
Optimization of Ported CFD 
Kernels on Intel Data Center 
GPU Max 1550 Using 
oneAPI ESIMD

Mohammad Zubair

Intel oneAPI Center of Excellence

Old Dominion University

Christoph Bauinger and Xiao Zhu

Intel Corporation

Aaron Walden, Gabriel Nastac, and Eric Nielsen

NASA Langley Research Center



Background and Recent Applications

Background

• FUN3D solves the time-dependent compressible Navier-Stokes

equations in fully implicit form on unstructured grids with thermochemical 

nonequilibrium and assorted turbulence treatments

• Lightweight abstraction over C++ for multi-architecture support using

CUDA / HIP / SYCL (ESIMD)

Retropropulsion for Human-Scale Mars Landers (Summit, Frontier)

• LOX / CH4 rocket engines in Martian CO2 atmosphere:  10-species, 19-reaction 

model (15 PDEs) on meshes of 7B elements; each sim produces ~1 PB of data

• Real-time coupling with ITAR-rated flight mechanics running remotely at NASA

Wall-Modeled LES for High-Lift (Summit, Frontier, NASA)

• Essential for industry goal of Certification by Analysis

Artemis Program (NASA)

• Rapid 911 analysis supporting first launch

• Launch abort plume chemistry

2

Artemis Buffet

Rapid Assessment

Launch Abort

Plume Chemistry

High-Lift Aerodynamics

Mars Reentry CFD Coupled with Flight Mechanics

Game-changing impacts for nationwide user base 

across capacity- and capability-class applications

• Faster turnaround / more sims / higher fidelity

• Dramatic power reductions and space savings 

in the data center



Outline

• Efforts over the past three years have focused on porting CUDA-optimized kernels to Intel 

oneAPI SYCL for use on Intel GPU hardware

• Suboptimal SYCL performance was observed on the new Intel data center GPU, with several 

challenges encountered:

• High register spills

• Memory latency

• Poor vectorization

• Issues were addressed by implementing problematic kernels using Intel oneAPI's Explicit 

SIMD (ESIMD) API 

• Performance comparisons shown for three kernels running SYCL and ESIMD on the Intel 

Data Center GPU versus CUDA-optimized versions running on NVIDIA V100 and A100 GPUs

3



Intel oneAPI / ESIMD

• We typically program a GPU using a programming model such as CUDA or SYCL, 

ignoring the underlying architecture’s “vector” aspects. Vectorization is generally left to 

the compiler. 

• The ESIMD API is part of Intel oneAPI, and enables a programmer to write

explicitly-vectorized kernel code 

• ESIMD offers finer control over the vectorization compared to standard SYCL, which 

relies on the compiler for vectorization

• ESIMD also offers control over register usage, provides APIs for explicit memory load, 

store, and prefetch operations, and simplifies management of divergent branches in 

kernel code

• The main disadvantage of ESIMD versus SYCL is the lack of support for non-Intel 

hardware

4



Kernels Studied Here

Linear Solver

• A linear solver dominated by a block-sparse matrix-vector multiply operation, where 

performance is bound by the main memory bandwidth due to low arithmetic intensity

Matrix Assembly Based on a Hand-Differentiated (HD) van Leer Flux Jacobian

• A hand-differentiated version of a van Leer flux computation used to populate the block-sparse 

flux Jacobian matrix

• A significant amount of intermediate data results in high register pressure on GPU hardware

Matrix Assembly Based on Automatic-Differentiation (AD) for a Roe Flux Jacobian

• An automatic-differentiation version of a Roe flux computation used to populate the

block-sparse flux Jacobian matrix

Notes

• All three kernels have been previously optimized for NVIDIA GPUs and yield performance close to the theoretical peak

• All results shown on Intel GPUs have been performed using a single tile

• Here, the HD and AD linearization approaches are applied to different flux schemes and therefore cannot be compared directly. Such 

work is the focus of a paper to be presented next month at HiPC in Asia. 5



Linear Solver

Optimized CUDA Implementation

• Map a warp to multiply a row block of the block-sparse matrix by the appropriate 

vector elements 

SYCL Implementation

• A straightforward conversion of the optimized CUDA implementation, where a

sub-group of size 32 multiplies a row block of the block-sparse matrix by the 

appropriate vector elements

Observation

• Suboptimal performance of the SYCL implementation

• Motivates development of an ESIMD implementation to improve the performance

6



Linear Solver in CUDA and SYCL

• Assignment of a warp to process a 5 x 5 

block with coalesced memory accesses

• The 25 active threads process a block row 

one block at a time and aggregate partial 

results into a 5 x 5 block

• Columns of the aggregated block are 

reduced using shuffle instructions or shared 

memory (not shown)

• The CUDA implementation of this approach 

achieves a memory bandwidth of 710 GB/s on an 

NVIDIA V100, or 79% of the theoretical peak

• The SYCL implementation of this approach 

achieves a memory bandwidth of 515 GB/s on an 

Intel GPU, or just 31% of the theoretical peak

7



Linear Solver in ESIMD

• Prefetching instructions to hide memory latencies 

are not shown here; see paper

• The ESIMD implementation achieves a memory 

bandwidth of 1095 GB/s on an Intel GPU, or 67% 

of the theoretical peak

Load 16 elements into vector register mv0. 

Note that only 15 elements will be used.

Load 16 elements into vector register mv1. 

Note that only 10 elements will be used.

A partial result consisting of 25 elements is 

held by the two registers qv15 and qv10.

8



Linear Solver Performance Summary

Architecture and 

Implementation

Time

(ms)

Bandwidth

(GB/s)

% of Peak 

Bandwidth

Intel GPU, SYCL 66 515 31%

Intel GPU, ESIMD 31 1095 67%

Intel GPU, Optimized SYCL 34 1017 62%

NVIDIA V100, CUDA 48 710 79%

NVIDIA A100, CUDA 31 1100 71%

NVIDIA A100, CUDA with

L2 residency control
27 1253 81%

• The baseline SYCL implementation was 

improved through the use of prefetching 

intrinsics, manual loop strength reductions, 

and use of unreleased engineering versions 

of the Intel compiler and driver

• However, that implementation is significantly 

more intricate and thus harder to develop 

and maintain, and lacks portability due to 

reliance on Intel GPU-specific prefetching 

intrinsics

9



SYCL Implementation of HD Flux Jacobian

• Initial port of the CUDA-optimized kernel for the hand-differentiated van Leer flux 

performed poorly on the Intel GPU

• Execution time on the Intel GPU was 162 ms compared to 3.6 ms on the 

NVIDIA A100 GPU

• The Intel oneAPI Toolkit release 2023.1 compiler generates register spills for the 

Intel GPU

• We do not observe register spills for NVIDIA V100 / A100 

• By leveraging the large General Register File (GRF) compiler option that trades 

off hardware threads for more registers per thread, performance improved by 

more than a factor of fourteen

10



ESIMD Implementation of HD Flux Jacobian

• We vectorize across edges with a vector size of eight; i.e., a hardware thread 

processes eight edges concurrently

• Care must be taken to avoid race conditions and divergence

• Atomics used to avoid race conditions

• Divergence handled efficiently by creating masks and through use of the 

ESIMD merge API

• To improve ESIMD performance, we also distribute the work inside the main 

loop between two hardware threads, thereby increasing parallelism 

• We assume the eight edges being processed concurrently usually execute the 

same branch of physics based on a local Mach number condition

11



HD Flux Jacobian Performance Summary

Architecture and Implementation
Time

(ms)

Intel GPU, SYCL 161.7

Intel GPU, SYCL with GRF option 11.4

Intel GPU, ESIMD 3.8

NVIDIA V100, CUDA 7.8

NVIDIA A100, CUDA 3.6

12



Automatic Differentiation of Flux Function

Forward mode:  Use of simple dual 

numbers with ten threads per edge

The use of multivariate dual numbers with two threads per edge was found to be most 

efficient. Using multivariate dual numbers of dimension 5, we can compute flux derivatives 

with respect to five QL (QR) variables with one call to the AD version of the flux routine. 

(QL,QR) are conservative variable inputs that are 

converted to primitive variables (qL,qR) by the function 

CtoP.  The flux kernel uses (qL,qR) to compute the flux.

13



SYCL Implementation of AD Flux Jacobian

• A straightforward translation of the optimized CUDA for the AD kernel yields 

SYCL code which performs poorly: 304 ms on Intel GPU vs 7.8 ms on NVIDIA 

V100 GPU

• The main culprit is register spills on the Intel GPU

• By default, the Intel GPU provides 64 32-bit registers per work item for a

sub-group of size 32, or one quarter of that available on the NVIDIA V100 GPU

• Large GRF mode, along with a reduced subgroup size of 16, eliminated the 

register spills and improved the performance to 14.5 ms.

14



AD Flux Jacobian Performance Summary

Architecture and Implementation
Time

(ms)

Intel GPU, SYCL 14.5

Intel GPU, ESIMD 5.6

NVIDIA V100, CUDA 7.7

NVIDIA A100, CUDA 5.0

15



Summary

• Suboptimal performance on the Intel Data Center GPU Max 1550 was mainly due to register spills, memory 

latency, and poor vectorization; addressed by implementing the kernels using oneAPI ESIMD

• Performance close to the theoretical peak can be achieved using oneAPI ESIMD

• Single-tile performance of the Intel GPU using ESIMD is close to that of the NVIDIA A100 GPU

• Intel values this collaboration highly, as it is helping to improve SYCL in terms of both features and tools

• Availability of prefetching, addressing register limitations, improving shuffle instructions, improved SYCL 

code generation (automatic loop strength reductions, minimizing instructions, automatic block loads, etc.)

On any emerging architecture, achieving performance close to the theoretical 

hardware specifications requires careful analysis of the underlying architecture and 

design/implementation of algorithms to map to the hardware

For complex kernels, current high-level tools and programming models often cannot 

deliver this performance, so one may need to explore lower-level approaches

16



Hardware and Acknowledgments

All Intel GPU performance* results presented in this paper were generated on an internal system with an 

Intel® Data Center GPU Max 1550 hosted at Intel. For compilation, we used an unreleased Intel® oneAPI

DPC++/C++ Compiler 2024.0.0 (2024.0.0.20230713).

*Legal Notices and Disclaimers. Performance varies by use, configuration and other factors. Learn more on the Performance Index site www.Intel.com/PerformanceIndex. Performance results are based on testing as of dates shown in configurations 

and may not reflect all publicly available updates. No product or component can be absolutely secure. Your costs and results may vary. Intel technologies may require enabled hardware, software or service activation. ©Intel Corporation. Intel, the Intel 

logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

This effort has been sponsored by the Intel oneAPI Center of Excellence located at Old Dominion University 

and the NASA Transformational Tools and Technologies (TTT) Project of the Transformative Aeronautics 

Concepts Program under the Aeronautics Research Mission Directorate.

We are grateful for the advice and guidance from Pierre Boudier, Geoff Lowney, and Ben Ashbaugh at Intel.

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science 

User Facility supported under contract DE-AC02-06CH11357. We also gratefully acknowledge the computing 

resources provided and operated by the Joint Laboratory for System Evaluation at Argonne National Laboratory. 

This research also used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of 

Science User Facility supported under Contract DE-AC05-00OR22725.

17


