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Batch Dense Linear Algebra
• Apply a BLAS/LAPACK operation on a batch of small matrices 

§ Very active research topic since 2015
§ Standardization efforts, vendor support, wide adoption into applications

§ AI/ML, sparse direct solvers, hierarchical matrices, … etc
§ Main advantage → performance over traditional approaches
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• Apply a BLAS/LAPACK operation on a batch of small matrices 
§ Very active research topic since 2015
§ Standardization efforts, vendor support, wide adoption into applications

§ AI/ML, sparse direct solvers, hierarchical matrices, … etc
§ Main advantage → performance over traditional approaches



Goal of This Work
• Direct solve Ax = B, for batches of A’s and B’s

§ A is a band matrix
§ B is a dense matrix of right hand side(s)
§ Not supported by the vendors (e.g. cuBLAS or rocBLAS)

• LU factorization and solve on banded matrices
§ Partial pivoting is used for numerical stability
§ Reusable factors

• Standard Solution
§ No restriction on the dimensions, bandwidths, or #RHS 

• Part of the ECP batch sparse LA effort
§ Combustion simulation, gyrokinetics, plasma fusion, … etc
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LAPACK Convention
• For x = {s, d, c, z}

• xGBTRF: LU factorization of a band matrix with partial pivoting
• xGBTRS: Forward and backward triangular solves given the L/U factors
• xGBSV: Factorize & solve

• E.g., LU Factorization with partial pivoting: P×A = L×U
• SUBROUTINE DGBTRF( m, n, kl, ku, AB, ldab, ipiv, info )
• (m, n, ldab): matrix size and leading dimension
• (kl, ku)    : Lower/upper bandwidths

• AB          : pointer to the matrix
• ipiv        : pivot vector
• info        : return code
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Band Matrix Layout
• LAPACK band storage

• Still column-major, but store non-zeros only (column-wise)
• Needs an extra space in the upper factor due to pivoting (kl × n)
• The L factor is not stored in its “final” form (only right-looking row interchanges)

• L is a product of permutations and unit lower triangular matrices
• Reduces storage by n × (m – [kv + kl + 1]) elements, where kv = kl + ku
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Batch Band LU Design: Fully fused 8

• Why? Optimal memory traffic
• Cache the entire matrix into shared memory or the register file
• Register file is faster, but there are challenges 

• Dense layout is friendly for contiguous access (one thread per row). This is 
not true for band layout.

• Thread ownership for band layout needs to be altered  
• Shared memory blocking

• Unblocked band LU factorization

* * * * * + + + +
* * * * + + + + +
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* *
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Batch Band LU Design: Fully fused 9

• Lower is better
• Smaller shared memory → lower occupancy
• Certain drops in occupancy cause jumps in execution time
• Shared memory becomes a bottleneck for larger sizes
• Fused kernels are not always the best option (despite the optimal memory traffic) 
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Batch Band LU Design: Sliding window 10

• We don’t need to cache the whole matrix
• For a given column j ∈ {0, 1, …, min(m,n)-1}, 

and pivot location jp, 
→ we can calculate the last column index affected by the factorization

• ju = max(ju, min(j+ku+jp, n-1))

• Sliding window kernel
• One thread-block per matrix
• A kernel call factorizes nb columns, and accounts for the largest value of ju
• Need (⌈N/nb⌉) iterations
• Still ideal memory traffic
• Relaxed shared memory requirements 



Batch Band LU Design: Sliding window 11

• A sliding window = factor window + update window
• Factor window

• fixed width = nb (tuning parameter)

• Update window
• maximum width = kv + 1

• Shared memory requirements
• (kv + nb + 1) * (kv + kl + 1) elements
• No longer dependent on N
• Constant regardless of the matrix original size 
• Controllable through nb

Illustration of the sliding window 
kernel
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• The sliding window design covers a wide range of band sizes, but still can run out of 
shared memory

• Fallback design
• Unblocked factorization (GBTF2) implemented 

using memory bound BLAS kernels  
• Not expected to deliver a good performance
• Future plan: use L3 BLAS

• The overall picture
1) If the matrices are very small (up to 32x32), use the fully fused code
2) else if shared memory capacity permits, use the sliding window factorization
3) Else, launch the fallback design

Batch Band LU Design: A Fallback Design
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Figure 4: Illustration of the sliding window technique

of threads assigned to a single matrix. The latter has a minimum
value of (kl+1), but has no upper limit. The choice of the tuning
parameters mainly depends on the lower and upper bandwidths. In
order to cover band sizes of interests to the applications mentioned
in Section 2, we have conducted a benchmark sweep for square
matrices up to 1024, for any kl/ku in the range [0:32]. The results
of the benchmark sweep are then fed to a post-processing phase
that extracts the best tuning parameters for a given band pattern.
Separate test sweeps have been conducted for the H100 GPU and
the AMD MI250x GPU.

5.4 The Complete Picture
The three di�erent designs of the band LU factorization are put
together under the same interface in Section 4. In most cases, the
sliding window approach is selected, since it covers a very wide
range of band sizes regardless of the matrix size. However, for very
small matrices (e.g., up to 64⇥64), the fully fused kernel has a slight
advantage, since it does not have the overhead of shifting the sliding
window in shared memory, which requires extra synchronization
steps. The reference implementation is kept as a safe guard.

Fiure 5 shows the �nal performance results for the band LU
factorization. For most band sizes of interest, a combination of the
fused kernel and the sliding window kernel is used. The advantage
of the sliding window kernel is apparent for larger sizes, maintain-
ing an advantage over the parallel CPU solution. Table 1 shows the
summary of speedups on the H100 and the MI250x GPUs against
the CPU solution. We observe that larger band sizes have a greater
impact on the performance of the AMD GPU, due to the small
capacity of shared memory, which limits the number of resident
factorizations per compute unit.

H100-PCIe GPU MI250x GPU
(kl, ku) min. max. avg. min. max. avg.
(2, 3) 2.13⇥ 3.43⇥ 3.07⇥ 1.67⇥ 2.32⇥ 1.88⇥
(10, 7) 3.07⇥ 4.27⇥ 3.56⇥ 0.96⇥ 2.01⇥ 1.16⇥

Table 1: Minimum and maximum speedups of the batch
band LU factorization against the parallel CPU solution.

Figure 5: Execution time for the �nal band LU factorization
for (kl, ku) = (2, 3) and (10, 7), on a batch of 1,000 matrices
in double precision. Results are shown for an NVIDIAH100-
PCIe GPU using CUDA-12.1, an AMD MI250x GPU (single
GCD) using ROCM-5.5.1, and an Intel Xeon Gold 6140 CPU
(Skylake) using MKL-2023.0.1.

6 BAND TRIANGULAR SOLVE (GBTRS)
We follow a similar approach by �rst providing a reference im-
plementation that proceeds one column at a time. Note that the
upper bandwidth is now equal to (kv = kl+ku). In addition, re-
call that the lower factor L is still stored in kl rows below the
diagonal, but in order to reconstruct its dense form, each column
j2 {0, 1, · · · , N � 1} must undergo a number of row interchanges
de�ned by the pivot entries in the interval [0:j]. However, recover-
ing L in its �nal form is ine�cient due to data movement and the
need for an extra workspace. Instead, we apply the pivot entries
progressively on the RHS matrix, coupled with rank-1 updates. For
each column j2 {0, 1, · · · , N � 1} in the lower factor, two GPU
kernels perform a pair of (row swap, rank-1 updates) operations
on the RHS matrix. For the upper factor, a column-wise backward
triangular solver is developed.

We also develop two blocked versions of the forward/backward
triangular solves. Figure 6 shows a combined view of the two solvers.
Similar to the sliding window factorization, the optimized kernels
perform

⌃ N
nb

⌥
iterations, where at each iteration, nb columns of



Batch Band Triangular Solve 14

• Two designs
1) A reference implementation as a fallback design (column-wise)
2) A blocked version similar to the sliding window technique

ku
kl

kv

fwd slv

bkwd slv

fw
d
sl
v

bk
w
d
sl
v

nb

nb



Overall Picture for Factorization and Solve 15

vGBSV
a) Fused approach (one kernel for factorization & solve)
b) Standard approach

• Factorization
1) Fused
2) Sliding window
3) Ref. implementation

• Triangular solve
1) Blocked
2) Ref. implementation
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Figure 8: Final execution time of the GBSV routine solving for
a single right hand side. Results are shown for batch of 1,000
matrices in double precision on an NVIDIA H100-PCIe GPU
using CUDA-12.1, an AMD MI250x GPU (single GCD) using
ROCM-5.5.1, and an Intel Xeon Gold 6140 CPU (Skylake) us-
ing MKL-2023.0.1.

batch GBTRF/GBSV, we can assume that the memory bandwidth is
the main factor a�ecting the performance on GPUs. However, our
solution on the H100 GPU is up to 1.88⇥ faster than the MI250x
GPU for (kl, ku) = (2, 3), and up to 3.68⇥ for (kl, ku) = (10, 7). These
speedups are much larger than the bandwidth di�erence, which
indicates that another factor plays an important role in the per-
formance gap. We believe that the shared memory capacity is the
critical factor impacting the performance on the MI250x GPU, since
its shared memory is 3.5⇥ smaller than the H100 GPU. Other fac-
tors that could impact the performance include the shared memory
bandwidth and the compiler overhead.

Figure 9 shows sample performance results when solving for
multiple right hand sides (#RHS = 10 in this case). The relative
speedups are shown in Table 3. Our best results remain on the
H100 GPU. However, we observe that the MKL-based solution
su�ers a sharp increase in the execution time that averages around
2.18⇥ for (kl, ku) = (2, 3) and 1.93⇥ for (kl, ku) = (10, 7). In most
cases, however, both GPUs do not experience the same level of
performance drop. On average, the execution time on the H100
GPU has increased by 49% for (kl, ku) = (2, 3), and by 25% for (kl,

H100-PCIe GPU MI250x GPU
(kl, ku) min. max. avg. min. max. avg.
(2, 3) 2.23⇥ 3.58⇥ 2.54⇥ 1.22⇥ 2.58⇥ 1.59⇥
(10, 7) 2.79⇥ 4.65⇥ 3.03⇥ 0.92⇥ 1.66⇥ 1.11⇥

Table 2: Speedup summary of the GPU-accelerated GBSV de-
sign versus the parallel CPU solution. Results are shown for
(kl, ku) = (2, 3) and (10, 7) using a single right hand side.

ku) = (10, 7). On the MI250x GPU, while the average increase in
execution time is 2.19⇥ for (kl, ku) = (2, 3), it was recorded only at
1.33⇥ for (kl, ku) = (10, 7).

Figure 9: Final execution time of the GBSV routine solving for
ten right hand sides. Results are shown for batch of 1,000
matrices in double precision on an NVIDIA H100-PCIe GPU
using CUDA-12.1, an AMD MI250x GPU (single GCD) using
ROCM-5.5.1, and an Intel Xeon Gold 6140 CPU (Skylake) us-
ing MKL-2023.0.1.

8.1 Discussion
According to the description and the performance of the proposed
solver, it is clear that it does not take full advantage of the reg-
ister �le, although it is usually larger than the shared memory
on modern GPUs. This indeed becomes a limiting factor on hard-
ware with relatively small shared memory. As mentioned earlier,

Batch band LU factorization & solve (DGBSV) – RHS = 1, Batch = 1000, 
H100-PCIe GPU (CUDA-12.1), MI250x GPU (ROCM-5.5.1), 

Intel Xeon Gold 6140 CPU (Skylake), MKL-2023.0.1
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Batch band LU factorization & solve (DGBSV) – RHS = 10, Batch = 1000, 
H100-PCIe GPU (CUDA-12.1), MI250x GPU (ROCM-5.5.1), 
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H100-PCIe GPU MI250x GPU
(kl, ku) min. max. avg. min. max. avg.
(2, 3) 3.33⇥ 4.85⇥ 3.69⇥ 1.40⇥ 2.11⇥ 1.57⇥
(10, 7) 4.12⇥ 7.67⇥ 4.64⇥ 1.42⇥ 3.41⇥ 1.61⇥

Table 3: Speedup summary of the GPU-accelerated GBSV de-
sign versus the parallel CPU solution. Results are shown for
(kl, ku) = (2, 3) and (10, 7) using ten right hand sides.

caching the matrix in the register �le would be a non-trivial task,
and would probably require (kl, ku) to be known at compile-time in
order to guarantee e�cient indexing and avoid spilling. However,
it is impractical to compile (KL⇥KU) kernel instances for every pair
(kl2[0:KL-1], ku2[0:KU-1]). For example, if KL = KU = 15, there are
256 kernel instances to compile. Instead, we can use Just-In-Time
(JIT) compiler technology, such as nvrtc and hiprtc to provide
the capability of building a more optimized kernel for a speci�c
band structure. This, however, requires more intervention from
the user, who now has to create/destroy kernel instances based
on the requirement of a given application. This can be a potential
extension for this paper.

9 CONCLUSION AND FUTURE WORK
This paper presented an e�cient use of GPUs to solve a batch of lin-
ear systems that are described using matrices with band structures.
The solver uses a band LU factorization with partial pivoting, and
supports arbitrary problem sizes and bandwidths. To the best of our
knowledge, no similar functionality exists in the vendor’s software
stack, despite the existence of applications that would bene�t from
it. Performance results are shown on both NVIDIA and AMD GPUs,
with reasonable speedups observed against a parallel CPU solu-
tion. Future directions include a more robust tuning framework,
investigating more optimizations through just-in-time compilation
technology, and adding support for non-uniform batches of di�er-
ent sizes and/or di�erent bandwidths.
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Conclusion and Lessons Learned 
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• First try for batch band LU factorization & solve on GPUs
• Supports any size and band structure
• Fully compliant with LAPACK’s specifications

• Chances of parallelism are limited 
• Mostly across the batch
• CPUs are tough competitors

• Shared memory capacity is a bottleneck
• Maybe rethink storage in the register file

• Performance tuning is not straightforward 



Future Work
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• Efficient use of the register file
• Single matrix factorization

• Challenging to rival the CPU performance

• Robust performance tuning
• Support for Intel GPUs 
• Support for different sizes and/or different bandwidths? 

Code is available
• https://bitbucket.org/icl/magma

• Lined up for MAGMA 2.8.0

https://bitbucket.org/icl/magma
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