GPU-based LU Factorization and Solve on Batches
of Matrices with Band Structure

Ahmad Abdelfattah, Stan Tomov, Piotr Luszczek, Hartwig Anzt,
and Jack Dongarra

14t Workshop on Latest Advances in Scalable Algorithms for Large-Scale Heterogeneous Systems
November 13t 2023

ICL

INNOVATIVE

COMPUTING LABORATORY

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

‘Batch Dense Linear Algebra

* Apply a BLAS/LAPACK operation on a batch of small matrices

= Very active research topic since 2015

» Standardization efforts, vendor support, wide adoption into applications
= Al/ML, sparse direct solvers, hierarchical matrices, ... etc

= Main advantage — performance over traditional approaches

ICL |
INNOVATIVE

COMPUTING LABORATORY

TTTTTTTTTTTTTTTT

it BERaaE

Batch Dense Linear Algebra
* Apply a BLAS/LAPACK operation on a batch of small matrices

= Very active research topic since 2015

» Standardization efforts, vendor support, wide adoption into applications
= Al/ML, sparse direct solvers, hierarchical matrices, ... etc

= Main advantage — performance over traditional approaches

Batch matrix multiply (DGEMM) Batch matrix-vector multiply (DGEMV)
batch = 500, H100-PCle GPU, CUDA-12.1 batch = 500, H100-PCle GPU, CUDA-12.1
35 T T T T T T T T T T 500 T T T T T T T T T T
batch cublas-dgemm - | : : : - ; batch cublas-dgemv - | - : : : :
30 L-lstreamed cublas-dgemm __ —@—=|0, 450 -

INNOVATIVE

COMPUTING LABORATORY

P j : - : : : : : : : : - i - - - _ = THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

L L e " TV o o

Goal of This Work

* Direct solve Ax B, for batches of A's and B's
" A Is a band matrix
* B is a dense matrix of right hand side(s)
= Not supported by the vendors (e.g. cuBLAS or rocBLAS)

LU factorization and solve on banded matrices
= Partial pivoting is used for numerical stability
= Reusable factors

« Standard Solution
= No restriction on the dimensions, bandwidths, or #RHS

» Part of the ECP batch sparse LA effort

= Combustion simulation, gyrokinetics, plasma fusion, ... etc

ICL

TTTTTTTTTTTTTTTT

it BERaaE

LAPACK Convention

« Forx={s, d, c, z}

xGBTRF: LU factorization of a band matrix with partial pivoting
xGBTRS: Forward and backward triangular solves given the L/U factors
xGBSV: Factorize & solve

., LU Factorization with partial pivoting: PxA = LxU

SUBROUTINE DGBTRF(m, n, k1, ku, AB, ldab, ipiv,

(m,
(k1,
AB

ipiv

info

n, ldab):

ku)

matrix size and leading dimension
Lower/upper bandwidths

pointer to the matrix

: pivot vector

return code

info

)

ICL
INNOVATIVE

COMPUTING LABORATORY

T

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Band Matrix Layout 7

« LAPACK band storage
 Still column-maijor, but store non-zeros only (column-wise)
* Needs an extra space in the upper factor due to pivoting (k1 x n)

« The L factor is not stored in its “final” form (only right-looking row interchanges)
» Lis a product of permutations and unit lower triangular matrices

 Reduces storagebyn x (m - [kv + k1 + 1]) elements, where kv = k1 + ku
< n=9
A
(@)
|
] ICI
iRl
\

dense layout band layout

column

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

T

0 0 . T T

Batch Band LU Design: Fully fused &

Why? Optimal memory traffic

Cache the entire matrix into shared memory or the register file

Register file is faster, but there are challenges

« Dense layout is friendly for contiguous access (one thread per row). This is
not true for band layout.

« Thread ownership for band layout needs to be altered

Shared memory blocking
 Unblocked band LU factorization

SN I ICL

&) INNOVATIVE

N\ COMPUTING LABORATORY

| ¥ | ¥| *

X | k| ¥| *| *

THE UNIVERSITY OF

i TENNESSEE

KNOXVILLE

SEEREREEL . SR,
o 0 01

Batch Band LU Design: Fully fused ;

Lower is better

Smaller shared memory — lower occupancy

Certain drops in occupancy cause jumps in execution time

Shared memory becomes a bottleneck for larger sizes
Fused kernels are not always the best option (despite the optimal memory traffic)

Batch band LU factorization (DGBTRF) -- Batch = 1000,
H100-PCle GPU (CUDA-12.1), MI250x GPU (ROCM-5.5.1),
Intel Xeon Gold 6140 CPU (Skylake), MKL-2023.0.1

1TE T JSUSTSOSS eSS v T L) T _
100 : : : : : : 10TE i e S S Ny o000 9O - |

)) =
g g ICl
10 RN O g R) D L N e 0__ III | -
o) o 10
£ £ INNOVATIVE
i: |: COMPUTING LABORATORY
HI00GPU —o— |/ L A - [A100GPU —o— ||
- ; ; ; ; ~ |MI250xGPU —m— g g g g g ~ |MI250xGPU —m— E
10-1 Y/ ST ST RUTR R SRR Do S mkl+openmp —] 10-1 R S S mkl+openmp — |
C i i i i i i I I I 1 C i i i i i i I I I | I THE UNIVERSITY OF
Q (N) (N} (N} (S} (S} (N) (N) (N) (N) (N} Q (N) (N} (N} (S} (S} (N) (N) (N) (N) (N} TENNESSEE
S R S SN S SR S . N S S SN S SR

Matrix size (M =N), KL=2, KU =3 Matrix size (M =N), KL=10, KU =7

Batch Band LU Design: Sliding window .

 We don’t need to cache the whole matrix
« Foragivencolumnje {0, 1, .., min(m,n)-1},
and pivot location jp,

— we can calculate the last column index affected by the factorization
* ju = max(ju, min(j+kut+jp, n-1))

 Sliding window kernel
* One thread-block per matrix
» AKkernel call factorizes nb columns, and accounts for the largest value of ju
* Need (|[N/nb]) iterations
« Still ideal memory traffic iCL
» Relaxed shared memory requirements INNOVATIVE

COMPUTING LABORATORY

T

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Batch Band LU Design: Sliding window o

» A sliding window = factor window + update window

* Factor window
 fixed width = nb (tuning parameter)

« Update window
e maximum width=kv + 1

« Shared memory requirements g
e (kv + nb + 1) * (kv + k1 + 1) elements &
* No longer dependent on N
» Constant regardless of the matrix original size
 Controllable through nb

ICL
INNOVATIVE

COMPUTING LABORATORY

T

THE UNIVERSITY OF

lllustration of the sliding window TENNESSEE
kernel

Batch Band LU Design: A Fallback Design 5

» The sliding window design covers a wide range of band sizes, but still can run out of
shared memory

 Fallback design

» Unblocked factorization (GBTF2) implemented
using memory bound BLAS kernels

» Not expected to deliver a good performance
» Future plan: use L3 BLAS

* The overall picture
1) If the matrices are very small (up to 32x32), use the fully fused code
2) else if shared memory capacity permits, use the sliding window factorization
3) Else, launch the fallback design

ICL

INNOVATIVE

COMPUTING LABORATORY

‘(\ ‘4;'
M B

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Band LU Final Performance

Batch band LU factorization (DGBTRF) -- Batch = 1000,
H100-PCle GPU (CUDA-12.1), MI250x GPU (ROCM-5.5.1),
Intel Xeon Gold 6140 CPU (Skylake), MKL-2023.0.1

8.0¢
OF
2ol L
= @ : - e s
E E o i gt g @i
£ o A - et]
= S /A ol

oqb /... .. [A00GPU —e—|] HI00GPU —o— |
) [- - - - - - M|250X GPU —i— |] - - - - - M|250X GPU —i—

I : : : : : : mkl+openmp —+— |] 01kd EREREE R R R AL R RRRRRRRRRRRRRes SETEEY mkl+openmp _ —+— |-

i i i i i i I I I I i i i i i i I I I I

Q (S} (S} (S} (S} () () () () (S} (S} Q (S} (S} (S} (S} () () () () (S} (S}
CTE&E &S &L ES S CTHE &S &S S S

Matrix size (M =N), KL=2, KU =3 Matrix size (M =N), KL=10, KU =7
H100-PCIe GPU MI250x GPU

(kl, ku) | min. | max. | avg. | min. | max. | avg.
(2, 3) 2.13X | 3.43X | 3.07X | 1.67X | 2.32X | 1.88X
(10, 7) 3.07X | 427X | 3.56X | 0.96X | 2.01X |[1.16X

Jes)

ICL
INNOVATIVE

COMPUTING LABORATORY

T

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Batch Band Triangular Solve .

« Two designs
1) Areference implementation as a fallback design (column-wise)
2) Ablocked version similar to the sliding window technique

ICL
INNOVATIVE

COMPUTING LABORATORY

T

KNOXVILLE

bkwd slv

Overall Picture for Factorization and Solve
<+ GBSV

a) Fused approach (one kernel for factorization & solve)

b) Standard approach

» Factorization
1) Fused
2) Sliding window
3) Ref. implementation

 Triangular solve
1) Blocked
2) Ref. implementation

15 |

ICL

TTTTTTTTTTTTTTTT

it BERaaE

Final Performance Results (single RHS)

Batch band LU factorization & solve (DGBSV) —

RHS = 1, Batch = 1000,

H100-PCle GPU (CUDA-12.1), MI250x GPU (ROCM-5.5.1),
Intel Xeon Gold 6140 CPU (Skylake), MKL-2023.0.1

5.00r S 5 100 S .
5 B.Op S g
2100} T e n e
E | E rop 7 e ;
g %0 o 2 05F
= = s
mkl -+ opeﬁmp —-— mkl -"‘ opeﬁmp +
0.10F ST IMI250x GPU —— |- 0.1 S R S ~|MI250x GPU —— |3
by HIGRL S S S S T S S = | o
Q) N QD N N} Q N QD Q N} Q QD N QD N N} QD Q QD N N}
R A I - SAS R A R - SAS -
Matrix size, (KL, KU) = (2, 3), single RHS Matrix size, (KL, KU) = (10, 7), single RHS
H100-PCle GPU MI250x GPU
(kl, ku) | min. | max. | avg. | min. | max. | avg.
(2, 3) 2.23X | 3.58X | 2.54X | 1.22X | 2.58X | 1.59X
(10,7) | 2.79% | 4.65% | 3.03x | 0.92%x | 1.66X | 1.11X

16

ICL
INNOVATIVE

COMPUTING LABORATORY

T

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Final Performance Results (RHS = 10)

10.00 | : : f ol : : : : _
>0 % aoe 1 sof e |
2 12 |
o 100F iy g 10
£ 050 z o 1 £ os RRRE |
mkI -+ opeﬁmp + mkI -+ opeﬁmp +
040 i ERPERTERYRRRERY St | MI250X GPU —o— | 01k i EEPR SERTIRNY L[MI250x GPU —o—
f ; || lioeRy e ;. ;¢ jleweeRy e
Q (N (N (N (N (N (N (N Q (N (N (N N (N (N (N (N N (N
S €S &L ES S CEHES LS ELS S S

Matrix size, (KL, KU) = (2, 3), #RHS = 10 Matrix size, (KL, KU) = (10, 7), #RHS =10

Batch band LU factorization & solve (DGBSV) — RHS = 10, Batch = 1000,

H100-PCle GPU (CUDA-12.1), MI250x GPU (ROCM-5.5.1),

Intel Xeon Gold 6140 CPU (Skylake), MKL-2023.0.1

H100-PCle GPU MI250x GPU
(kl, ku) | min. | max. | avg. | min. | max. | avg.
(2, 3) 3.33X | 4.85X | 3.69%X | 140X | 2.11X | 1.57X
(10,7) | 412X | 7.67x | 4.64x | 1.42x | 3.41x | 1.61X

i i

ICL
INNOVATIVE

COMPUTING LABORATORY

T

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Conclusion and Lessons Learned
First try for batch band LU factorization & solve on GPUs

» Supports any size and band structure
» Fully compliant with LAPACK'’s specifications

Chances of parallelism are limited
» Mostly across the batch
« CPUs are tough competitors

Shared memory capacity is a bottleneck
» Maybe rethink storage in the register file

Performance tuning is not straightforward

18 |

ICL
INNOVATIVE

COMPUTING LABORATORY

T

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Future Work

Efficient use of the register file

Single matrix factorization
« Challenging to rival the CPU performance

Robust performance tuning
Support for Intel GPUs
Support for different sizes and/or different bandwidths?

Code is available

* https://bitbucket.org/icl/magma

 Lined up for MAGMA 2.8.0

19

ICL |
INNOVATIVE

COMPUTING LABORATORY

T

THE UNIVERSITY

TENNESSEE

KNOXVILLE

https://bitbucket.org/icl/magma

Thank You
ICI

R TENNESSEE

KNOXVILLE

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of
Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for the planning and

preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering and early
testbed platforms, in support of the nation’s exascale computing imperative.

