SDTPC Workshop
August 1-2, 2007
Washington, DC

Development Environment Infrastructures Working Group

Craig Rasmussen,
Rod Oldehoeft
The times they are a changin' [Bob Dylan 196
Working Group Charge

1. Integrated development environments
2. Design tools
3. Remote development support
4. Compiler support for tools and development environments
5. Program transformation and refactoring tools
6. Mixed language support
7. Build and runtime environments: configure, make, libraries
8. Dynamic linking issues
Unaffected by Petascale, or In-Hand

Design tools
Source code control and bug tracking tools
Database services
Policy issues in project management

Not Address Because of Time Constraint

Fault-tolerant software development
Topology-aware development support
Working Group Deliverables

Status: Work-in-Progress or Don’t-Know-How
Petascale requirements
Findings: define specific challenge
Recommendations regarding challenge
Priority of addressing challenge: high, med, low
Challenge: technical, funding, policy, training
Impact of challenge: high, medium, low
Probability of challenge: high, medium, low
Analysis: IDEs

Status: WP

Petascale requirements: Large data, control, viz requirements; tools usable in frameworks + standalone; development productivity

Findings: IDEs are not as ubiquitous as CLIs, rarely used in HPC, potential for higher productivity, now projects have their own development mechanisms

Recommendation: Pilot projects should show advantages of use

Priority: 2/4/4

Challenge: Technical, Policy

Impact: 3/4/3

Probability
Analysis: Remote Development

Status: WP

Petascale requirements: Few petascale systems mean more remote development, seamless migration among petascale systems

Findings: All petascale computing is remote, but distance matters.

Recommendation: Shared infrastructure for client-server based approaches should be explored, with improved communication efficiency.

Priority: 7/2/0

Challenge: Technical

Impact: 4/5/0

Probability
Analysis: Compiler Support

Status: WP

Petascale requirements: Users and tools need to know about estimated costs at source level, including IO; users need to understand compilers (in)actions; more program correctness feedback

Findings: HPC compilers address some costs, but not IO costs.

Recommendation: Develop infrastructure for cost models, extensive static analysis; vendor help.

Priority: 7/2/0

Challenge: Technical, Policy

Impact: 5/4/0

Probability
Analysis: Mixed-Language Support

Status: WP

Petascale requirements: Yet more support for mixing with current and new (PGAS, HPCS) higher-level languages

Findings: Increased use of mixed-language applications, tending beyond F/C/C++. Prototypes are built in lower-performance languages.

Recommendation: Tool development for advanced language targets, increased automation. Prototype transformation support.

Priority: 4/4/0
Challenge: Technical
Impact: 5/3/0
Probability
Analysis: Build/Configure Support

Status: WP

Petascale requirements: Need to build apps across multiple systems. Parallel build/configures.

Findings: Multiple compilers, OS’s, libraries, versions; no common options, CLIs; and shared library unavailability make huge complexity.

Recommendation: New tools (make is still broken), improved tools, interoperability.

Priority: 9/0/0

Challenge: Technical

Impact: 9/0/0

Probability
Analysis: Linking/Library Issues

Status: WP

Petascale requirements: Scalable dynamic linking, inter-library compatibility, order of library access.

Findings: Library order is difficult and manual; dynamic linking does not scale, and not always available.

Recommendation: Vendors need to supply dynamic linking capability; automated tools for library access.

Priority: 5/1/1

Challenge: Technical

Impact: 4/2/1

Probability
Analysis: Program Transformations

Status: WP

Petascale requirements: Dissimilar architectures need to be used efficiently.

Findings: Cannot afford to rewrite apps @ $100M each.

Recommendation: Explorations of architecture-dependent transformation tools are needed.

Priority: 1/3/2

Challenge

Impact: 2/2/2

Probability