Application-Level Measurements Over Dedicated Bandwidth Channels:
UltraScienceNet Perspective

Nagi Rao, Bill Wing, Steven Carter, Qishi Wu, Susan Hicks
Computer Science and Mathematics Division
Oak Ridge National Laboratory
raons@ornl.gov
https://www.usn.ornl.gov

Circuit and Lightpath Measurement Panel
Winter 2006 ESCC/Internet2 Joint Techs Workshop
February 7, 2006, Albuquerque, NM

Research Sponsored by
High-Performance Networks Program
U.S. Department of Energy
Contents

- My Background
- USN Overview
- A-A Performance Profiles
 - UDP Throughput Profiles
 - Transport Protocol Design
- End-to-End Measurements Wish List
My Background

- Co-PI of DOE UltraScience Net Project along with Bill Wing (ORNL)
- Co-PI NSF CHEETAH Project along with Malathi Veeraraghavan (UVA), Ibrahim Habib (CUNY), John Blondin (NSSU)

- Distinguished R&D Staff, been at ORNL since 1993
- PhD in Computer Science (1988)
- Network Researcher:
 - Advanced Bandwidth Scheduling
 - Transport Protocols
 - AIMD Dynamics – Chaos; Stabilized flows; High-utilization of dedicated channels
- Other Areas: sensor-cyber networks, sensor fusion, robot navigation
Experimental Network Research Testbed:

To support advanced networking and related application technologies for DOE large-scale science projects

Features
- End-to-end guaranteed bandwidth channels
- Dynamic, in-advance, reservation and provisioning of fractional/full lambdas
- Secure control-plane for signaling
- Proximity to DOE sites: NLCF, FNL, NERSC
- Peering with ESnet, NSF CHEETAH and other networks
DOE UltraScience Net: Need, Concept and Challenges

The Need
- DOE large-scale science applications on supercomputers and experimental facilities require high-performance networking
 - Moving petabyte data sets, collaborative visualization and computational steering (all in an environment requiring improved security)
- Application areas span the disciplinary spectrum: high energy physics, climate, astrophysics, fusion energy, genomics, and others

Promising Solution
- High bandwidth and agile network capable of providing scheduled dedicated channels: multiple 10Gbps to 150 Mbps
- Protocols are simpler for high throughput and control channels

Challenges: Several technologies need to be (fully) developed
- User-/application-driven agile control plane:
 - Dynamic scheduling and provisioning
 - Security – encryption, authentication, authorization
- Protocols, middleware, and applications optimized for dedicated channels
USN Architecture: Separate Data-Plane and Control-Planes

Secure control-plane with:
- Encryption, authentication and authorization
- On-demand and advanced provisioning

Dual OC192 backbone:
- SONET-switched in the backbone
- Ethernet-SONET conversion
USN Data-Plane: Node Configuration

In the Core:
- Two OC192 switched by Ciena CDCIs

At the Edge
- 10/1 GigE provisioning using Force10 E300s

Data Plane User Connections:
Direct connections to:
- core switches –SONET &1GigE
- MSPP – Ethernet channels
- Utilize UltraScience Net hosts

Connections to CalTech and ESnet

Linux host

OC192 to Seattle
DOE UltraScience Net: Monitoring

Core Switches: CDCI – Ciena Node Manager
Edge Switches: E300 – Cacti using ICMP (packet counts)
End-to-End Measurements on USN

Motivation:
USN is built to provide dedicated bandwidth channels to Applications:
- What type of throughput is seen at applications?
 - Reasonable Expectation: Throughput is
 - close to channel bandwidth and
 - stable if rate-controlled transport is used
 - Measurements indicate: throughput is not always the channel bandwidth nor has stable dynamics!

Needs Specific to USN:
End-to-End Application Throughput (EEAT):
- For high-bandwidth applications: Channel utilization
- For control-application: Transport dynamics
Yes, outside the domain traditional networking problem space
Some Experimental Results

- **Layer-2 double-loopback test:**
 - Entire USN SONET backbone connected in 16000 mile single connection
 - 16 hours continuous zero SONET-level errors

- **Jitter measurements**
 - ORNL-SUNNYVALE host-to-host 1K packets
 - round-trip time:
 - mean: 82ms
 - jitter: 0.2%
Throughput Profile

Plot of receiving rate as a function of sending rate

Its precise interpretation depends on:

− Sending and receiving mechanisms
− Definition of rates

For protocol optimizations, it is important to use its own sending mechanism to generate the profile

Window-based sending process for UDP datagrams:

Send $W_c(t)$ datagrams in a one step – window size

Wait for $T_s(t)$ time called idle-time or wait-time

Sending rate at time resolution $T_s(t)$:

$$r_s(t) = \frac{W_c(t)}{T_s(t) + T_c(t)}$$

This is an adhoc mechanism facilitated by 1GigE NIC
Throughput Profile: Internet Connection - ORNL-LSU

Throughput and loss rates vs. sending rate (window size, cycle time)

Objective: adjust source rate to yield the desired throughput at destination
1Gbps ORNL-ATL-ORNL Dedicated IP Channel

- **Non-Uniform Physical Channel:**
 - GigE - SONET - GigE
 - ~500 network miles
- **End-to-End IP Path**
 - Both GigE links are dedicated to the channel
 - Other host traffic is handled through second NIC
- **Routers, OC192 and hosts are lightly loaded**
- **IP-based Applications and Protocols are readily executed**
Dedicated Hosts

- Hosts:
 - Linux 2.4 kernel (Redhat, Suse)
 - 1/10GigE NICS:
 - optical connection to Juniper M160 or Force10 E300
 - copper connection Ethernet switch/router
 - Disks: RAID 0 dual disks (140GB SCSI)
 - XFS file system
 - Peak disk data rate is ~1.2Gbps (IO Zone measurements)
 - Disk is not a bottleneck for 1Gbps data rates
UDP goodput and loss profile

- High goodput is received at non-trivial loss.
- Gooput plateau around 990 Mbps.
- Non-zero and random loss rate.

Point in horizontal plane: \((W_c(t), T_s(t))\)
Throughput profile
USN ORNL-SUNNYVALE

- Transport measurements between Linux hosts with 10GigE NICs
 - ORNL-SUN host-to-host file transfers 4000 mile, 10G connection
 - Limited by host - Hurricane
 - Average throughput 2.3 Gbps
 - Loss rate < 0.1%

Dual Opteron
2.2 GHz
10GE NIC

E300
ORNL

CDCI
ORNL

OC192

CDCI
Sunnyvale

E300
Sunnyvale

Dual Opteron
2.2 GHz
10GigE NIC

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY
Channel Profiles

- Throughput Profiles
 - Provide valuable EEAT information – UDP-based transport
 - Peak achievable throughput
 - Dynamics of throughput
 - Transport Protocols can be optimized:
 - Need to stabilize the operating point
 - HURRICANE Protocol – not flow-friendly; peak utilization
 - RUNAT – stochastic maximization of throughput

We need comprehensive channel profiling capability:

- What class of channel profiles are appropriate?
- How to measure and present them?
Integrated On-line Channel Profile Capability:

On-line throughput profiles with detailed decomposition
- Graphical high-level profile connection overlaid on map
- Annotated statistics and measurements: connection, link, NIC, host, application
- Ability to bring-up individual components profiles statistics, etc
- Tightly-coupled analysis and diagnosis tools

Dual Opteron 2.2 GHz 10GE NIC

E300 Sunnyvale

CDCI Sunnyvale

CDCI Seattle

CDCI Chicago

CDCI ORNL

E300 ORNL

Dual Opteron 2.2 GHz 10GigE NIC
Integrated Capability for On-line Channel Profiles

Complex Task:
 Combine various measurements:
 connection, link, port, NIC, host
Intelligent fusion of all information:
 multiple-level analysis and diagnosis
Level of intrusiveness
Support for active diagnosis
Assembling multiple tools
Conclusions

Measurements for dedicated channels is a new frontier:

- We are beginning to understand the needs
 - Applications and transport play an integral role
- Very complex task: needs efforts from multiple domains
 - Need beyond traditional layer-3 tools
 - Some layer-2 connections may carry non-IP traffic, eg FiberChannel
Thank you
https://www.usn.ornl.gov