Infeasible Constraint-Reduced Methods for Quadratic and Semidefinite Optimization

DOE Grant DESC0002218

Pls: Dianne P. O’Leary (oleary@cs.umd.edu) and Andre L. Tits (andre@umd.edu)

graduate students: Sungwoo Park (swpark81@gmail.com), Meiyun He (myhe@umd.edu)

Infeasible Constraint-Reduced Methods for Quadratic and Semidefinite Optimization

We consider the (dual) problem
\[\max f(y) \quad s.t. \quad A^T y \preceq c, \]
where \(A \in \mathbb{R}^{m \times n} \) and we assume \(m \ll n \).

Constraint Reduction
We expect many of the constraints in unbalanced (\(m \ll n \)) problems are redundant or at least not strictly necessary.

We consider quadratic problems of the form
\[\min f(x) = \frac{1}{2} x^T D x + b^T x \quad \text{subject to} \quad A x = b, \]
where \(D \geq 0 \) is a symmetric matrix and \(A \) is a matrix of constraints.

Theoretical Results
- We develop a constraint-reduced primal-dual affine-scaling interior-point algorithm, following that of He and Tits (2011), but with adaptive adjustment of the penalty parameter.
- We prove that the penalty parameter is increased finitely many times.
- We prove that the algorithm is globally convergent to a point that satisfies the optimality conditions for the QP.
- Generalizes the results obtained for the LP case in He and Tits (2011).

Numerical Results
- First figure: Randomly generated problems
- Second figure: Application in Model Predictive Control

References