Tools for Performance Evaluation Research
PI: David H. Bailey (LBNL); Co-PIs: Bronis de Supinski (LLNL), Jack Dongarra (U. Tenn.), Thomas Dunigan (ORNL), Paul Hovland (ANL), Jeffrey Hollingsworth (U. Mar.), Boyana Norris (ANL), Daniel Quinlan (LLNL), Celso Mendes (U. Ill.), Shirley Moore (U. Tenn.), Daniel Reed (UNC), Allan Snavely (SDSC), Erich Strohmaier (LBNL), Jeffrey Vetter (ORNL), Patrick Worley (ORNL); SciDAC ISICs: David Brown (TSTT); Phil Colella (APDEC), David Keyes (TOPS); SciDAC Applications: Don Batchelor (WPI), Mark Gordon (EST), Kwok Ko (AST), Anthony Mezzacappa (TSI), Bill Nevins (PMP), Robert Malone (CCSM), Robert Sugar (QCD)

Summary
The PERC tools effort is developing a software infrastructure for monitoring and collecting performance data from execution of scientific applications on high performance computers, as well as novel mechanisms for optimizing application performance automatically. In many cases, prototypes of these tools already existed, but they had limited functionality or platform coverage. Our work focuses on adding necessary tool features, porting them to all platforms of interest (to provide comparable data for our PERC modeling and analysis), and enhancing tool reliability and usability for application scientists. The resulting improved tools are being applied to improve performance of SciDAC project codes.
PERC performance tools cover the spectrum from end-user tools to low-level infrastructure. One focus is end-user tools that gather data used by PERC performance models, with concurrent work on tools to improve application performance. We are modifying existing tools and developing new ones to collect data not obtainable previously. Our goal is an interoperable tool suite via four coupled efforts:

· Creation of end-user tools that integrate measurement and analysis, providing a common interface for cross-platform comparisons and correlating these data with benchmarks and application codes.

· Development of instrumentation systems for capturing hardware/software interactions, instruction frequencies, memory references, and execution overheads.

· Creation of a domain-specific analysis and source-to-source optimization infrastructure to simplify application optimization and tool implementation.

· Development of data management software to track performance experiments and data across time and space.

End User Tools

Illinois’ SvPablo is a graphical environment for instrumenting source code and browsing dynamic performance data. It supports performance capture, analysis, and presentation for C/F77/F90 codes, and exploits hardware performance counters via the PAPI toolkit. SvPablo has been extended to support application scalability analysis via a new graphical user interface, enabling scalability analysis of the Enhanced Virginia Hydrodynamics (EVH1) code. SvPablo parser and data capture extensions simplify instrumentation and code measurement and we have made significant progress integrating SvPablo with ROSE for C++ analysis. We also designed an online tutorial and presented hands-on tutorials at recent conferences.
The SIGMA project is a Maryland and IBM Research collaboration. With PERC support, we extended SIGMA to use Dyninst for memory operation instrumentation. This supports additional platforms (SIGMA only ran on IBM Power systems) and allowed dynamic control of when instrumentation is enabled. We have implemented and are testing a new lossy compression algorithm in SIGMA that will allow efficient representation of memory traces from irregular (non-constant stride) applications.

We are also developing performance assertions (PA) that allow users to assert code performance properties explicitly. The PA runtime gathers performance data based on user assertions and verifies the expectations at runtime. The runtime system jettisons data for valid assertions while reacting to failures. An implementation has been used to validate FLOPS in PETSc, a key component of the TOPS ISIC solver infrastructure.

A web-based graphical tool for computing performance bounds from source code in C or C++ has also been developed. In addition to providing parameterized expressions for performance statistics (e.g., memory use and FLOPS) and predefined metrics (e.g., performance bounds), the interface also enables users to supply values for dynamic parameters (e.g., loop bounds) and define new models based on existing data or models

Flexible Instrumentation Systems

The goal of the PAPI activity within PERC is to create an easy-to-use, common set of interfaces to the hardware performance counters available on all major processor platforms, providing the data needed to tune application software on different platforms. The latest release of PAPI, version 3.0 beta, has been completed re-designed and re-implemented. PAPI 3 has been streamlined for efficiency and has lower overheads and a smaller memory footprint than before. The new version also has improved support for native events and for monitoring threaded programs. A stack-based evaluator allows evaluation of arbitrary arithmetic combinations of events for derived events. This capability allows correct calculation of floating point operation counts on the IBM POWER4. Cray X1 support has been added.

A second goal of the PAPI project is to enable straightforward instrumentation of multi-threaded and multi-process codes, including dynamic instrumentation. We recently released version 0.9 of the Dynaprof toolkit, which inserts performance instrumentation into an application’s address space and includes wall-clock, PAPI, perfometer, and vprof probes. For dynamic object code instrumentation, the dyninst API provides a machine independent interface for creation of tools and applications that use runtime code patching. Under PERC, this API has been implemented on new platforms and a memory instrumentation capability was added. This enables other tools, (e.g., SIGMA and MetaSim) to control memory instrumentation during execution.

Source-to-Source Optimization

The ROSE tool is defining new ways to use compilation techniques to build source-to-source translators and customized analysis-oriented preprocessors and tools. It functions as both an end-user tool and as tool infrastructure. A ROSE-based preprocessor optimizes operators defined within TSTT, a SciDAC ISIC, using domain-specific optimizations impossible for standard compilers. ROSE permits tools to read, use, or even rewrite the application source code in a way that enhances the utility of existing tools and makes many new tools possible. It is also used in a new automatic differentiation tool (ADIC 2.0), which has shown great promise on TOPS applications.
Data and Experiment Management

The Repository-in-a-Box (RIB) is a toolkit for maintaining interoperable metadata repositories. We have established a repository of tools and data on performance evaluation. This repository facilitates collection and retrieval of performance data, and it is being populated with PERC tools information and application performance data.

For further information please contact:

Prof. Dan Reed, PERC Tools Project Lead

UNC, Dept. of Computer Science
Tel: 919-962-1796 Em: Dan_Reed@unc.edu

