
Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 1 of 20

Cluster Command & Control (C3) Tool Suite

Michael Brim, Ray Flanery, Al Geist, Brian Luethke, and Stephen Scott∆
Computer Science & Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN 37830-6367 USA

Abstract
The raw computation power of today’s PC clusters running the Linux operating system rivals that of commercial
supercomputers at a fraction of their purchase price. As a part of that high price tag, some tools and system support
come with the supercomputer “package.” However, a multitude of vendors will slap together a number of
commodity computer “boxes” and call it a cluster while providing nothing more than a power cord for each box.
Thus, the lack of good administration and application support tools represents a hidden operation cost that is often
overlooked when purchasing a cluster. This hidden cost greatly adds to the cluster’s total cost of ownership. The
work presented in this paper addresses the area of cluster administration and application support by presenting the
Cluster Command & Control (C3) tool suite developed at Oak Ridge National Laboratory for use in administrating
and using its high performance cluster computing resources.

We first cover the history of the Cluster Command and Control (C3) tool suite from initial v1.0 release to present
state of v2.7 and include brief directions for v3.0 as well as the planned v4.0. We then present the requisite C3 tools
environment followed by C3 command specifications with command syntax and some simple command line usage
examples. A brief coverage is then give to some implementation issues between a serial and parallel
implementation. We conclude the discussion of C3 v2.x with advanced usage techniques by showing how the C3
tools may be embedded into other commands and applications to create end-to-end cluster solutions. We close our
discussion by providing information on C3 v3.0 that will be released later in 2001, as well as plans for a v4.0 high-
scalability release.

Keywords: cluster computing, cluster tools, cluster administration, scalable computing

1 Introduction
While there are numerous tools and techniques available for the administration of clusters, few of these tools ever
see the outside of their developer’s cluster. Most often, they are developed for specific in-house uses. This results in
a great deal of duplicated effort among cluster administrators and software developers. Thus, after building
HighTORC [1], a 64-node – 128 processor – Beowulf cluster in the Summer of 1999, it was decided to make an
effort to develop and collect a suite of system administration cluster tools that could be released to the cluster
community so that others may benefit from our effort as well.

To simplify administration, some cluster builders simply use the Network File System (NFS) to mount one master
file system on all nodes. While the “one file system” approach does greatly simplify configuration management and
application development, it also provides the least scalable model and lowest performance for cluster computing due
to machine and network constraints. Our approach has been to decentralize every aspect of the cluster configuration
in HighTORC to promote scalability. This resulted in every node hosting its own independent operating system with
the remaining local disk space used as temporary application and data storage. Of course, this approach generated
the need for tools to hide the fact that HighTORC consists of 64 independent machines. Using a number of freely
available tools; rsync [2], OpenSSL [3], OpenSSH [4], DHCP [5], and Systemimager [6] we developed a suite of
tools collectively named the Cluster Command and Control (C3) suite. These tools are designed to easily move
information into and out of the cluster as if it were a single machine rather than a group of loosely coupled
independent machines. Furthermore, these tools may be used to invoke any command1, in parallel, across the cluster.
The C3 tools are similar in function to those developed by Gropp and Lusk [7] for use on MPPs – Massively Parallel
Processors.

∆ Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by
UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725.
1 Functionally limited to non-interactive commands, as interactive commands in HighTORC’s case would require the user to respond to the 64
individual node queries.

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 2 of 20

One of the main criteria of the tools is that they provide the look and feel of commands issued to a single machine.
This is accomplished through using lists, or configuration files, to represent the group of machines on which a
command will operate. While this requires the building of machine lists, or cluster node lists, it still presents the
typical user with a single machine interface. This occurs as generally a cluster is configured and used in its entirety
at any given instance by a single user. Thus the cluster node list containing all cluster nodes may be built once and
then forgotten. However, a strength of the C3 tool suite is that an individual user may dynamically customize and
use their cluster configuration list without affecting any other cluster users. Thus, a user may effectively partition the
cluster through the use of an individualized cluster configuration node list.

A second criterion is that the tools be secure. Generally security inside a cluster, between cluster nodes, is somewhat
relaxed for a number of practical reasons. Some of these include improved performance, ease of programming, and
all nodes are generally compromised if one cluster node’s security is compromised. Because of this last issue,
security from outside the cluster into the cluster is of utmost concern. Therefore, user authentication from outside to
inside must be done in a secure manner.

The third criterion is tool scalability. A user may tolerate an inefficient tool that takes a few minutes to perform an
operation across a small cluster of 8 machines as it is faster than performing the operation manually 8 times.
However, that user will most likely find it intolerable to wait over an hour for the same operation to take effect
across 128 cluster nodes. Further complicating matters is that many cluster sites are now hosting multiple clusters
that are or will eventually be combined into federated computation clusters, also called clusters-of-clusters.
Extending this paradigm even further is the computation Grid [8] where combining federated clusters from multiple
sites is the norm.

Toward this effort, this paper describes the command line interface tools for Cluster Command and Control (C3)
developed for use on HighTORC. We first cover the history of C3 from initial v1.0 release to present state of v2.7
and include brief directions for v3.0 as well as the planned v4.0. We then present the requisite C3 tools environment
followed by C3 command specifications with command syntax and some simple command line usage examples. A
brief coverage is then give to some implementation issues between a serial and parallel implementation. We
conclude the discussion of C3 v2.x with advanced usage techniques by showing how the C3 tools may be embedded
into other commands and applications to create end-to-end cluster solutions. We close our discussion by providing
information on C3 v3.0 that will be released later in 2001, as well as plans for a v4.0 high-scalability release.

2 C3 Development History
The idea for a suite of cluster tools that would treat the cluster as one system was born out of need. The 64-node
cluster HighTORC was delivered to Oak Ridge National Laboratory in mid-summer 1999. Throughout that Summer
and Fall we worked “harder” by manually installing and configuring the cluster and all the necessary application and
computing environment tools. When something necessitated a change to the cluster configuration, be it a failure of
hardware or software, the addition of a new library, a patch to an existing application, or even the expansion of our
user base, everything came to a halt while we manually modified, moved, and tested the new configuration. We
quickly realized that if we ever wanted to do anything other than administer our cluster, with more clusters and users
on the horizon that we had to begin working “smarter.” Thus was born the Laboratory Directed Research
Development (LDRD) project in Fall 1999 that resulted in the development of the Cluster Command and Control
(C3) tools suite.

February 2000 was the internal release date of C3 version 1.0, a proof-of-concept release that followed the serial
execution model where each command was initiated in succession across the cluster nodes. Here, the initiating node,
or head node, would initiate a command and wait for each node to return its status or result prior to initiating the
command on the next node. This resulted in a sequential execution time across the cluster represented by the lengthy
equation of roughly – cluster command execution time = number of nodes * (communication time + startup time +
operation time + return result time).Version 1.x had other shortfalls including that some commands were too tightly
coupled to the HighTORC cluster environment. Thus, while version 1.x was a great success in providing assistance
to ORNL in the administration and operation of HighTORC, it failed as a general-purpose cluster tool. Thus was
laid the groundwork for a version 2.x universal release.

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 3 of 20

Version 2.0 was completed in May 2000. This version was successful in removing ORNL cluster dependencies,
paving the way for a generalized C3 tool suite. This version also saw the initial attempt to initiate parallel command
execution across all cluster nodes. Parallel execution was done with the Perl threads package in Perl 5.6.
Unfortunately it was discovered that this version of the Perl threads package was extremely unstable. Symptoms first
showed up as a number of cluster nodes hanging or dropping out of a C3 command. While inconsistent, at times ten
to twenty percent of the nodes would fail to complete a task as simple as a directory listing. Thus, version 2.0 was
never released to the public and immediate work began on another parallel execution technique.

While there were numerous iterations between version 2.0 and 2.7, the next major release of C3 was version 2.6 in
September 2000. This was also the first widely publicized C3 release made available on the web. This version
employed a multi-processing implementation. Starting at version 2.5, C3 has proven itself to be a very stable and
robust general-purpose cluster tool. Version 2.6 has also been included as part of the Open Cluster Group’s [9] –
developer’s release of the Open Source Cluster Application Resources [10] (OSCAR) package. C3 version 2.7 will
be included in the general public release v1.x of OSCAR.

At this writing, the most recent C3 version publicly available is version 2.7. This version has an updated application
program interface (API) and follows a more uniform naming convention. We will expand on the future plans for C3
in a later section of this paper. However, to complete the current history of C3, it is sufficient to say here that version
3.0 is presently under development with an expected release of Summer 2001 and a version 4.0 is in the design
phase with an anticipated beta release in early 2002.

3 Requisite Software Environment
A number of tools developed and freely published on the web were collected to facilitate the development of the C3
tool suite. The following section briefly describes each requisite software package and provides information where
they may be obtained. Detailed information on each tool should be obtained from their respective developer site as
indicated in the appropriate section.

3.1 rsync
Rsync is an efficient method for mirroring files between two machines similar to rdist [11]. Both tools operate by
checking for differences between the files on the source machine and those on the destination. Rdist simply checks
the timestamp on each file to see if it needs updated, and sends the entire updated file from source to destination
when necessary. Rsync, on the other hand, uses an advanced algorithm for checking to see if files need to be updated
and to perform subsequent updates. Briefly, rsync operates by:

1. A user specifies the source and destination machines at the command line, as well as the file to update.
2. The destination machine splits the target file into small fixed-size blocks, and generates two checksums for

each block – a weak “rolling” 32-bit checksum and a strong 128-bit MD4 checksum.
3. The destination machine transfers its checksums to the source.
4. The source machine searches through its local file to find all blocks for which the destination’s checksums

match its own.
5. The source machine generates a sequence of instructions that the destination can use to update the file.
6. The source machine then sends the instructions, along with any new data, to the destination.
7. The destination machine uses the instructions and new data to reconstruct its files to the newly updated

state.

A more detailed explanation of the rsync algorithm may be found in [12]. As a result of using the above algorithm,
rsync is able to greatly reduce network traffic by sending only new data to the destination node, along with a small
amount of overhead.

In a typical cluster, the files on the server will be very similar to those on the client nodes. To take advantage of this
property, rsync is used in C3 commands that effect the movement of files between server and nodes. In addition, the
system-imaging tool Systemimager, described in section 3.4, also uses rsync in performing efficient system image
updates.

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 4 of 20

3.2 Authentication and data transport options
Both the secure shell (ssh) and the remote shell (rsh) may be used for user authentication and data transport within
C3. While rsh is a very simple and direct technique, using rsh as the root user represents a very large security risk.
Thus, when using the C3 tools as root, ssh is the preferred solution as it offers a more secure authentication
approach. As such, the C3 tools use ssh by default. However, the tools can be forced to use rsh by setting the
environment variable C3_RSH to ‘1’.

In the bash shell, the environment variable C3_RSH is set by typing the following on the command line or inserting it
in the $HOME/.bashrc file, which will set it whenever the user starts the shell.

 export C3_RSH=1

For the (t)csh shell, the environment variable C3_RSH environment variable can be set at the command line or in
$HOME/.cshrc using the following command.

 setenv C3_RSH 1

3.2.1 rsh
Rsh, or remote shell, is a standard Unix utility that allows remote command execution. Rsh’s authentication is
accomplished by either a global set of files (/etc/hosts.allow, /etc/hosts.equiv, /etc/hosts.deny) or a
local file ($HOME/.rhosts). This has been shown to be relatively insecure, due to the fact that these files are
globally readable and easily changed by malicious users. However, on a private network, such as those where many
clusters are built, the overhead and complications associated with ssh may not be necessary or desirable, other than
in the case of root access, so the ability to use rsh for authentication was included.

3.2.2 OpenSSH
OpenSSH is an open source tool that implements the secure shell 1.5 and 2.0 protocols. OpenSSH requires the
OpenSSL encryption libraries to work. OpenSSH uses a digital signature generated by OpenSSL for authentication
purposes. This eliminates the need to send passwords across the network to remote machines. This also allows a
reliable and secure method, as opposed to rsh, for authenticating root. OpenSSH is an enabling tool that provides a
secure means for C3 to connect to cluster nodes from the cluster’s head node. Without such security the C3 tool
suite would either not be permitted to execute or at the very least would be restricted by most site security policies.
C3 uses OpenSSH for a secure means to allow the root user to login to each cluster node when invoking commands
and transferring files.

3.3 DHCP
Dynamic Hosts Configuration Protocol (DHCP), is used to allocate IP addresses to machines on a given network. It
can do this dynamically within a given range of IP addresses or statically by associating a NIC’s MAC address with
a specific IP address. Dynamic allocation of IP addresses makes it easy to swap out machines with little operator
intervention. Static allocation of IP address makes it easier to troubleshoot machine/network problems and
subsequently debug distributed cluster codes.

Dynamic IP allocation allows DHCP to “lease” an IP address to a client for a specified time period. This time period
may be set from a few seconds to forever. “Forever” in this case ends when the client gives up the IP address – like
on a reboot. A short lease will be detrimental to cluster performance, as it will require the cluster nodes to
continually access the DHCP server to obtain a new IP address. A forever lease will produce stability at least until a
node crashes or reboots. However, periods of instability in clusters tend to affect more than one node thus making
debugging using the IP address useless, as they will shuffle on many nodes simultaneously. Our recommendation is
to initially dynamically allocate IP addresses within a specified range in order of cluster node identifier (number).
Then use the Systemimager tool, described below, to change the dynamic allocation to a static allocation scheme.
Thus, ease of initial installation with troubleshooting and debugging capabilities is retained. In practice, the static
allocation of IP address on clusters eases the replacement of a cluster node. This occurs as generally when a cluster
node fails, another machine (node) is placed into that physical slot effectively assuming the identity of the replaced
machine. If many simultaneous node failures occur, as in the case of a non-protected power surge, it is actually

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 5 of 20

simpler to physically replace failed machines and then go through the startup/dynamic allocation and convert to
static allocation, as was the case of initial cluster setup.

3.4 Systemimager
Systemimager is a cluster system administrator tool, run by the root user, which enables a cluster node to pull the
current cluster node image from an image server. This proves to be very valuable when initially installing the cluster
environment and for subsequent cluster wide operating system and software environment updates. The current
version of Systemimager at this writing is v1.4.

When combined with network booting, Systemimager provides a simplified technique to place the initial cluster
image on each cluster node. As each machine is network booted, it will pull the current image from the image
server. The image is downloaded, installed, and now the machine may reboot as a cluster node. The only task
remaining is to assign a network IP address to the node.

Systemimager requires DHCP to be installed and run on the cluster image server. It is also a good idea to do this for
cluster computing in general. The nodes being updated can either be configured using dynamically or statically
assigned IP addresses. DHCP dynamically assigns IP addresses by default as machines boot. However, statically
assigned addresses are generally advocated for cluster use as it facilitates node debugging and troubleshooting.
However, one cannot store statically assigned IP addresses on a cluster image when pushing the same image across a
number of machines. To do so would produce disastrous results, as all machines would receive and then try to use
the same IP address. The alternative is to manually change the IP address of each machine after initial startup and
then reboot with the correct IP address. This is not very practical as it is time consuming, error prone, and becomes
rather annoying after about four machines. Systemimager provides a solution to this problem via it’s
makedhcpstatic utility. To use the utility, simply boot cluster nodes in order of desired IP address, as DHCP will
sequentially assign the IP number to each machine as it comes online. Next, run makedhcpstatic, which will
rewrite the DHCP configuration file (/etc/dhcpd.conf) to associate each node’s MAC address with its hostname
and restart DHCP. Now each time a node requests an IP address, the same number will be assigned. This technique
works great for installing a large number of machines with contiguous IP addresses. However, if a machine or NIC
is replaced, you must manually set the IP address on the node and in the DHCP configuration file. However, this is a
small price to pay for the occasional machine or NIC failure compared to the effort required to initially build and
configure a large cluster.

One of the shortcomings of Systemimager is that it requires a cluster node to request an image from the cluster
image server. While this technique avoids the security problems of an outside machine forcing new software on a
cluster node and perhaps taking control of the machine, it also restricts the usefulness of the image update to
preplanned updates (pulls) driven by coordinated node cron jobs. Our desire was to augment this feature of
Systemimager such that a system administrator may effectively orchestrate the push of a new system image in a
secure manner across the entire cluster or any portion of the cluster. To implement such functionality, the C3
command cpushimage was created. This command is described in detail in the following section.

4 C3 Tools Suite
Eight general use tools have been developed in the effort thus far: cexec, cget, ckill, cps, cpush, cpushimage,
crm, and cshutdown. cexec is the C3 general utility in that it enables the execution of any standard command
across a cluster. cget retrieves files from cluster nodes into a user specified location on the local machine. ckill is
used to terminate a given process across the cluster. cps returns the aggregate result of the ‘ps’ command run on
each cluster node. cpush will let you push individual files or directories across the cluster. cpushimage is our
cluster-wide image push answer to the single machine Systemimager pull solution. crm permits the deletion of files
or directories across the cluster. cshutdown can be used to shutdown or reboot cluster nodes. cpushimage and
cshutdown are both system administrator tools that may only be used by the root user. The other six tools may be
employed by any cluster user for both system and application level use.

For each tool, there are two execution methodologies available to users. The default method of execution is parallel,
where the command is run on all specified nodes concurrently. The other method of execution is serial, which will
iteratively run through each node specified. Using the command name as shown will use the parallel version,

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 6 of 20

whereas adding an ‘s’ to the end of the name specifies the serial version. For example, cexec is the parallel version,
while cexecs is serial.

All of the tools use a cluster configuration file to determine the cluster nodes on which commands should be run.
The configuration file format is one node specifier per line, where the node specifier can be an IP address or a
hostname that can be resolved using standard methods. The cluster’s head node should not be listed in the
configuration file, only the client machines. It is possible to destroy, via overwriting the head node if it is included as
a computation node in the cluster configuration file. By default, the tools use the configuration file /etc/c3.conf,
which contains all the client nodes. Each tool also has an optional command line option that can be used to specify
an alternate cluster configuration file. An example configuration file for a cluster with four client nodes is shown
below.

node1.torc.ornl.gov
node2.torc.ornl.gov
node3.torc.ornl.gov
node4.torc.ornl.gov

4.1 cexec
The cexec command is the general utility tool of the C3 suite in that it enables the execution of any command on
each cluster node. As such, cexec may be considered the clusterized version of rsh/ssh. A command string
passed to cexec is executed “as is” on each node. This provides a great deal of flexibility in both displaying the
command output and arguments passed in to each instruction. A trace of the actions of cexec is given in Figure 1.

SYNOPSIS

 cexec[s] [OPTIONS] --command="command string"

OPTIONS
 -c, --command “command string” : command string to be executed on each node

-h, --help : display help message
 -l, --list nodelist : alternate cluster configuration file
 -p : print node name with output (serial only)

GENERAL
There are two basic ways to call cexec:
1. To execute a command (in parallel by default)

cexec --command="mkdir temp"

Notice the use of the quotation marks, allowing Perl to interpret what is inside the quotes as a single
string.

2. To print the node name and then execute the string

cexecs -p -c "ls -l"

This form of the command allows the ability to read the output from a command such as ‘ls’
and to know which machine the message came from.

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 7 of 20

cexec

server

node 1

node n

2

2

3

3
1

1

1. Send command via rsh/ssh
2. Execute command on node
3. Output returned via rsh/ssh

Figure 1 – The cexec command operation.

4.2 cget
The cget command, whose trace is given in Figure 2, will retrieve the given files from each cluster node and
deposit them in a specified directory location on the local machine. Since all files will originally have the same
name, only from different nodes, an underscore and the node’s IP or hostname is appended to each file name.
Whether the IP or hostname is appended depends on which is specified in the cluster specification file. Note that
cget operates only on files and ignores subdirectories and links.

SYNOPSIS
 cget[s] [OPTIONS] –-source=pattern --target=location

OPTIONS

-e, --server hostname : allows explicit naming of the server, useful when the server has both
internal and external network connections – since cget uses a
get_hostname function, the wrong name may be returned for the
internal network

 -h, --help : display help message
 -l, --list nodelist : alternate cluster configuration file
 -s, --source pattern : pattern or file to get
 -t, --target location : location to put files on local machine

GENERAL
 There are two basic ways to call cget:

1. To get a given pattern (in this case a whole directory)

cget –-source=/home/usr/* --target=/home/usr/

Notice the use of a ‘\’ before the special character ‘*’. The shell tries to expand wildcards before the
program is called and this forces the shell not to expand them.

2. To get a single file

cget –s /home/usr/filename –t /home/

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 8 of 20

Notice that the target is always a directory, as this is the destination for files retrieved.

cget

server

node 1

node n

2

2
1

1

1. Send file(s) request via rsh/ssh
2. Return file(s) via rsync to temporary directory
3. Move file(s) from temporary to target directory

3

Figure 2 – The cget command operation.

4.3 ckill
The ckill tool runs the standard Linux ‘kill’ command on each of the cluster nodes for a specified process name.
Figure 3 shows a trace of the ckill operation. Unlike ‘kill’, ckill must use the process name as the process ID
(PID) will most likely be different on the various cluster nodes. The root user has the ability to further indicate a
specific user in addition to process name. This enables root to kill a specific user’s process by name and not affect
other processes with the same name but owned by other users. Root may also use signals to effectively do a broad
based kill command.

SYNOPSIS
 ckill[s] [OPTIONS] –-signal=signal –-process=process-name

OPTIONS
 -h, --help : display help message
 -l, --list nodelist : alternate cluster configuration file
 -p, --process process-name : the name of the process being killed (not PID or job number)
 -s, --signal signal : use the same signals you would normally use with ‘kill’

-u, --user username : the user name of the process owner, or ‘ALL’ to specify all users -
searches /etc/passwd for a UID. (root user only)

GENERAL
 An example usage of ckill is as follows:

ckill --signals=9 --process=a.out --user=ALL

 Does a ‘kill –9’ (unconditional kill) on all a.out’s, regardless of process owner.

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 9 of 20

ckill

server

node 1

node n

2

2

1

1

1. Execute ckillnode on node via rsh/ssh
2. ckill node does the following:
 - generates a process list for specified user and process name
 - matches processes to a process ids (pids)
 - provides pids to standard ‘kill’
3. Output returned via rsh/ssh

3

3

Figure 3 – The ckill command operation.

4.4 cps
The cps tool runs the standard ‘ps’ command on each node of the cluster with the options specified by the user.
Figure 4 shows a trace of the cps operation. The output for each node is stored in $HOME/ps_output_hostid,
where hostid is the host identifier (name or IP address) used in the cluster configuration file.

SYNOPSIS
 cps[s] [OPTIONS] --options=ps-options

OPTIONS

-e, --server hostname : allows explicit naming of the server, useful when the server has both
internal and external network connections – since cps uses a
get_hostname function, the wrong name may be returned for the
internal network

 -h, --help : display help message
-o, --options ps-options : the options you want ‘ps’ to use, any options ‘ps’ recognizes are fine

 -l, --list nodelist : alternate cluster configuration file

GENERAL
 An example usage of cps is as follows:

cps --options=A

 Runs ‘ps’ with the -A option on all nodes. If more than one option is needed, use “--options=aux” for

the ‘a’, ‘u’, and ‘x’ options.

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 10 of 20

cps

server

node 1

node n

2

2

3

3
1, 4

1, 4

1. Send ‘ps’ command via rsh/ssh
2. ‘ps’ output sent to log file
3. Return log file via rsync
4. Send ‘rm’ command via rsh/ssh to delete log file

Figure 4 – The cps command operation.

4.5 cpush
While cpushimage has the ability to push an entire disk image to a cluster node, as an application support tool, it is
too cumbersome when one simply desires to push files or directories across the cluster. Furthermore, cpushimage
is only available to system administrators with root level access. From these restrictions grew the desire for a
simplified cluster push tool, cpush, providing the ability for any user to push files and entire directories across
cluster nodes. As shown in Figure 5, cpush uses rsync to push files from server to cluster node.

Caution – do not use cpush to push the root file system across nodes. Systemimager provides a number of special
operations to enable cpushimage and updateimage to properly perform this task.

SYNOPSIS
 cpush[s] [OPTIONS] --source=pattern --destination=location

OPTIONS
 -d, --delete : removes any files on the nodes not on the source machine
 -e, --destination location : the destination file or directory on the nodes
 -f, --file filelist : a list of files to be pushed (must be used with -e option)

-h, --help : display help message
-l, --list nodelist : alternate cluster configuration file

 -s, --source pattern : file or pattern to push
 -x, --exclude pattern : file or pattern to exclude from push

GENERAL
 There are several different ways to call cpush:

1. To move a whole directory

cpush --source=/home/* --destination=/home/

The use of the backslash before the ‘*’ prevents the shell from trying to expand the special character
before the call is made.

2. To move a single file

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 11 of 20

cpush --source=/home/filename --destination=/home/

3. To move a single file, renaming that file on the cluster nodes

cpush --source=/home/filename1 --destination=/home/filename2

4. To move a set of files matching a pattern

cpush --source=/home/*.*c --destination=/home/

Again, notice the backslashes preceding the special characters to prevent the shell from expanding
them.

5. To move a set of files listed in a file

cpush –-file=/home/filelist --destination=/home/

cpush

server

node 1

node n

1

1

1. Send file(s) via rsync

Figure 5 – The cpush command operation.

4.6 cpushimage
cpushimage enables a system administrator logged in as root to push a cluster node image across a specified set of
cluster nodes and optionally reboot those systems. This tool is built upon and leverages the capabilities of
Systemimager. While Systemimager provides much of the functionality in this area, it fell short in that it did not
enable a cluster-wide push for image transfer. cpushimage essentially pushes a request to each participating cluster
node to pull an image from the image server. Each node then invokes the pull of the image from the cluster image
server. Of course, this description assumes that Systemimager has already been employed to capture and store a
cluster node image on the cluster image server machine. A trace of the actions of cpushimage is shown in Figure 6.

SYNOPSIS
 cpushimage[s] [OPTIONS] --image=imagename

OPTIONS

-e, --server hostname : allows explicit naming of the image server, useful when the local
machine has both internal and external network connections – since
cpushimage uses a get_hostname function, the wrong name may
be returned for the internal network

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 12 of 20

 -h, --help : display help message
 -i, --image imagename : name of system image
 -l, --list nodelist : alternate cluster configuration file
 --nolilo : don’t run LILO after update
 -r, --reboot : reboot nodes after updates complete

GENERAL
 An example usage of cpushimage is as follows:

 cpushimage –r –-image=myimage

Updates the system image on all nodes using the image ‘myimage,’ rebooting each node as it finishes.

cpushimage

server

node 1

node n

2, 4

2, 4

1, 3

1, 3

1. Send ‘updateimage’ command via rsh/ssh
2. ‘updateimage’ requests image from server
3. Image is transferred via rsync
4. Output returned via rsh/ssh

Figure 6 – The cpushimage command operation.

4.7 crm
crm is a clusterized version of the standard ‘rm’ delete file/directory command. Figure 7 shows a trace of the crm
operation. The command will go out across the cluster and attempt to delete the file(s) or directory target in a given
location across all specified cluster nodes. By default, no error is returned in the case of not finding the target. The
interactive mode of ‘rm’ is not supplied in crm due to the potential problems associated with numerous nodes asking
for delete confirmation.

SYNOPSIS
 crm[s] [OPTIONS] --files=pattern

OPTIONS
 -f, --files pattern : file or pattern to delete
 -h, --help : display help message
 -l, --list nodelist : alternate cluster configuration file
 -r : recursive delete
 -v : verbose mode, shows error message from ‘rm’

GENERAL
 There are several different ways to call crm:

1. To delete a directory (must be done recursively)

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 13 of 20

crm –r –-files=/home/usr/*

Notice the use of a ‘\’ before the special character ‘*’. The shell tries to expand wildcards before the
program is called, and this forces the shell not to expand them.

2. To delete a single file

crm –f /home/filename

crm

server

node 1

node n

2

2

3

3
1

1

1. Send ‘rm’ command via rsh/ssh
2. Execute ‘rm’ on node
3. Output returned via rsh/ssh

Figure 7 – The crm command operation.

4.8 cshutdown
Without a cluster shutdown command it is very time consuming to log onto each node and perform an orderly
shutdown process. If the direct approach of simply powering down machines is taken, the penalty will be paid on the
subsequent startup as each machine will then spend time checking its respective file system. Although most clusters
are not frequently shutdown in their entirety, clusters that multi-boot various operating systems will most definitely
benefit from such a command, as will all clusters after updating the operating system kernel. Also, on those rare
occasions where a cluster must be brought down quickly, such as when on auxiliary power due to a power outage,
cshutdown is much appreciated. Thus, cshutdown was developed to avoid the problem of manually talking to
each of the cluster nodes during a shutdown process. As an added benefit, many motherboards now support an
automatic power down after a halt, resulting in an “issue one command and walk away” administration for cluster
shutdown. Figure 8 shows a trace of the cshutdown operation.

SYNOPSIS
 cshutdown[s] [OPTIONS] --options=options -t=time

OPTIONS
 -h, --help : display help message
 -l, --list nodelist : alternate cluster configuration file
 -m, --message “message” : message to display on each node

-o, --options options : the options you want ‘shutdown’ to use, any options ‘shutdown’
recognizes are fine

-r, --onreboot label : use LILO label upon reboot
 -t minutes : time before shutting down

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 14 of 20

GENERAL
 An example usage of cshutdown is as follows:

 cshutdown –-options=h –t=1 --message=”going down for maintenance”

Halts each machine in one minute displaying the given message on each node.

Figure 8 – The cshutdown command operation.

5 Serial Vs Parallel C3 Tool Execution
While the serial version accomplished many of our initial goals it was severely lacking in scalability. One of the
solutions to fix this was to make a parallel version. The first parallel version used the Perl threads package included
in Perl 5.6 as a compiled module. However, the implementation of the Perl threads suffered from a severe problem
with race conditions. On our cluster of 64 machines, we would typically have failure rates of ten to twelve nodes
when attempting to execute multiple threads. The only way to end a command was to manually kill each process,
attempt to determine which machines had failed, and then manually fix them. This failure rate was of course
unacceptable. As a result, the next version of C3 was implemented using multiple concurrent processes – forking a
process for each node. Forking proved to be a much more robust solution than using Perl threads, as node failures
are now only typically caused by hardware failures.

While administrating the HighTORC cluster, we found the speed increase associated with the parallel version of the
tools to be very nice. However, due to the indeterminate nature of the multi-process version the serial version is still
included. The serial version of each tool is very useful for debugging system services, as each machine is processed
according to its order in the configuration file, allowing you to see on which nodes the command completed
successfully. The serial version of cexec is also useful as a quick method of verifying network connectivity to each
node in the cluster.

6 Advanced Usage
In addition to using the tools interactively on the command line, the tools can also be used in shell scripts just like
any other standard command. By adding C3 commands to scripts, users and administrators can perform advanced
tasks that had to be done manually in the past.

One example of an advanced task that system administrators may employ is scripted software installations on all
cluster nodes. With the C3 tools, administrators have many options as to how they could complete this task. One

cshutdown

server

node 1

node n

[2], 4

[2], 4

5

5

[1], 3

[1], 3

1. Optional: Send LILO command to update
default boot image via rsh/ssh
2. Optional: Execute LILO command on node
3. Send ‘shutdown’ command via rsh/ssh
4. Execute ‘shutdown’ on node
5. Output returned via rsh/ssh

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 15 of 20

method would be to update one node, create a new system image from the updated node, and then push the image
across the cluster using cpushimage. However, if the software installation is a small task, administrators may not
want to go to the trouble of generating a new image and pushing it across the cluster. In this case, the administrator
could use a script such as in Figure 9 to accomplish the task.

#!/bin/sh

copy over package tarball
/usr/bin/cpush -s /root/software/mpich.tar.gz -e /tmp

unpack tarball (creates mpich subdirectory)
/usr/bin/cexec -c "tar -zxf /tmp/mpich.tar.gz”

build & install
/usr/bin/cexec -c "cd /tmp/mpich; ./configure -prefix=/usr/local/mpi"
/usr/bin/cexec -c "cd /tmp/mpich; make; make install"

Figure 9: System Administrator Script

In the script shown in Figure 9, the administrator is installing a package from a tarball by pushing the tarball to all
nodes using cpush, unpacking the tarball on all nodes using cexec, and then running the commands necessary to
build and install the package using cexec. Alternatively, the administrator could have just created a script to install
the package on a local machine, pushed the install script and tarball to all nodes, and then run the install script on all
nodes using cexec. This is the method used for some of the software installation tasks within the Open Source
Cluster Application Resources (OSCAR) project. C3 is also included as a system administration and programming
environment tool in OSCAR.

For general users, scripting the C3 tools can also be advantageous. A common advanced task that users may use the
tools for is running a parallel job and collecting the output files generated on all of the nodes. Figure 10 shows a
script in which a user pushes his executable to a temporary directory on all nodes, runs a parallel job, and then
retrieves the results to a local directory.

#!/bin/sh

uid=`id -u`
user=`id -un`
dir="/tmp/myapp.$uid"
app="/home/$user/apps/myapp/hello"
results="/home/$user/apps/myapp/results"

create temporary directory
/usr/bin/cexec --command="mkdir $dir"

copy over application binary (hello)
/usr/bin/cpush --source=$app --destination=$dir

run hello (which creates a hello.out on each node)
/usr/local/mpi/bin/mpirun -np 64 $dir/hello

collect output files
/usr/bin/cget --source=$dir/hello.out --target=$results

remove temporary directory & contents
/usr/bin/crm -r -f $dir

Figure 10: User Application Script

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 16 of 20

Another embedded use for C3 has been in the Managing and Monitoring Multiple Clusters (M3C) [13] project.
Here, the C3 commands are invoked from within the M3C Java development environment as plug-in cluster
administration / operation tools. Briefly, M3C was developed to provide a framework with an easy to use web-based
graphical user interface that may “plug-in” multiple tools to provide a variety of solutions for dealing with the
unique challenges of cluster administration and operation. It is designed as an extendable framework that can work
with different underlying back-end tools. The M3C framework is a web-based system designed such that it will
operate on multiple clusters as transparent as it does on a single cluster. Furthermore, since M3C is web-based, users
may interact with participating clusters via remote Internet access. Thus, users may easily share their computational
resources with others via the web-based interface.

7 Future plans for the C3 tools suite
At the time of writing this document, the C3 tool suite has been in development for slightly over 1-year. In this time
we have learned many lessons and evolved the existing tools to better handle cluster administration as well as
general user needs. However, we presently feel that we have taken the current tool suite as far as it can go within the
constraints of its underlying implementation. Thus we started this year with a self-given directive to take our
“lessons-learned” thus far and start over with a clean slate. The only self-imposed constraint is that the new version
loses no functionality.

While wanting to serve the general cluster community, we also find ourselves guided by an internal directive that the
development of new cluster tools should look toward supporting extremely large-scale clusters. Thus, our future
work is concurrently following two paths with a planned convergence in the end. In one path is version 3.x that will
provide additional growth in the following areas: better management of multiple clusters – in particular, those
clusters in multiple administrative domains with computation nodes on a private network – not exposed to direct
outside access; enhanced API with support for user specified node ranges; and because of some limitations with Perl
and features of Python, this implementation will be in Python. On the other path is version 4.x – the first C3
“scalability” release. This version will differ greatly in implementation, capability, and capacity when compared to
prior versions. While we intend that v4.x will be functionally backward compatible with prior releases, it is possible
that the administrative overhead acceptable to someone with 10,000 cluster nodes may not be acceptable to someone
with a 10-node cluster. While we have not yet encountered specific instances of this problem thus far,
acknowledging the possibility helps to keep this issue at the forefront of the design and implementation process. It is
our desire that the v4.x implementation will easily handle the small cluster case providing specific v4.0 benefits
without any additional administrative overhead that may be required of the extremely large cluster installation. First
is a look into v3.x followed by a brief description of issues related to v4.x development.

7.1 C3 Version 3.x
As stated above, the C3 v3.x release will provide additional features addressing the problems associated with the
administration and use of clusters located in multiple domains. While the v2.x release of C3 supports multiple
clusters, in order to do so, it requires that all nodes must reachable via the network – exposed to the node initiating
the C3 command. This presents a problem in environments where computation nodes are hidden behind the head
node by placing them on a private network with only the head node exposed to the outside network. This is easily
done by using two network cards in the head node – one for the internal private network and the other for the
external public network. Each network interface card (NIC) is then configured for use on the appropriate network.
Another feature to make its way into v3.x is that of supporting node ranges as an integral part of the new API. This
is the same use of node ranges as described in the original Ptools specification of parallel Unix commands. The final
major change in v3.x is the use of the Python rather than Perl as the implementation language. While the information
provided in this section should be considered preliminary, v3.x is sufficiently into its development cycle that we do
not anticipate major changes from the information presented here. First, we will briefly look at the Python versus
Perl issue. Second, is a discussion of multi-cluster issues and last is a description of the new API including the node
range.

7.1.1 Python versus Perl
While Perl proved to be a great choice for the prior implementations of C3, it does have some flaws that Python will
address. Some of the beneficial features that Perl offered include: tightly integrated regular expressions, code
portability, and a fast development cycle. However, as the size of the C3 scripts increased, Perl became a liability
with respect to code maintenance and feature expansion. While Python has many of the same features of Perl, it also

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 17 of 20

has several features that benefit the maintainability of larger codes. For example, Perl’s philosophy is that each
person is different so there should be as many different ways to solve a problem. While this approach works for the
smaller more personal sized scripts it makes reading another’s large code implementation an effort equal to
reinventing that code. In contrast, Python will typically have only one or two ways to perform a specific action thus
making code more consistent between different authors. One asset of Perl is that it is well suited to text processing
programs such as those needed for common system administration tasks. However, it provides some difficulty when
used in large scripted programs because of this feature. While Python is capable of doing these same jobs as Perl, it
is much less bound to them. For example, regular expressions are an object on Python versus Perl where they are a
part of the language it self. Furthermore, Python lends itself well to the writing and maintaining of large programs.
Yet another benefit is that the Python API directly supports C libraries, thus providing direct access to a much richer
set of sockets and transport protocols. Because of this feature, it is possible to wrap C or C++ functions in such a
manner that a programmer will never know that they are calling a C function. These calls may even throw a Python
exception from C via a library call. Python, like Perl, is a freely available, open-source language that is portable and
is included with many of the readily available Linux distributions. Thus, Python exhibits many of the features that
make it attractive for implementing the next generation of C3 tools. For a more in-depth analysis comparing Perl and
Python see [14].

7.1.2 Cluster Configuration For Multi-Cluster Environments
The original C3 cluster configuration file took the simple and most direct approach of specifying the cluster by
placing one machine per line in the file. While one can cross over multiple clusters by simply placing a machine’s
name in the configuration file, this approach provides no method to express a cluster architecture when nodes are not
directly reachable from outside the cluster. Thus, a new file format was developed in support of the v3.x multi-
cluster environment. As shown in Figure 11, the cluster configuration file now consists of cluster definition blocks
as follows:

Cluster torc{
 external_name:internal_name #head node
 Node0 #position 0
 Node[1-63] #position 1-63
 Exclude 3 #node3 is dead
 Exclude [6-8] #node6 - node8 are dead
 196.1.1.[30-40] #position 64-74
 exclude 32 #196.1.1.32 is dead
}

cluster torc2{
 head_node_name
 osiris
 dead isis #a dead node
 134.167.12.213
}

cluster HighTorc:head-node-name

Figure 11 – Multi-cluster Configuration File

A cluster block, as in torc and torc2, may be used to define an entire cluster to the node level. This level of definition
is required on a local cluster’s head node. The second technique with only the cluster name and head node provided,
as shown for HighTORC, is a cluster access alias. This method is used to provide a loosely defined connection to
another cluster. The definition is considered loose as the local C3 command will be unable to determine specific
cluster attributes until it reaches the appropriate cluster block definition. The first cluster definition in the
configuration file must be a cluster block definition and it will be assumed to be the default local cluster for
commands issued from that host. This “default” will be the cluster used in the case where a C3 command is issued
without explicitly specifying the cluster configuration file. When a configuration file is specified, all clusters
specified within will participate in the execution of the C3 command issued. All machine names in the configuration
file must be the name used to access that machine. That is, it must be the machine alias, IP address, or the fully

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 18 of 20

qualified address. The cluster name is only used for internal matching purposes and is not relevant beyond the use of
C3 at this time. Thus a user may specify the cluster name to be any name they wish.

In the cluster block definition, the first machine named in the list is always the head node. In the case where the head
node has two network interface cards (NICs), with one on the external network and the other on the private internal
network, the first line must contain the external name (colon separated) followed by the internal name. If there is
only one network interface, the name need only be listed once (shown in Figure 11 for torc2) but can be listed as
both external and internal if symmetry of the cluster block definitions is desired. The internal name is the one used
by the computation nodes to communicate to the head node.

By default, the head node is not included in the execution of a C3 command. This is done to prevent a user from
performing commands from the head node – to the head node – without explicitly desiring to do so. Without this
technique, users tend to blast the head node with operations only intended for compute nodes. However, it is
possible to treat the head node as a compute node and have commands execute on the head node as it does on
compute nodes. This is done by listing the head node twice, first in the head node position and second as the first
computation node.

The cluster access alias is used to specify the existence of another cluster. This technique is generally used to
specify a non-local cluster where all computation nodes are only accessible via the head node on their private
network. Thus, individual nodes would not be accessible to external machines even if individual node IP addresses
were provided. Figure 11 shows cluster HighTORC with its externally accessible head node separated by a colon.
Individual nodes will be resolved when the C3 command reaches HighTORC and accesses the local c3.conf cluster
configuration file that describes itself. This scheme relieves a system administrator or user from having to
synchronize their individual configuration files with those sitting on the cluster head nodes.

Four important additions to the cluster configuration file syntax are: the “#” symbol for comments, the ability to
define the cluster via ranges, the exclude qualifier, and the dead qualifier. Ranges may only be specified
numerically and can only be the last part of the node name. For example, instead of explicitly listing the 100 entries
for node1, node2, node3,… node100. One can simply supply the single line consisting of node[1-100] for
the same effect. This enables the user to define a larger cluster much more easily. The exclude tag indicates that
the given number or range of nodes listed after the exclude tag are to be removed from the previously defined node
range. Typically this is used when a group of nodes has been removed from the cluster. There is no way to override
an exclude on the command line. Similar to the exclude tag is the newly added dead tag. Philosophically the
difference is the exclude expects that nodes will return and dead tagged nodes are anticipated to be gone forever.
Implementation wise, the exclude tag is used for ranges of nodes while the dead tag is reserved for single nodes.

7.1.3 Enhanced API
The original command line API for C3 was dictated by the use of the getopt package in Perl. This package makes
parsing the command line very easy but unfortunately requires that each option be passed as a switch. One of the
goals for v3.x is to make the C3 commands as similar as possible to the standard interface of the analogous Linux
command. For example, in the cps command, the passing of options to ps using a –-option or –o does not meet
this requirement. Version 3.x implemented in Python will not use the getopt package and instead we will
implement our own command line parser. The result is that it will be no longer necessary to preface every argument
with the –-option qualifier.

With enhanced multi-cluster support, the C3 command line API now requires a way to specify which cluster, or
clusters, is targeted by a command. A cluster is designated by name (identifier) followed by a colon. Individual
nodes may be specified after the colon. Likewise, a range of nodes may be specified following the colon by either
indicating node[range] or just [range]. A command applies to the entire named cluster in the cluster
configuration file if no node qualifiers are included on the command line. The general format of the v3.x C3
command is:

ccommand [OPTIONS] [CLUSTER] required options for command

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 19 of 20

For example, the following command will start a ssh daemon on the TORC cluster; on nodes 1, 4, 6 through 12,
and node 14 of HighTORC; and display the machine name before executing the command:

cexec –p torc: hightorc:1,4,6-12,14 /etc/rc.d/init.d/sshd start
Note in the above example that the cluster torc has no numbers after the colon. This indicates that the command is to
execute on every node listed in the configuration file for this cluster. While on HighTORC only those nodes
specified on the command line are to participate in the execution of the command. Individual nodes are indicated by
their number and ranges of nodes are given by a dash-separated number range. Number refers to the relative position
in the cluster specification file. Node zero (0) is the first node after the head node in the cluster definition file. Each
subsequent node is assigned a number in the order listed in the file. By default the head node does not participate in
a C3 command. However, a switch is provided to indicate that the operation should also occur on the head node. A
node marked exclude or dead in the configuration file, but listed on the command line, will be skipped and an
error message displayed. The remainder of the nodes in the command line list will still execute the indicated
operation.

Two commands are provided that return the mapping of node name and number for clusters where the node names
do not follow a regular pattern that is easily mapped to node|number pairs – such as cluster torc2 in Figure 11. The
cname command returns the node name based on the numbers supplied as a command line list. The cnum command
returns the node number based on the form of cluster_name:node_name.

The final code example shows the default cluster, the one listed first in the local cluster configuration file, executing
a “ls –l” command on nodes 2,4,6,7,8,9,10 of the default cluster:

cexec :2,4,6-10 ls -l

7.2 C3 v4.0
Clusters presently hold the often-fleeting position of being the most popular and powerful computing architecture
today. This is an architectural paradigm where a more powerful cluster can always be built by simply adding more
nodes – and this is exactly what is occurring. Thus, while the current typical computation cluster does not exceed
128-nodes, a few have expanded into the 256-node range, and it is expected that the node count will grow
substantially in the near future. While it is a relatively simple matter to plug together more hardware; the difficulty is
in getting the software to operate efficiently and effectively across all those nodes. To anticipate this need in scalable
software, v4.x – the first “scalability” release for C3 is being developed.

To this point, the C3 tools have only been tested up to 64 nodes, where they perform rather well. We acknowledge
that there are inherent limitations to the present implementation techniques used in v2.x and even v3.x of C3. Part of
the problem lies in the parallel technique used in C3 itself and more serious problems come from the underlying
tools used within C3. In the current parallel version of the tools, one process is created on the server to handle each
client node. Within each process, the server establishes a network connection to a client. It is easily foreseeable how
this methodology is severely limited when clusters of thousands of nodes are considered, as the server will be
creating thousands of processes and network connections. From this example, two issues arise that need to be
resolved in order to enable the C3 tools to scale. The first issue is the server’s load, which will need to be distributed
among many nodes in order to prevent some of the limitations imposed by the Linux operating system, such as the
maximum number of processes allowed and the maximum number of open file descriptors. The second issue is the
enormous amount of network traffic that would be caused from the tools presently used by C3 in trying to service
thousands of nodes. In order to reduce the amount of traffic, a more efficient means of communication to transfer
data to clients must be employed.

 In response to these issues, research is being done on a highly scalable version of the C3 tools. The goal of this
research is to discover a means to efficiently manage and use clusters on the order of thousands of nodes. When
combined with the multiple cluster functionality of C3 v3.0, the resulting tools should also be usable within the
computational Grid environment, and able to automatically select the most efficient means available for an operation
given the local environment. Initial research being performed includes the investigation of using various algorithms
for distributing the server’s load among all cluster nodes. Work is also taking place to exploit the capability of the
network hardware used in the construction of clusters to reduce the overall network traffic.

Submitted and revised for the area of Software and Performance Engineering for Parallel and Distributed Systems in a special issue of PDCP
(Parallel and Distributed Computing Practices. (http://orca.st.usm.edu/pdcp/) Initial version published in DAPSYS 2000.

pdcp-v2.0.doc Page 20 of 20

7.3 Conclusion
While clusters are the price / performance leader in high performance computing, the lack of good administration
and application tools represents a hidden cost to both cluster owners and users. This paper presented the Cluster
Command and Control (C3) tool suite, a number of command line tools developed as part of the Oak Ridge National
Laboratory’s HighTORC cluster project that are designed to reduce the cost of cluster ownership. In addition to
basic command line use, examples of advanced use of the C3 tools were provided. Here, it was shown that the C3
tools could be embedded into other programs for both cluster administration and user application purposes.
Furthermore, these same tools shown capable of providing the “backend” connection to administering and using the
cluster via the web-based tool M3C.

Of the three criteria set forth for the C3 tools at the beginning of this work – single machine look and feel, secure,
and scalable – the current version 2.7 of the C3 tools meet all expectations for clusters of reasonable size. Looking
back over the past year, v1.x met all of these requirements except for that of scalability. Cluster tool scalability is an
elusive target that the cluster computing community will have to continually chase as cluster node counts continue to
rise. As explained in the latter part of this paper, the C3 team is in the process of addressing those issues critical to
achieving a more scalable implementation of cluster tools. Of course, as tools become more scalable, computational
scientists will want even larger systems. This is just part of the never-ending cycle for increased computation power.

8 REFERENCES
[1] The HighTORC system page, http://www.epm.ornl.gov/torc
[2] Rsync system documentation, http://www.rsync.samba.org
[3] OpenSSL Specification, http://www.openssl.org
[4] OpenSSH Specifications, http://www.openssh.com/
[5] ISC Dynamic Host Configuration Protocol, http:// www.isc.org/products/DHCP
[6] Systemimager documentation, http://www.systemimager.org
[7] Ptools project, http://www-unix.mcs.anl.gov/sut/
[8] The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann Publishers, Inc., San Francisco,

1999.
[9] The Open Cluster Group, http://www.OpenClusterGroup.org
[10] Open Source Cluster Application Resources (OSCAR), http://www.epm.ornl.gov/oscar
[11] Rdist home page, http://www.magnicomp.com/rdist
[12] Tridgell, A. and Mackerras, P. 1996. The rsync algorithm. Technical Report TR-CS-96-05 (June), Department

of Computer Science, Australian National University.
[13] M3C Tool, http://www.epm.ornl.gov/~jens/m3ctool
[14] Open Source Developer’s Journal, Perl vs Python: Which one is right for you?, p8-14, Issue No. 1.

