
3rd Distributed and Parallel Systems (DAPSYS 2000), September 10-13, 2000, Balatonfüred, Lake

Balaton, Hungary. Published by: Kluwer Academic Publishers, ISBN: 0-7923-7892-X

209

Cluster Command & Control (C3) Tools Suite

Ray Flanery1, Al Geist1, Brian Luethke2, and Stephen L. Scott1
1 Computer Science and Mathematics Division,
Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37830-6367, USA.
contact author: scottsl@ornl.gov

2 Computer Science Department, East
Tennessee State University, Johnson City,
Tennessee 37614-0718

Abstract The computation power of PC clusters running the Linux operating system
rivals that of supercomputers of just a few years ago at a fraction of the
purchase price. However, the lack of good administration and application tools
represents a hidden operation cost that is often overlooked when proposing a
cluster. This paper presents a number of command line tools developed at Oak
Ridge National Laboratory for use in operating the HighTORC cluster. These
same tools provide the “backend” connection to the cluster for our web based
GUI tool suite M3C (Monitoring and Managing Multiple Clusters).

Keywords: PC cluster tools, cluster administration

1. INTRODUCTION

While there are numerous tools and techniques available for the administration
of clusters, few of these tools ever see the outside of their developer’s cluster.
Basically they are developed for specific inhouse uses. This results in a great deal of
duplicated effort among cluster administrators and software developers. Thus, after
building HighTORC[1], a 64-node – 128 processor – Beowulf cluster in the
Summer of 1999, it was decided to make an effort to develop and collect a suite of
system administration cluster tools that could be released to the cluster community
so that others may benefit from our effort as well.

To simplify administration some cluster builders simply NFS mount one master
file system to all nodes. While the “one file system” approach does greatly simplify
configuration management and application development, it also provides the least
scalable model and lowest performance for cluster computing due to machine and

210 Chapter

network constraints. Our approach is to decentralize every aspect of the cluster
configuration in HighTORC to promote scalability. This resulted in every node
hosting its own independent operating system with the remaining local disk space
used as temporary application and data storage. Of course, this approach generated
the need for tools to hide the fact that HighTORC consists of 64 independent
machines. Using a number of freely available tools; rsync[2], tomsrtbt[3], ssh2[4],
DHCP[5], and Systemimager[6] we developed a suite of cluster command and
control (C3) tools to easily move information into and out of the cluster as if it were
a single machine rather than a group of loosely coupled independent machines.
These tools are similar in function to those developed by Gropp and Lusk [7] for use
on MPPs.

One of the main criteria of the tools is that, they provide the look and feel of
commands issued to a single machine. This is accomplished through using lists, or
configuration files, to represent the group of machines on which a command will
operate. While this requires the building of machine lists, or cluster node lists, it still
presents the typical user with a single machine interface. This occurs as generally a
cluster is configured and used in its entirety at any given instance by a single user.
Thus the cluster node list containing all cluster nodes may be built once and then
forgotten. However, a strength of the C3 tool suite is that an individual user may
dynamically customize and use their cluster configuration list without affecting any
other cluster users.

A second criterion is that the tools be secure. Generally security inside a cluster,
between cluster nodes, is somewhat relaxed for a number of practical reasons. Some
of these include 1) improve performance, 2) ease programming, and 3) all nodes are
generally compromised if one cluster node’s security is compromised. Thus, security
from outside the cluster into the cluster is of utmost concern. Therefore, user
authentication from outside to inside must be done in a secure manner.

The third criterion is tool scalability. A user may tolerate an inefficient tool that
takes a few minutes to perform an operation across a small cluster of 8 machines as
it is faster than performing the operation manually 8 times. However, that user will
most likely find it intolerable to wait over an hour for the same operation to take
effect across 128 cluster nodes. Further complicating matters is that many cluster
sites are now hosting multiple clusters that are or will eventually be combined into
federated computation clusters. Extending even further is the computation Grid[8]
where combining federated clusters from multiple sites is the norm.

Toward this effort, this paper describes the command line interface tools for
cluster command and control (C3) developed for use on HighTORC. These same
tools are used to provide the back end services for the web based M3C tool.

. Cluster Command & Control (C3) Tools Suite 211

2. REQUIRED SOFTWARE ENVIRONMENT

A number of tools developed and freely published on the web were collected to
facilitate the development of our C3 tool suite. The following section briefly
describes and provides information where each of these tools may be obtained.

Rsync is a method for mirroring drives similar to rdist[9]. It operates by: 0) get
the list of files to be transferred from a source, 1) split the target file into small
fixed-size blocks, 2) generate a checksum – both a weak “rolling” 32-bit checksum
and a strong 128-bit MD4 checksum, 3) transfer both checksums, 4) remote system
uses the checksums to generate a sequence of instructions used to request blocks to
be updated, 5) send requests to update blocks. A more detailed explanation of the
rsync algorithm may be found at the rsync web page. This tool is used in C3 to
effect the movement of files between server and node. Systemimager uses rsync to
move disk images from image server to client node. Rsync simplifies file movement
between cluster nodes.

Tomsrtbt is self proclaimed as “the most linux on one floppy”. Tomsrtbt is used
to build a bootable diskette to initially boot a new cluster node prior to using the
cl_pushimage command to install and restart the node as a fully functioning cluster
node.

OpenSSH is an open source tool that uses the ssh 1.5 protocol. OpenSSH
requires the openSSL package to work. OpenSSH uses a digital signature generated
by OpenSSL for authentication purposes. This eliminates the need to send
passwords across the network to remote machines. OpenSSH is an enabling tool that
provides a secure means for C3 to connect to remote cluster nodes from outside the
cluster’s internal network. Without such security the C3 tool suite would either not
be permitted to execute or at the very least would be restricted by security policy. C3
uses OpenSSH for a secure means to eliminate the need to login to each cluster node
when invoking a command. OpenSSH is used to both execute a remote command
(like rsh) and is used by rsync to transfer files.

Dynamic Hosts Configuration Protocol (DHCP), is used to allocate IP
addresses to machines on a given network. It can do this dynamically within a given
range of IP addresses or statically by associating a NIC’s MAC address with a
specific IP address. Dynamic allocation of IP addresses makes it easy to swap out
machines with little operator intervention. Static allocation of IP address makes it
easier to troubleshoot machine/network problems and subsequently debut distributed
cluster codes.

Dynamic IP allocation allows DHCP to “lease” an IP address to a client for a
specified time period. This time period may be set from a few seconds to forever.
Forever in this case ends when the client gives up the IP address – like on a reboot.
A short lease will be detrimental to cluster performance, as it will require the cluster
nodes to continually access the DHCP server to obtain a new IP address. A forever
lease will produce stability at least until a node crashes or reboots. However, periods

212 Chapter

of instability in clusters tend to affect more than one node thus making debugging
using the IP address useless, as they will shuffle on many nodes simultaneously. Our
recommendation is to initially dynamically allocate IP addresses within a specified
range in order of cluster node identifier (number). Then use the systemimager tool,
described later, to change the dynamic allocation to a static allocation scheme. Thus,
ease of initial installation with troubleshooting and debugging capabilities is
retained. In practice, the static allocation of IP address on clusters eases the
replacement of a cluster node.

Systemimager is a cluster system administrator tool, run from root, that enables
a cluster node to pull the current cluster node image from an outside cluster image
server. This proves to be very valuable when initially installing the cluster
environment and for subsequent cluster wide operating system and software
environment updates.

When combined with tomsrtbt, Systemimager provides a simplified technique to
place the initial cluster image on each cluster node. As each machine is booted from
the tomsrtbt diskette, it will pull the current image from the image server. The image
is downloaded, installed, and now the machine may reboot as a cluster node. The
only task remaining is to assign a network IP address to the node.

Systemimager requires DHCP to be installed and run on the outside cluster
image server. Configuration options include both dynamic and static assigned IP
addresses. DHCP dynamically assigns IP addresses by default as machines boot.
However, statically assigned addresses are generally advocated for cluster use as it
facilitates node debugging and trouble shooting. However, one can not store
statically assigned IP addresses on a cluster image when pushing the same image
across a number of machines. To do so would produce disastrous results as all
machines would then try to use the same IP address. The alternative is to manually
change the IP address of each machine after initial startup and then reboot with the
correct IP address. This is not very practical as it is time consuming, error prone, and
becomes rather annoying after about four machines. Systemimager provides a
solution to this problem via it’s makedhcpstatic utility. Simply boot cluster nodes in
order of desired IP address as DHCP will sequentially assign the IP number to each
machine as it comes on line. Next run makedhcpstatic which will rewrite the
/etc/dhcpd.conf file to associate each node’s MAC address with it’s host name. Last,
restart DHCP. Now each time a node requests an IP address, the same number will
be assigned. This technique works great for installing a large number of machines
with contiguous IP addresses. However, if a machine or NIC is replaced, you must
manually set the IP address on the node and in the /etc/dhcpd.conf file. However,
this is a small price to pay for the occasional machine or NIC failure compared to
the effort required to initially build and configure a large cluster.

The only shortcoming of Systemimager is that it requires the cluster node to
request an image from the outside cluster image server. While this technique avoids
the security problems of an outside machine forcing new software on a cluster node,

. Cluster Command & Control (C3) Tools Suite 213

perhaps taking control of the machine, it also restricts the usefulness of the image
update to preplanned updates (pulls) driven by coordinated node cron jobs. Our
desire was to augment the features of Systemimager such that a system administrator
may effectively push a new system image in a secure manner across the entire
cluster or any portion of the cluster. Thus, the creation of cl_pushimage.

3. C3 TOOLS SUITE

Eight general use tools have been developed in this effort thus far. Cl_pushimage
is our single machine push answer to the Systemimager pull image solution. Like
Systemimager, cl_pushimage and cl_shutdown are both root user system
administrator tools. The other six tools, cl_push, cl_rm, cl_get, cl_ps, cl_kill, and
cl_exec are tools that may be employed by any cluster user both at the system and
application level. Cl_push will let you push individual files or directories across the
cluster. Cl_rm will permit the deletion of files or directories on the cluster. Cl_get
copies cluster based files to a user specified location. Cl_ps returns the aggregate
result of the ps command run on each cluster node. Cl_shutdown will shutdown
nodes specified in command arguments. Cl_kill is used to terminate a given task
across the cluster. Cl_exec is the C3 general utility in that it enables the execution of
any command across the cluster.

Cl_pushimage enables a system administrator logged in as root to push a cluster
node image across a specified set of cluster nodes and optionally reboot those
systems. This tool is built upon and leverages the capabilities of Systemimager.
While Systemimager provides much of the functionality in this area it fell short in
that it did not enable a single point push for image transfer. Cl_pushimage
essentially pushes a request to each participating cluster node to pull an image from
the image server. Each node then invokes the pull of the image from the outside
cluster image server.

Cl_pushimage uses a PERL script to iterate through a series of IPs provided by
the user. The default cluster configuration file /etc/c3.conf specifying all cluster
nodes is used if the user does not provide their own IP address or configuration file.
At each iteration, IP address, cl_pushimage uses OpenSSH to call the Systemimage
tool updateimage on the cluster machine. Thus, effectively pushing an image to the
specified nodes. OpenSSH is employed to provide secure root access to each of the
cluster machines from the outside cluster image server. Of course this description
assumes that Systemimager has already been employed to capture and relocate a
cluster node image to the outside cluster image server machine.
SYNOPSIS

 cl_pushimage [OPTIONS]… --image=[list:]imagename
OPTIONS

 --help display help message

214 Chapter

 --nolilo don’t run lilo after update
 --reboot reboot node after update completes

GENERAL
 There are two different ways to call cl_pushimage :

-using the default list of clusters
“cl_pushimage –image=imageName

-using a subset of the cluster from a given file
“cl_pushimage –image=list_of_nodes:imageName
While cl_pushimage has the ability to push an entire disk image to a cluster

node, it is too cumbersome as an application support tool when one simply desires to
push files or directories across the cluster. Furthermore, cl_pushimage is only
available to system administrators with root level access. From these restrictions
grew the desire for a simplified cluster push tool, cl_push, providing the ability for
any user to push files and entire directories across cluster nodes. Cl_push uses rsync
to push files from server to cluster node. Caution – do not use cl_push to push the
root file system across nodes. Systemimager provides a number of special
operations to enable cl_pushimage and updateimage to operate properly.
SYNOPSIS

 cl_push [OPTIONS]… --source=Source --destination=[list:]destination
OPTIONS

 -d,--delete removes any file that are on the nodes but not on the server
 -s,--source the directory, file, or pattern to move

-d,--destination the destination directory or the destination file on the nodes.
Using the list option allows you to send to a subset of nodes
specified in the file.

GENERAL
 There are several different ways to call cl_push, below are some of the ways:

-for moving whole directories
“cl_push –source=/home/* --destination=/home/”

the use of the backslash before the “*” prevents the shell from trying
to expand the special character before the call is made.

-for a single file
“cl_push –source=/home/filename –destination=/home/”

-for a single file and renaming that file on the nodes
“cl_push –source=/home/filename1 –destination=/home/filename2”

-to move a set of files mathing a pattern
“cl_push –source=/home/*.*c –destination=/home/”

again, notice the backslashes proceding the special characters to prevent
the shell from expanding them.

-to move a file to a subset of your nodes
 “cl_push –source/home/filename –destination=list_of_nodes:/home/

. Cluster Command & Control (C3) Tools Suite 215

cl_rm is the cluster version of the rm delete file/directory command. This
command will go out across the cluster and attempt to delete the file(s) or directory
target in a given location across all specified cluster nodes. By default, no error is
returned in the case of not finding the target. The interactive mode of rm is not
supplied in cl_rm due to the potential problems associated with numerous nodes
asking for delete confirmation.
SYNOPSIS

 cl_rm [OPTIONS]… --files=[list:]pattern
OPTIONS

 --help display help message
 -r recursive delete
 -v verbose mode, shows error message from rm
 -files the file or pattern to delete

GENERAL
 There are several different ways to call cl_rm :

-to delete a directory (must be done recursively)
“cl_rm –r –files=/home/usr/*”

notice the use of a \ before the special character. The shell try’s to expand
the wildcards before the program is called and this forces the shell not to
expand them.

-to delete a single file
“cl_rm –files=/home/filename”
The converse of cl_push is the cl_get command. This command will retrieve the

given files from each node and deposits them in a specified directory location. Since
all files will originally have the same name, only from different nodes, each file
name has an underscore and IP or domain name appended to its tail. IP or domain
name depends on which is specified in the cluster specification file. Note that cl_get
operates only on files and ignores subdirectories and links.
SYNOPSIS

 cl_get --target=target --source=[list:]pattern
OPTIONS

 None.
GENERAL

 There are two basic ways to call cl_get :
-to get a given pattern(in this case a whole directory)

“cl_get --target=/home/usr/ --source=/home/usr/*”
notice the use of a \ before the special character. The shell trys to expand
the wildcards before the program is called and this forces the shell not to
expand them.

-to get a single file
“cl_get –target=/home/ --source=/home/usr/filename”
 notice that target is always a directory as this is the file destination.

216 Chapter

The cl_ps utility runs the ps command on each node of the cluster with the
options specified by the user. For each node the output is stored in
/$HOME/ps_output. A cl_get is then issued for the ps_output file returning each of
these to the caller with the node ID appended per the cl_get command. The cl_rm is
then issued to purge the ps_output files from each of the cluster nodes.
SYNOPSIS

 cl_ps –options=ps options [–list=cluster list]
OPTIONS

--options = Put the options you want ps to use here, any option ps reconizes
is fine here

 --list = this is an optional list of clusters
GENERAL

 An example useage of cl_ps is as follows:
 “cl_ps –options=A”

runs ps with the –A options on all nodes. If more than one option is
needed, use --options=ABC for the ABC options.

Without a cluster shutdown command it is very time consuming to log onto each
node and perform an orderly shutdown process. If the direct approach of simply
powering down machines is taken, the penalty will be paid on the subsequent startup
as each machine will then spend time checking its respective file system. Although
most clusters are not frequently shutdown in their entirety, clusters that multi-boot
various operating systems will most definitely benefit from such a command as will
all clusters after updating the operating system kernel. Also, on those rare occasions
where a cluster must be brought down quickly, such as when on auxiliary power due
to a power outage, the cl_shutdown is much appreciated. Thus, the cl_shutdown
was developed to avoid the problem of manually talking to each of the cluster nodes
during a shutdown process. As an added benefit, many motherboards now support
an automatic power down after a halt - resulting in an “issue one command and walk
away” administration for cluster shutdown.
SYNOPSIS
cl_shutdown --options=options -t=time [–list=cluster_list --message=”message to

send”]
OPTIONS

--options = Put the options you want shutdown to use here, any options
shutdown reconizes is fine here

 --list = this is an optional list of clusters, see below for the file format.
 --t = time before shuting down
 --message = message to display on each node

GENERAL
 An example useage of cl_ps is as follows:
 “cl_shutdow –options=h –t=1 –message=”system shutting down””

. Cluster Command & Control (C3) Tools Suite 217

Halts each machine in one minute displaying the given message on each
node.

The cl_kill utility runs the kill command on each of the cluster nodes for a
specified process name. Unlike the kill command, the cl_kill must use process name
as the process ID (PID) will most likely be different on the various cluster nodes.
Root user has the ability to further indicate a specific user in addition to process
name. This enables root to kill a user’s process by name and not affect other
processes with the same name but run by other users. Root may also us signals to
effectively do a broad based kill command.
SYNOPSIS

 cl_kill –signal=signal –process=[list:]process name [--user=username]
OPTIONS

 --signal = use the same format and signals you would normally use with kill
 list: = this is an optional list of clusters
 --process = the name of the process being killed(not the PID or job number)
 --user = the name of the user whose process to kill. this can only be used

by root. ALL specifies all users. This searches /etc/passwd for a
UID.

GENERAL
 An example useage of cl_ps is as follows:
 “cl_kill –signals=9 –process=a.out –user=ALL”
 does a kill –9 (unconditional kill) on all a.outs(--user=all specifies that

all a.outs running on a system be killed, regardless of the user.
The cl_exec is the utility tool of the C3 suite in that it enables the execution of

any command on each cluster node. As such, cl_exec may be considered the cluster
version of rsh. A string passed to cl_exec is executed “as is” on each node. This
provides a great deal of flexability in both the format of command output and
arguments passed in to each instruction.
SYNOPSIS

 cl_exec [OPTIONS] --command="[list:]string"
OPTIONS

 --help = display help message
 --command -c = The string to be passed the each node in the cluster
 -p = print the name of the node before executing the string
 --list -l = file containing a list of nodes to send the string to.

GENERAL
There are two basic ways to call cl_exec:

-to execute a command
“cl_exec -command "mkdir temp"”
 notice the use of the "'s. this allows perl to interpret what is inside the

quotes as a single string.
-to print the machine name and then execute the string

218 Chapter

“cl_exec -p -c "ls -l"”
 this allows the ability to read the output from a command such as ls

and to know which machine the message came from.

4. CONCLUSION

Although clusters are relatively inexpensive to build while providing good
performance in comparison to recent supercomputers, the lack of good
administration and application tools represents a hidden cost to cluster owners and
users. This paper presented a number of command line tools developed as part of the
Oak Ridge National Laboratory’s HighTORC cluster project that are designed to
reduce the cost of cluster ownership. These same tools provide the “backend”
connection to the cluster for our web based GUI tool suite M3C (Monitoring and
Managing Multiple Clusters) [10]. Both the C3 and M3C may be found at
http://www.epm.ornl.gov/torc.

Of the three criteria set forth for our tools at the beginning of this paper – single
machine look and feel, secure, scalable – the one we acknowledge falling short of is
scalability. The current implementation of some of our commands iterate through a
list of nodes on the server side. While we acknowledge this is a problem – we are
very pleased with performance and cost savings resulting from use on our small 64-
node HighTORC cluster. Furthermore, we are presently working on two competing
techniques that are expected to greatly improve the scalability of our tools not only
on large clusters but also on federated clusters and across the computation Grid.

Research sponsored by the Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC
for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725.

Brian Luethke is a participant in the Office of Science, DOE Energy Research
Undergraduate Laboratory Fellowships, Spring 2000.

REFERENCES

[1] The HighTORC system page, http://www.epm.ornl.gov/torc
[2] Rsync system documentation, http://www.rsync.samba.org
[3] Tom’s root boot utility, http://www.toms.net/rb
[4] OpenSSH Specifications, http://www.openssh.com/
[5] ISC Dynamic Host Configuration Protocol, http:// www.isc.org/products/DHCP
[6] Systemimager documentation, http://www.systemimager.org
[7] Ptools project, http://www-unix.mcs.anl.gov/sut/
[8] The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann Publishers,

Inc., San Francisco, 1999.
[9] Rdist home page, http://www.magnicomp.com/rdist

. Cluster Command & Control (C3) Tools Suite 219

[10] M3C Tool, http://www.epm.ornl.gov/~jens/m3ctool

