Set positions of generators: \(g_i^0 : i = 1, \ldots, n \)
2) Construct Voronoi cells \(V_i^0 \) corresponding to \(g_i^0 \)
3) Define new positions of generators to be centroids of \(V_i^0 \): \(g_i^1 = c(V_i^0) \)
4) Repeat starting with \(#1 \) till some convergence criterion is satisfied

Mesh and Volume

Left - initial, central - five iterations, right - ”final”

Calculations by M. Kucharik

Lloyd’s Iteration - Mesh Smoothing
Reconnection-based Rezone Strategy

Requirements - Close to Lagrangian, Smooth Mesh, Continuity in Time

• Initial mesh at $t = 0$ is Voronoi mesh

• Voronoi mesh correspond to some generators - one generator per Voronoi cell

• Location of generators control the mesh, including connectivity

• Lagrangian Phase - There is no equation for movement of the generators

• On rezone stage we define new (rezoned) positions of generators which gives us new rezoned mesh - Voronoi mesh corresponding to new positions of generators.

• Rezone strategy is to how move generators
Algorithm for Movement of Generators

- Compute centroid of Lagrangian cell \tilde{V}_i^{n+1} at t^{n+1}
 \[c_i^{n+1} = \int_{\tilde{V}_i^{n+1}} r \, dx \, dy / \int_{\tilde{V}_i^{n+1}} dx \, dy \]

- "Lagrangian" Movement of Generators
 \[g_i^{n+1,Lag} = g_i + \Delta t \bar{u}_i, \quad \bar{u}_i = \frac{1}{|P(c_i^n)|} \sum_{p \in P(c_i^n)} u_p \]

 - $g_i^{n+1,Lag}$ - inside Lagrangian cell at t^{n+1}

- Final position of generators
 \[g_i^{n+1} = g_i^{n+1,Lag} + \omega_i \left[(c)^{n+1} - g_i^{n+1,Lag} \right] \quad \omega_i \in [0, 1] \]

 - Generator at t^{n+1} lies between Lagrangian position and position of centroid of Lagrangian cell at t^{n+1}
 - $\omega_i = 0$ - Lagrangian position; $\omega_i = 1$ - centroid of new Lagrangian cell - one iteration of Lloyd’s - smoothing the mesh
 - Choice of ω - Uniform Translation or Solid Rotation $\omega_i = 0$
Computation of the ω_i

• The principle of **material frame indifference**: uniform translation or rotation
 $$\omega_i = 0$$

• Deformation gradient tensor F
 $$F = \begin{pmatrix} \frac{\partial X^{n+1}}{\partial X^n} & \frac{\partial X^{n+1}}{\partial Y^n} \\ \frac{\partial Y^{n+1}}{\partial X^n} & \frac{\partial Y^{n+1}}{\partial Y^n} \end{pmatrix}$$

 Jacobian matrix of the map that connects the Lagrangian configurations of the flow at time t^n and t^{n+1}.

• The right Cauchy-Green strain tensor
 $$C = F^t F$$

 o **C is a 2 × 2 symmetric positive definite tensor**
 o **Reduces to the unitary tensor in case of uniform translation or rotation**
 o **Two positive eigenvalues**: $\lambda_1 \leq \lambda_2$ - the rates of dilation

• Definition of ω_i
 $$\omega_i = \frac{1 - \frac{\lambda_{1,i}}{\lambda_{2,i}}}{1 - \min_i \frac{\lambda_{1,i}}{\lambda_{2,i}}}$$
Vortex Formation

\[\gamma_1 = 1.5 \]
\[\rho_1 = 1 \]
\[P_1 = 1 \]
\[\gamma_3 = 1.5 \]
\[\rho_3 = 0.125 \]
\[P_3 = 0.1 \]
\[\gamma_2 = 1.4 \]
\[\rho_2 = 1 \]
\[P_2 = 0.1 \]

Time 2.7 - just before Lagrangian calculation stops because of mesh tangling - mesh and density.

Left - Lagrangian, Center - Standard ALE (Con), Right - ReALE (Con)
Vortex Formation

Time 2.72 - when Lagrangian calculation stops because of mesh tangling - coloring by initial region.

Left - Lagrangian, Center - Standard ALE (Con), Right - ReALE (Con)

Shows how Lagrangian is movement of the mesh
Vortex Formation

Left - Eulerian, Right - Standard ALE (Con)

Left - ReALE (Con), Right - ReALE (VOF)

Final time moment - 3.3
Vortex Formation

Left - ReALE (Con) density, mesh; Right - ReALE (Con) - trace $c (1 - c)$

Left - ReALE (VOF) density, mesh; Right - ReALE (VOF) - Materials

Final time moment - 3.3
The Interaction between a Planar Shock Wave and a Square Cavity

O. Igra, J. Falcovitz, H. Reichenbach and W. Heilig

"Experimental and Numerical Study of the Interaction between a Planar Shock Wave and a Square Cavity"

The Interaction between a Planar Shock Wave and a Square Cavity

Igra et al.

ReALE
The Interaction between a Planar Shock Wave and a Square Cavity

O. Igra, J. Falcovitz, H. Reichenbach and W. Heilig

Figure 9. As in figure 3 but at $t = 200 \mu s$.

Igra et al. ReALE
The Interaction between a Planar Shock Wave and a Square Cavity

The interaction between a planar shock wave and a square cavity

Figure 12. As in figure 3 but at $t = 340 \mu s$.

Igra et al.

ReALE
Conclusion

Summary

• New Reconnection-Based ALE - ReALE Method
• Demonstrated Performance on Test Problems
• On Test Examples ReALE Performs Better than Standard ALE
• NO USER INTERVENTION

More Information

• webpage: cnls.lanl.gov/~shashkov
• R. Loubère, P.-H. Maire, M. Shashkov, J. Breil, S. Galera
 ReALE: A Reconnection-based Arbitrary-Lagrangian-Eulerian Method,

• R. Loubère, P.-H. Maire, M. Shashkov
 ReALE: A Reconnection Arbitrary-Lagrangian-Eulerian Method in Cylindrical Geometry,