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Introduction

We consider the (dual) problem

max f (y) s.t. A∗y � c, (D)

where A ∈ R
m×n and we assume m ≪ n.

Constraint Reduction
We expect many of the constraints in unbalanced (m ≪ n) problems are redundant or at
least not strictly necessary.

redundant

irrelevant?

active

Quadratic optimization: allowing infeasible initial points (M. He)

Problem statement and main idea

•We consider quadratic problems of (D).

cost function: f (y) = bTy − 0.5yTHy, constraints: ATy ≤ c.

• It may be hard to find a strictly dual feasible point.

•A remedy: introduce an ℓ1 penalty function.

max
y,s

f (y) + ρ
∑

i si

s.t. ATy − s ≤ c, s ≥ 0
(Dρ)

where ρ > 0 is the penalty parameter.

– Penalty function is exact: for ρ large enough, solutions to (Dρ) are solutions to (D).

– Proposed parameter adjustment scheme: for each iteration, increase ρ when (Dρ) is deemed to
be unbounded or when the solution of (Dρ) is deemed to be infeasible to (D).

Theoretical Results

•We develop a constraint-reduced primal-dual affine-scaling interior point algorithm, following that
of Jung, O’Leary and Tits (2010), but with adaptive adjustment of the penalty parameter.

•We prove that the penalty parameter is increased finitely many times.

•We prove that the algorithm is globally convergent to a point that satisfies the optimality conditions
for the QP.

•Generalizes the results obtained for the LP case in He and Tits (2011).

Numerical Results

• First figure: Randomly generated problems
Second figure: Application in Model Predictive Control
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Comparison of time with the adaptive and fixed penalty parameter

Adaptive & CR

Adaptive & NCR

Fixed rho=2e7 & CR

Fixed rho=2e7 & NCR

Polynomial algorithm for semi-definite optimization (S. Park)

Problem Statement

•Dual SDP:

max
y

bTy s.t.

m
∑

i=1

yiAi + Z = C, Z � 0,

where C,Ai,X,Z ∈ Sn and m ≪ p.

We focus on problems in which the matrices Ai and C are block diagonal:

Ai =





Ai1 0
. . .

0 Aip



 , C =





C1 0
. . .

0 Cp



 .

Throughout our work we assume the Slater condition, so the primal and dual SDP problems have
optimal solutions with equal optimal values.

Results

•We develop (Park 2011) a primal-dual predictor-corrector interior point algorithm, following that of
Potra and Sheng (2006), except allowing adaptive constraint reduction, which, in this case, means
the omission of certain blocks Ai in the formation of the Schur complement matrix.

•We prove that the algorithm is globally convergent to a point that satisfies the optimality conditions
for the SDP.

•We prove that the algorithm converges in O(n ln (ǫ0/ǫ)) iterations, the same as the (unreduced)
algorithm of Potra and Sheng, where

ǫ0 = max (X0 • Z0, ‖r
0
p‖, ‖r

0
d‖),

where r0
p and r0

d are initial primal and dual residuals, and ǫ is the required tolerance on the opti-
mality conditions. This implies polynomial complexity.

Significance of the Results

• This is the first such complexity result for primal-dual constraint reduction algorithms for any class
of problems.

• The algorithm solves, as special cases, any optimization problem that is linear, convex quadratic,
convex quadratically constrained, or a second-order cone problem.

• Block diagonal SDPs also arise from relaxations of many important problems with integer vari-
ables to problems involving continuous variables. These problems include the maximum binary
code problem, the traveling salesperson problem, the kissing number problem, and the quadratic
assignment problem.

Application: SDPT3-ConstraintReduced on Schrijver A(40,15)
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