Introduction

- **Problems**
 - Malware spread on complex networks difficult to predict
 - Effect of proposed security policies is unclear

- **Approach**
 - Model malware spread and intervention policies
 - Mathematical analysis and simulations

Modeling Platform: ASIM

ASIM is an agent-based model that mimics the growth and topology of the internet at the autonomous systems level using the following information:

- **Geography**
- **Economics**
- **Traffic**

By combining ASIM with models of malware spread, we end up with a reasonable approximation of real world malware distributions on the internet.

Graduated Response and Drive by Downloads

To model the effect that search providers can have on infection rates, we created an epidemiological model of drive by downloads and search providers.

- **Intervention policies**
 - Blacklisting (removal from search results)
 - Graduated Response (reduction of search rank)

Data Sources

- **BGP Dumps (AS topology over time)**
 - RIPE http://ripe.net
- **Malware Data**
 - SANS ISC (Internet Storm Center) http://isc.sans.org
 - FIRE http://maliciousnetworks.org

Results: ASIM

Filtering ingress traffic (including transit) is more than twice as effective as filtering egress traffic alone.

Results: Graduated Response and Drive by Downloads

The solution to the steady state client infection rate is

\[P_c = P_s \frac{\beta_c}{\gamma_c + \beta_c} \]

For realistic distributions, high variance in client infection rates obscures the steady state solution.

Conclusions

- Agent based models are a powerful tool for modeling interventions in complex networks
- Real world distributions and networks give rise to noisy, unpredictable results, requiring multiple runs to understand steady state dynamics