
GPU-based LU Factorization and Solve on Batches 
of Matrices with Band Structure

Ahmad Abdelfattah, Stan Tomov, Piotr Luszczek, Hartwig Anzt, 
and Jack Dongarra

14th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Heterogeneous Systems
November 13th, 2023



Batch Dense Linear Algebra
• Apply a BLAS/LAPACK operation on a batch of small matrices 

§ Very active research topic since 2015
§ Standardization efforts, vendor support, wide adoption into applications

§ AI/ML, sparse direct solvers, hierarchical matrices, … etc
§ Main advantage → performance over traditional approaches

3



Batch Dense Linear Algebra
4

0

5

10

15

20

25

30

35

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Tfl
op
/s

Matrix size

batch cublas-dgemm
streamed cublas-dgemm

0
50
100
150
200
250
300
350
400
450
500

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

G
flo
p/
s

Matrix size

batch cublas-dgemv
streamed cublas-dgemv

Batch matrix multiply (DGEMM)
batch = 500, H100-PCIe GPU, CUDA-12.1

Batch matrix-vector multiply (DGEMV) 
batch = 500, H100-PCIe GPU, CUDA-12.1

• Apply a BLAS/LAPACK operation on a batch of small matrices 
§ Very active research topic since 2015
§ Standardization efforts, vendor support, wide adoption into applications

§ AI/ML, sparse direct solvers, hierarchical matrices, … etc
§ Main advantage → performance over traditional approaches



Goal of This Work
• Direct solve Ax = B, for batches of A’s and B’s

§ A is a band matrix
§ B is a dense matrix of right hand side(s)
§ Not supported by the vendors (e.g. cuBLAS or rocBLAS)

• LU factorization and solve on banded matrices
§ Partial pivoting is used for numerical stability
§ Reusable factors

• Standard Solution
§ No restriction on the dimensions, bandwidths, or #RHS 

• Part of the ECP batch sparse LA effort
§ Combustion simulation, gyrokinetics, plasma fusion, … etc

5



LAPACK Convention
• For x = {s, d, c, z}

• xGBTRF: LU factorization of a band matrix with partial pivoting
• xGBTRS: Forward and backward triangular solves given the L/U factors
• xGBSV: Factorize & solve

• E.g., LU Factorization with partial pivoting: P×A = L×U
• SUBROUTINE DGBTRF( m, n, kl, ku, AB, ldab, ipiv, info )
• (m, n, ldab): matrix size and leading dimension
• (kl, ku)    : Lower/upper bandwidths

• AB          : pointer to the matrix
• ipiv        : pivot vector
• info        : return code

6



Band Matrix Layout
• LAPACK band storage

• Still column-major, but store non-zeros only (column-wise)
• Needs an extra space in the upper factor due to pivoting (kl × n)
• The L factor is not stored in its “final” form (only right-looking row interchanges)

• L is a product of permutations and unit lower triangular matrices
• Reduces storage by n × (m – [kv + kl + 1]) elements, where kv = kl + ku

7

* * * * * + + + +
* * * * + + + + +
* * *
* *
*

*
* *

dense layout band layout

kl=2, ku=3

m
=
9

n=9

ku

K
v
 
=
 
k
l
 
+
 
k
u

kl

column

row



Batch Band LU Design: Fully fused 8

• Why? Optimal memory traffic
• Cache the entire matrix into shared memory or the register file
• Register file is faster, but there are challenges 

• Dense layout is friendly for contiguous access (one thread per row). This is 
not true for band layout.

• Thread ownership for band layout needs to be altered  
• Shared memory blocking

• Unblocked band LU factorization

* * * * * + + + +
* * * * + + + + +
* * *
* *
*

*
* *

column

row



Batch Band LU Design: Fully fused 9

• Lower is better
• Smaller shared memory → lower occupancy
• Certain drops in occupancy cause jumps in execution time
• Shared memory becomes a bottleneck for larger sizes
• Fused kernels are not always the best option (despite the optimal memory traffic) 

10-1

100

101

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Ti
m
e
(m
s)

Matrix size (M = N), KL = 2, KU = 3

H100 GPU
MI250x GPU
mkl+openmp 10-1

100

101

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Ti
m
e
(m
s)

Matrix size (M = N), KL = 10, KU = 7

H100 GPU
MI250x GPU
mkl+openmp

Batch band LU factorization (DGBTRF) -- Batch = 1000, 
H100-PCIe GPU (CUDA-12.1), MI250x GPU (ROCM-5.5.1), 

Intel Xeon Gold 6140 CPU (Skylake), MKL-2023.0.1



Batch Band LU Design: Sliding window 10

• We don’t need to cache the whole matrix
• For a given column j ∈ {0, 1, …, min(m,n)-1}, 

and pivot location jp, 
→ we can calculate the last column index affected by the factorization

• ju = max(ju, min(j+ku+jp, n-1))

• Sliding window kernel
• One thread-block per matrix
• A kernel call factorizes nb columns, and accounts for the largest value of ju
• Need (⌈N/nb⌉) iterations
• Still ideal memory traffic
• Relaxed shared memory requirements 



Batch Band LU Design: Sliding window 11

• A sliding window = factor window + update window
• Factor window

• fixed width = nb (tuning parameter)

• Update window
• maximum width = kv + 1

• Shared memory requirements
• (kv + nb + 1) * (kv + kl + 1) elements
• No longer dependent on N
• Constant regardless of the matrix original size 
• Controllable through nb

Illustration of the sliding window 
kernel

Fa
ct

or

U
pd

at
e

Fa
ct

or

U
pd

at
e



12

• The sliding window design covers a wide range of band sizes, but still can run out of 
shared memory

• Fallback design
• Unblocked factorization (GBTF2) implemented 

using memory bound BLAS kernels  
• Not expected to deliver a good performance
• Future plan: use L3 BLAS

• The overall picture
1) If the matrices are very small (up to 32x32), use the fully fused code
2) else if shared memory capacity permits, use the sliding window factorization
3) Else, launch the fallback design

Batch Band LU Design: A Fallback Design



Band LU Final Performance 13

0.5

2.0
3.0

0.1

1.0

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Ti
m
e
(m
s)

Matrix size (M = N), KL = 2, KU = 3

H100 GPU
MI250x GPU
mkl+openmp

0.5

2.0

4.0

8.0

0.1

1.0

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Ti
m
e
(m
s)

Matrix size (M = N), KL = 10, KU = 7

H100 GPU
MI250x GPU
mkl+openmp

Batch band LU factorization (DGBTRF) -- Batch = 1000, 
H100-PCIe GPU (CUDA-12.1), MI250x GPU (ROCM-5.5.1), 

Intel Xeon Gold 6140 CPU (Skylake), MKL-2023.0.1

GPU-based LU Factorization and Solve on Batches of Matrices with Band Structure ScalAH’23, November 13, 2023, Denver, CO

Fa
ct
or

U
pd
at
e

Fa
ct
or

U
pd
at
e

Figure 4: Illustration of the sliding window technique

of threads assigned to a single matrix. The latter has a minimum
value of (kl+1), but has no upper limit. The choice of the tuning
parameters mainly depends on the lower and upper bandwidths. In
order to cover band sizes of interests to the applications mentioned
in Section 2, we have conducted a benchmark sweep for square
matrices up to 1024, for any kl/ku in the range [0:32]. The results
of the benchmark sweep are then fed to a post-processing phase
that extracts the best tuning parameters for a given band pattern.
Separate test sweeps have been conducted for the H100 GPU and
the AMD MI250x GPU.

5.4 The Complete Picture
The three di�erent designs of the band LU factorization are put
together under the same interface in Section 4. In most cases, the
sliding window approach is selected, since it covers a very wide
range of band sizes regardless of the matrix size. However, for very
small matrices (e.g., up to 64⇥64), the fully fused kernel has a slight
advantage, since it does not have the overhead of shifting the sliding
window in shared memory, which requires extra synchronization
steps. The reference implementation is kept as a safe guard.

Fiure 5 shows the �nal performance results for the band LU
factorization. For most band sizes of interest, a combination of the
fused kernel and the sliding window kernel is used. The advantage
of the sliding window kernel is apparent for larger sizes, maintain-
ing an advantage over the parallel CPU solution. Table 1 shows the
summary of speedups on the H100 and the MI250x GPUs against
the CPU solution. We observe that larger band sizes have a greater
impact on the performance of the AMD GPU, due to the small
capacity of shared memory, which limits the number of resident
factorizations per compute unit.

H100-PCIe GPU MI250x GPU
(kl, ku) min. max. avg. min. max. avg.
(2, 3) 2.13⇥ 3.43⇥ 3.07⇥ 1.67⇥ 2.32⇥ 1.88⇥
(10, 7) 3.07⇥ 4.27⇥ 3.56⇥ 0.96⇥ 2.01⇥ 1.16⇥

Table 1: Minimum and maximum speedups of the batch
band LU factorization against the parallel CPU solution.

Figure 5: Execution time for the �nal band LU factorization
for (kl, ku) = (2, 3) and (10, 7), on a batch of 1,000 matrices
in double precision. Results are shown for an NVIDIAH100-
PCIe GPU using CUDA-12.1, an AMD MI250x GPU (single
GCD) using ROCM-5.5.1, and an Intel Xeon Gold 6140 CPU
(Skylake) using MKL-2023.0.1.

6 BAND TRIANGULAR SOLVE (GBTRS)
We follow a similar approach by �rst providing a reference im-
plementation that proceeds one column at a time. Note that the
upper bandwidth is now equal to (kv = kl+ku). In addition, re-
call that the lower factor L is still stored in kl rows below the
diagonal, but in order to reconstruct its dense form, each column
j2 {0, 1, · · · , N � 1} must undergo a number of row interchanges
de�ned by the pivot entries in the interval [0:j]. However, recover-
ing L in its �nal form is ine�cient due to data movement and the
need for an extra workspace. Instead, we apply the pivot entries
progressively on the RHS matrix, coupled with rank-1 updates. For
each column j2 {0, 1, · · · , N � 1} in the lower factor, two GPU
kernels perform a pair of (row swap, rank-1 updates) operations
on the RHS matrix. For the upper factor, a column-wise backward
triangular solver is developed.

We also develop two blocked versions of the forward/backward
triangular solves. Figure 6 shows a combined view of the two solvers.
Similar to the sliding window factorization, the optimized kernels
perform

⌃ N
nb

⌥
iterations, where at each iteration, nb columns of



Batch Band Triangular Solve 14

• Two designs
1) A reference implementation as a fallback design (column-wise)
2) A blocked version similar to the sliding window technique

ku
kl

kv

fwd slv

bkwd slv

fw
d
sl
v

bk
w
d
sl
v

nb

nb



Overall Picture for Factorization and Solve 15

vGBSV
a) Fused approach (one kernel for factorization & solve)
b) Standard approach

• Factorization
1) Fused
2) Sliding window
3) Ref. implementation

• Triangular solve
1) Blocked
2) Ref. implementation



Final Performance Results (single RHS) 16

0.50

5.00

0.10

1.00

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Ti
m
e
(m
s)

Matrix size, (KL, KU) = (2, 3), single RHS

mkl + openmp
MI250x GPU
H100 GPU

0.5

5.0

0.1

1.0

10.0

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Ti
m
e
(m
s)

Matrix size, (KL, KU) = (10, 7), single RHS

mkl + openmp
MI250x GPU
H100 GPU

GPU-based LU Factorization and Solve on Batches of Matrices with Band Structure ScalAH’23, November 13, 2023, Denver, CO

Figure 8: Final execution time of the GBSV routine solving for
a single right hand side. Results are shown for batch of 1,000
matrices in double precision on an NVIDIA H100-PCIe GPU
using CUDA-12.1, an AMD MI250x GPU (single GCD) using
ROCM-5.5.1, and an Intel Xeon Gold 6140 CPU (Skylake) us-
ing MKL-2023.0.1.

batch GBTRF/GBSV, we can assume that the memory bandwidth is
the main factor a�ecting the performance on GPUs. However, our
solution on the H100 GPU is up to 1.88⇥ faster than the MI250x
GPU for (kl, ku) = (2, 3), and up to 3.68⇥ for (kl, ku) = (10, 7). These
speedups are much larger than the bandwidth di�erence, which
indicates that another factor plays an important role in the per-
formance gap. We believe that the shared memory capacity is the
critical factor impacting the performance on the MI250x GPU, since
its shared memory is 3.5⇥ smaller than the H100 GPU. Other fac-
tors that could impact the performance include the shared memory
bandwidth and the compiler overhead.

Figure 9 shows sample performance results when solving for
multiple right hand sides (#RHS = 10 in this case). The relative
speedups are shown in Table 3. Our best results remain on the
H100 GPU. However, we observe that the MKL-based solution
su�ers a sharp increase in the execution time that averages around
2.18⇥ for (kl, ku) = (2, 3) and 1.93⇥ for (kl, ku) = (10, 7). In most
cases, however, both GPUs do not experience the same level of
performance drop. On average, the execution time on the H100
GPU has increased by 49% for (kl, ku) = (2, 3), and by 25% for (kl,

H100-PCIe GPU MI250x GPU
(kl, ku) min. max. avg. min. max. avg.
(2, 3) 2.23⇥ 3.58⇥ 2.54⇥ 1.22⇥ 2.58⇥ 1.59⇥
(10, 7) 2.79⇥ 4.65⇥ 3.03⇥ 0.92⇥ 1.66⇥ 1.11⇥

Table 2: Speedup summary of the GPU-accelerated GBSV de-
sign versus the parallel CPU solution. Results are shown for
(kl, ku) = (2, 3) and (10, 7) using a single right hand side.

ku) = (10, 7). On the MI250x GPU, while the average increase in
execution time is 2.19⇥ for (kl, ku) = (2, 3), it was recorded only at
1.33⇥ for (kl, ku) = (10, 7).

Figure 9: Final execution time of the GBSV routine solving for
ten right hand sides. Results are shown for batch of 1,000
matrices in double precision on an NVIDIA H100-PCIe GPU
using CUDA-12.1, an AMD MI250x GPU (single GCD) using
ROCM-5.5.1, and an Intel Xeon Gold 6140 CPU (Skylake) us-
ing MKL-2023.0.1.

8.1 Discussion
According to the description and the performance of the proposed
solver, it is clear that it does not take full advantage of the reg-
ister �le, although it is usually larger than the shared memory
on modern GPUs. This indeed becomes a limiting factor on hard-
ware with relatively small shared memory. As mentioned earlier,

Batch band LU factorization & solve (DGBSV) – RHS = 1, Batch = 1000, 
H100-PCIe GPU (CUDA-12.1), MI250x GPU (ROCM-5.5.1), 

Intel Xeon Gold 6140 CPU (Skylake), MKL-2023.0.1



Final Performance Results (RHS = 10) 17

Batch band LU factorization & solve (DGBSV) – RHS = 10, Batch = 1000, 
H100-PCIe GPU (CUDA-12.1), MI250x GPU (ROCM-5.5.1), 

Intel Xeon Gold 6140 CPU (Skylake), MKL-2023.0.1

0.50

5.00

0.10

1.00

10.00

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Ti
m
e
(m
s)

Matrix size, (KL, KU) = (2, 3), #RHS = 10

mkl + openmp
MI250x GPU
H100 GPU

0.5

5.0

0.1

1.0

10.0

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Ti
m
e
(m
s)

Matrix size, (KL, KU) = (10, 7), #RHS = 10

mkl + openmp
MI250x GPU
H100 GPU

ScalAH’23, November 13, 2023, Denver, CO Abdelfa�ah et al.

H100-PCIe GPU MI250x GPU
(kl, ku) min. max. avg. min. max. avg.
(2, 3) 3.33⇥ 4.85⇥ 3.69⇥ 1.40⇥ 2.11⇥ 1.57⇥
(10, 7) 4.12⇥ 7.67⇥ 4.64⇥ 1.42⇥ 3.41⇥ 1.61⇥

Table 3: Speedup summary of the GPU-accelerated GBSV de-
sign versus the parallel CPU solution. Results are shown for
(kl, ku) = (2, 3) and (10, 7) using ten right hand sides.

caching the matrix in the register �le would be a non-trivial task,
and would probably require (kl, ku) to be known at compile-time in
order to guarantee e�cient indexing and avoid spilling. However,
it is impractical to compile (KL⇥KU) kernel instances for every pair
(kl2[0:KL-1], ku2[0:KU-1]). For example, if KL = KU = 15, there are
256 kernel instances to compile. Instead, we can use Just-In-Time
(JIT) compiler technology, such as nvrtc and hiprtc to provide
the capability of building a more optimized kernel for a speci�c
band structure. This, however, requires more intervention from
the user, who now has to create/destroy kernel instances based
on the requirement of a given application. This can be a potential
extension for this paper.

9 CONCLUSION AND FUTURE WORK
This paper presented an e�cient use of GPUs to solve a batch of lin-
ear systems that are described using matrices with band structures.
The solver uses a band LU factorization with partial pivoting, and
supports arbitrary problem sizes and bandwidths. To the best of our
knowledge, no similar functionality exists in the vendor’s software
stack, despite the existence of applications that would bene�t from
it. Performance results are shown on both NVIDIA and AMD GPUs,
with reasonable speedups observed against a parallel CPU solu-
tion. Future directions include a more robust tuning framework,
investigating more optimizations through just-in-time compilation
technology, and adding support for non-uniform batches of di�er-
ent sizes and/or di�erent bandwidths.

10 ACKNOWLEDGMENTS
This research is supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative e�ort of the U.S. Department of Energy
O�ce of Science and the National Nuclear Security Administration.

REFERENCES
[1] 1980-2023. BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas
[2] 1992-2023. LAPACK - Linear Algebra PACKage. http://www.netlib.org/lapack
[3] Ahmad Abdelfattah, Timothy Costa, Jack Dongarra, Mark Gates, Azzam Haidar,

Sven Hammarling, Nicholas J. Higham, Jakub Kurzak, Piotr Luszczek, Stanimire
Tomov, and Mawussi Zounon. 2021. A Set of Batched Basic Linear Algebra
Subprograms and LAPACK Routines. ACM Trans. Math. Softw. 47, 3, Article 21
(June 2021), 23 pages. https://doi.org/10.1145/3431921

[4] Ahmad Abdelfattah, Pieter Ghysels, Wajih Boukaram, Stanimire Tomov, Xi-
aoye Sherry Li, and Jack J. Dongarra. 2022. Addressing Irregular Patterns of
Matrix Computations on GPUs and Their Impact on Applications Powered by
Sparse Direct Solvers. In SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, Dallas, TX, USA, November 13-18,
2022, Felix Wolf, Sameer Shende, Candace Culhane, Sadaf R. Alam, and Heike
Jagode (Eds.). IEEE, 26:1–26:14. https://doi.org/10.1109/SC41404.2022.00031

[5] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. 2018.
Batched one-sided factorizations of tiny matrices using GPUs: Challenges and
countermeasures. J. Comput. Sci. 26 (2018), 226–236. https://doi.org/10.1016/j.
jocs.2018.01.005

[6] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack J. Dongarra.
2016. Performance, Design, and Autotuning of Batched GEMM for GPUs. In ISC
High Performance 2016, Frankfurt, Germany, June 19-23, 2016, Proceedings. 21–38.
https://doi.org/10.1007/978-3-319-41321-1_2

[7] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack J. Dongarra. 2017.
Factorization and Inversion of a Million Matrices using GPUs: Challenges and
Countermeasures. In International Conference on Computational Science, ICCS
2017, 12-14 June 2017, Zurich, Switzerland. 606–615. https://doi.org/10.1016/j.
procs.2017.05.250

[8] Ahmad Abdelfattah, Stan Tomov, and Jack J. Dongarra. 2022. Batch QR Factoriza-
tion on GPUs: Design, Optimization, and Tuning. In Computational Science - ICCS
2022 - 22nd International Conference, London, UK, June 21-23, 2022, Proceedings,
Part I (Lecture Notes in Computer Science, Vol. 13350), Derek Groen, Clélia de Mu-
latier, Maciej Paszynski, Valeria V. Krzhizhanovskaya, Jack J. Dongarra, and Peter
M. A. Sloot (Eds.). Springer, 60–74. https://doi.org/10.1007/978-3-031-08751-6_5

[9] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. 1998. A Con-
servative Adaptive Projection Method for the Variable Density Incompressible
Navier-Stokes Equations. J. Comp. Phys. 142 (1998), 1–46.

[10] Wajih Halim Boukaram, George Turkiyyah, Hatem Ltaief, and David E. Keyes.
2017. Batched QR and SVD algorithms on GPUs with applications in hierarchical
matrix compression. Parallel Comput. (2017). https://doi.org/10.1016/j.parco.
2017.09.001

[11] Chiang-Heng Chien, Hongyi Fan, Ahmad Abdelfattah, Elias P. Tsigaridas, Stan-
imire Tomov, and Benjamin B. Kimia. 2022. GPU-Based Homotopy Continuation
for Minimal Problems in Computer Vision. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24,
2022. IEEE, 15744–15755. https://doi.org/10.1109/CVPR52688.2022.01531

[12] M. S. Day and J. B. Bell. 2000. Numerical Simulation of Laminar Reacting Flows
with Complex Chemistry. Combust. Theory Model 4, 4 (2000), 535–556.

[13] Azzam Haidar, Tingxing Dong, Piotr Luszczek, Stanimire Tomov, and Jack J.
Dongarra. 2015. Batched matrix computations on hardware accelerators based
on GPUs. Int. J. High Perform. Comput. Appl. 29, 2 (2015), 193–208. https:
//doi.org/10.1177/1094342014567546

[14] Marc T Henry de Frahan, Jon S Rood, Marc S Day, Hariswaran Sitaraman,
Shashank Yellapantula, Bruce A Perry, Ray W Grout, Ann Almgren, Weiqun
Zhang, John B Bell, and Jacqueline H Chen. 2022. PeleC: An adaptive mesh
re�nement solver for compressible reacting �ows. The International Journal
of High Performance Computing Applications OnlineFirst, Open Access (2022),
10943420221121151. https://doi.org/10.1177/10943420221121151

[15] Konstantin Herb and Pol Welter. 2022. Parallel time integration using Batched
BLAS (Basic Linear Algebra Subprograms) routines. Computer Physics Communi-
cations 270 (2022), 108181. https://doi.org/10.1016/j.cpc.2021.108181

[16] IanMasliah, AhmadAbdelfattah, AzzamHaidar, Stanimire Tomov,Marc Baboulin,
Joël Falcou, and Jack J. Dongarra. 2016. High-PerformanceMatrix-MatrixMultipli-
cations of Very Small Matrices. In Euro-Par 2016: Parallel Processing - 22nd Interna-
tional Conference on Parallel and Distributed Computing, Grenoble, France, August
24-26, 2016, Proceedings. 659–671. https://doi.org/10.1007/978-3-319-43659-3_48

[17] A. Nonaka, J. B. Bell, and M. S. Day. 2018. A conservative, thermodynamically
consistent numerical approach for low Mach number combustion. I. Single-level
integration. Combust. Theor. Model. 22, 1 (2018), 156–184.

[18] A. Nonaka, J. B. Bell, M. S. Day, C. Gilet, A. S. Almgren, and M. L. Minion. 2012.
A Deferred Correction Coupling Strategy for Low Mach Number Flow with
Complex Chemistry. Combust. Theory and Model 16, 6 (2012), 1053–1088.

[19] Villa Oreste, Massimiliano Fatica, Nitin A. Gawande, and Antonino Tumeo. 2013.
Power/Performance Trade-o�s of Small Batched LU Based Solvers on GPUs. In
Euro-Par 2013 (Lecture Notes in Computer Science, Vol. 8097). Aachen, Germany,
813–825.

[20] R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutch�eld, W. A. Fiveland,
and J. P. Jessee. 1998. An Adaptive Projection Method for Unsteady, Low-Mach
Number Combustion. Comb. Sci. Tech. 140 (1998), 123–168.

[21] A. Y. Sharma, M. D. J. Cole, T. Görler, Y. Chen, D. R. Hatch, W. Gut-
tenfelder, R. Hager, B. J. Sturdevant, S. Ku, A. Mishchenko, and C. S.
Chang. 2022. Global gyrokinetic study of shaping e�ects on electro-
magnetic modes at NSTX aspect ratio with ad hoc parallel magnetic
perturbation e�ects. Physics of Plasmas 29, 11 (Nov. 2022), 112503.
https://doi.org/10.1063/5.0106925 arXiv:https://pubs.aip.org/aip/pop/article-
pdf/doi/10.1063/5.0106925/16627444/112503_1_online.pdf

[22] Hariswaran Sitaraman, Shashank Yellapantula, Marc T. Henry de Frahan, Bruce
Perry, Jon Rood, RayGrout, andMarc Day. 2021. Adaptivemesh based combustion
simulations of direct fuel injection e�ects in a supersonic cavity �ame-holder.
Combustion and Flame 232 (2021), 111531. https://doi.org/10.1016/j.combust�ame.
2021.111531

[23] Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes Blaschke,
Cy Chan, Marcus Day, Brian Friesen, Kevin Gott, Daniel Graves, Max P. Katz,
Andrew Myers, Tan Nguyen, Andrew Nonaka, Michele Rosso, Samuel Williams,
and Michael Zingale. 2019. AMReX: a framework for block-structured adaptive
mesh re�nement. Journal of Open Source Software 4, 37 (2019), 1370. https:
//doi.org/10.21105/joss.01370 https://github.com/AMReX-Codes/amrex.



Conclusion and Lessons Learned 
18

• First try for batch band LU factorization & solve on GPUs
• Supports any size and band structure
• Fully compliant with LAPACK’s specifications

• Chances of parallelism are limited 
• Mostly across the batch
• CPUs are tough competitors

• Shared memory capacity is a bottleneck
• Maybe rethink storage in the register file

• Performance tuning is not straightforward 



Future Work
19

• Efficient use of the register file
• Single matrix factorization

• Challenging to rival the CPU performance

• Robust performance tuning
• Support for Intel GPUs 
• Support for different sizes and/or different bandwidths? 

Code is available
• https://bitbucket.org/icl/magma

• Lined up for MAGMA 2.8.0

https://bitbucket.org/icl/magma


Thank You

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of
Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering and early
testbed platforms, in support of the nation’s exascale computing imperative.


