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Introduction |

We consider the (dual) problem
max f(y) s.t. Ay =<c, (D)

where A € R™*™ and we assume m < n.

( )

Constraint Reduction
We expect many of the constraints in unbalanced (m < n) problems are redundant or at

least not strictly necessary.

Quadratic optimization: allowing infeasible initial points (M. He)

Problem statement and main idea |

® We consider quadratic problems of (D).
cost function: f(y) = bTy — (].QyTHyA constraints: ATy <c
o It may be hard to find a strictly dual feasible point.
e A remedy: introduce an ¢ penalty function.
max (y) +PYisi D))
s.t. A’y— s<c,s>0
where p > 0 is the penalty parameter
— Penalty function is ezact: for p large enough, solutions to (D) are solutions to (D).
— Proposed parameter adjustment scheme: for each iteration, increase p when (D)) is deemed to
be unbounded or when the solution of (D)) is deemed to be infeasible to (D).

Theoretical Results |

o We develop a constraint-reduced primal-dual affine-scaling interior point algorithm, following that
of Jung, O'Leary and Tits (2010), but with adaptive adjustment of the penalty parameter.

e We prove that the penalty parameter is increased finitely many times.

e We prove that the algorithm is globally convergent to a point that satisfies the optimality conditions
for the QP.

© Generalizes the results obtained for the LP case in He and Tits (2011).

Numerical Results |

o First figure: Randomly generated problems
Second figure: Application in Model Predictive Control

Constraint reduction with 100 variables and 50000 constraints
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Polynomial algorithm for semi-definite optimization (S. Park)

Problem Statement |
e Dual SDP: "
m?z)x by st Zy,A, +Z=C, Z>-0,
i=1

where C, A;, X, Z € §" and m < p.
We focus on problems in which the matrices A; and C are block diagonal:
Ay 0 Cy 0
A = , C= .
0 4, 0o G
Throughout our work we assume the Slater condition, so the primal and dual SDP problems have
optimal solutions with equal optimal values.

Results |

o We develop (Park 2011) a primal-dual predictor-corrector interior point algorithm, following that of
Potra and Sheng (2006), except allowing adaptive constraint reduction, which, in this case, means
the omission of certain blocks A; in the formation of the Schur complement matrix

o We prove that the algorithm is globally convergent to a point that satisfies the optimality conditions
for the SDP.

o We prove that the algorithm converges in O(nln (ep/e)) iterations, the same as the (unreduced)
algorithm of Potra and Sheng, where

€q = max (Xg © Zo, |75, [I79]1).

where 7Ip' and ’IJ()l are initial primal and dual residuals, and e is the required tolerance on the opti-
mality conditions. This implies polynomial complexity

I Significance of the Results |

© This is the first such complexity result for primal-dual constraint reduction algorithms for any class
of problems.

® The algorithm solves, as special cases, any optimization problem that is linear, convex quadratic,
convex quadratically constrained, or a second-order cone problem.

e Block diagonal SDPs also arise from relaxations of many important problems with integer vari-
ables to problems involving continuous variables. These problems include the maximum binary
code problem, the traveling salesperson problem, the kissing number problem, and the quadratic

assignment problem.

Application: SDPT3-ConstraintReduced on Schrijver A(40,15) |
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