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Sparse Direct Solvers

• Sparse linear system 𝐴𝑥 = 𝑏, solved via factorization 𝐴 = 𝐿 ⋅ 𝑈

• Factorization adds fill-in to sparsity pattern of 𝐴

• Fill-in reducing heuristics like Approximate Minimum Degree (AMD) and Nested Dissection reordering

• Reordered matrix 𝑃𝐴𝑃! has fewer fill-in entries → less storage, faster factorization

• Reordering → Symbolic Factorization → Numerical Factorization → Triangular Solve
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Sparse Factorizations: Symbolic Phase

• General criterion: For non pattern-symmetric 𝐴, 𝐿 + 𝑈 "# is nonzero if and only if there is a path
𝑖 → 𝑘$ → ⋯ → 𝑘% → 𝑗, 𝑘& < min 𝑖, 𝑗  through 𝐴

• Symmetric case: 𝐿'(  nonzero if and only if there is a path 𝑖 → 𝑘$ → ⋯ → 𝑘% → 𝑗, 𝑘& < 𝑗

• 𝐿 has a compact representation through the Elimination Tree 𝑇 (transitive reduction)

• 𝑇 can be computed in almost linear time (size and number of nonzeros of 𝐴)

• Sparsity pattern of row 𝐿'∗ consists of all pairwise paths between 𝐴'∗ through 𝑇
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Symbolic Cholesky: Enumerating Fill-in

Theorem: The entry 𝑙'( in 𝐿 is (symbolically) nonzero if and only if the row subtree of 𝑖 contains 𝑗, i.e. there is a 
nonzero 𝑎'* in 𝐴 such that 𝑗 lies on the path from 𝑘 to 𝑖 in the elimination tree 𝑇

→ we need to identify lowest common ancestors (LCAs) between pairs 𝑘$, 𝑘+ belonging to nonzeros 𝑎'*! , 𝑎'*"
Theorem: In a post-ordered tree 𝑇, the LCA between any pair of nodes 𝑢 < 𝑣 is the first node 𝑤 on the
path from 𝑢 towards the root that fulfills 𝑣 ≤ 𝑤

→ we can limit ourselves to LCA search between consecutive nonzeros of 𝐴 in postorder

Theorem: After postordering the matrix, the ordered lower nonzeros of a row 𝑎'(#, 𝑗$ < ⋯ < 𝑗% = 𝑖 give a path 
decomposition of the row subtree of row 𝑖 via [𝑗* , 𝐿𝐶𝐴(𝑗* , 𝑗*,$)), plus the root 𝑖.
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Symbolic Cholesky: Enumerating Fill-in
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Nonzeros in 𝐴

LCAs between nodes
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Symbolic Cholesky: Algorithmic Framework

• Copy 𝐴 to the CPU (optional)

• CPU: Compute Elimination Tree 𝑇

• CPU: Compute post-ordering of 𝑇

• Copy 𝑇 to the device (optional)

• Device: Reorder rows of 𝐴 with post-order column indices

• Device: Count number of nonzeros for each row

• Device: Allocate memory

• Device: Generate nonzeros for each row

• Device: Sort rows by column index (optional)
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Symbolic Cholesky: Computing the Elimination Tree
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Symbolic Cholesky: Enumerating
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Performance Evaluation: Setup
• Code available in the Ginkgo HPC library        https://github.com/ginkgo-project/ginkgo

• Comparison against symbolic part of CHOLMOD

• Compiled using gcc 11.3.0, CUDA 11.8, ROCM 5.1.1 with –O3 flags

• Inputs: (almost) all pattern-symmetric matrices from SuiteSparse with between 104 and 107 rows/columns

• Benchmarks with input ordering (natural), AMD and Nested Dissection (nd) ordering

• Removed all inputs that overflow 32 bit indices in row pointers

• Validated as correct for small sample of matrices
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NVIDIA AMD 

Intel AMD

CPU Xeon Platinum 8368 EPYC 7543

Sockets 2 2

Cores/Socket 38 32

L3 Cache/Socket 57 MB 256 MB

GPU NVIDIA A100 AMD MI210

VRAM 40 GB 64 GB

Memory BW 1555 GB/s 1600 GB/s

FP32 FLOPS 19.5 TFLOPS/s 22.6 TFLOP/s

natural AMD ND

#matrices 458 579 601

median fill-in 131x 8.5x 7.7x

https://github.com/ginkgo-project/ginkgo
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Performance Evaluation: Results Intel CPU (Speedup)
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Nested Dissection AMD Natural
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Performance Evaluation: Results AMD MI210 (Speedup)
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Nested Dissection AMD Natural
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Performance Evaluation: Results NVIDIA A100 (Speedup)
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Nested Dissection AMD Natural
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Performance Evaluation: Throughput
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A100 MI210 Intel CPU

Sparsity Pattern generation only on Nested Dissection ordering
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Performance Evaluation: Breakdown
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A100 MI210 Intel CPU
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Performance Evaluation: Scaling on Intel CPU
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Future Work in Progress: Near-Symmetric LU

• If we symmetrize via 𝐴-.// = 𝐴 + 𝐴!, then the fill-in of 𝐴 is a subset of the factors 𝐿-.// + 𝐿-.//!  of 𝐴-.//
→ Follow Symbolic Cholesky on 𝐴-.// with ”numerical factorization” with 𝐴 stored inside 0/1 binary 𝐴-.//
→ Result tells us which fill-in entries in 𝐿-.// + 𝐿-.//^𝑇 are actually present in factors 𝐿 + 𝐿!  of 𝐴

• First results (A100 vs. sequential baseline):

• 3.5x speedup for AMD-ordered matrix

• 18x speedup for input-ordered matrix
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Future Work

• Performance optimization of fill-in kernels (faster LCA lookup, parallel path traversal)

• Reduced data movement cost by computing skeleton graph of 𝐴

• Fully on-GPU elimination tree computation

• Fully on-GPU symbolic factorization

• Tuning numerical factorizations
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