Productive Performance Tools for Heterogeneous Parallel Computing

Allen D. Malony
Department of Computer and Information Science
University of Oregon

Shigeo Fukuda, Lunch with a Helmet On
Heterogeneous Implications for Performance Tools

- Tools should support parallel computation models
- Current status quo is comfortable
 - Mostly homogeneous parallel systems and software
 - Shared-memory multithreading – OpenMP
 - Distributed-memory message passing – MPI
- Parallel computational models are relatively stable (simple)
 - Corresponding performance models are relatively tractable
 - Parallel performance tools are just keeping up
- Heterogeneity creates richer computational potential
 - Results in greater performance diversity and complexity
- Performance tools have to support richer computation models and broader (less constrained) performance perspectives
Heterogeneous Performance Perspective

- Want to create performance views that capture heterogeneous concurrency and execution behavior
 - Reflect execution logic beyond standard actions
 - Capture performance semantics at multiple levels
- Heterogeneous applications have concurrent execution
 - Want to capture performance for all execution paths
- Consider “host” path and “external” paths
- What perspective does the host have of the external entity?
 - Determines the semantics of the measurement data
- Existing parallel performance tools are CPU(host)-centric
 - Event-based sampling (not appropriate for accelerators)
 - Probe-based measurement
Heterogeneous Performance Complexity Issues

- Asynchronous execution (concurrency)
- Memory transfer and memory sharing
- Interactions between heterogeneous components
- Interference between heterogeneous components
- Different programming languages/libraries/tools
- Availability of performance data
- ...

SOS 2010 Panel
Productive Performance Tools for Heterogeneous Computing
March 9, 2010
TAUcuda Performance Measurement

- CUDA performance measurement
- Integrated with TAU performance system
- Built on experimental Linux CUDA driver (R190.86)
 - Captures CUDA device (cuXXX) events
 - Captures CUDA runtime (cudaYYY) events
TAUcuda Experimentation Environment

- University of Oregon
 - Linux workstation
 - Dual quad core Intel Xeon
 - GTX 280
 - GPU cluster (Mist)
 - Four dual quad core Intel Xeon server nodes
 - Two S1070 Tesla servers (4 Tesla GPUs per S1070)

- Argonne National Laboratory
 - 100 dual quad core NVIDIA Quadro Plex S4
 - 200 Quadro FX5600 (2 per S4)

- University of Illinois at Urbana-Champaign
 - GPU cluster (AC cluster)
 - 32 nodes with one S1070 (4 GPUs per node)
CUDA SDK OceanFFT

kernels

SOS 2010 Panel
Productive Performance Tools for Heterogeneous Computing
March 9, 2010
CUDA Linpack (4 process, trace)

CUDA memory transfer (white) MPI communication (yellow)
NAMD Performance Profile

WorkDistrib:enqueue routines

Main

dev_nonbonded

dev_sum_forces

cuMemcpyDtoHAsync

GPU device 0 profile
Call for “Extreme” Performance Engineering

- Strategy to respond to technology changes and disruptions
- Strategy to carry forward performance expertise and knowledge
- Built on robust, integrated performance measurement infrastructure
- Model-oriented with knowledge-based reasoning
 - Community-driven knowledge engineering
 - Automated data / decision analytics
- Requires interactions with all SW stack components
Empirical performance data evaluated with respect to performance expectations at various levels of abstraction.