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Pegasus Workflow Management System

Workflow Challenges

Across Domains

Describe complex workflows in a
simple way

Access distributed,
heterogeneous data and
resources (heterogeneous
interfaces)

Deals with resources/software
that change over time

Ease of use. Ability to monitor
and debug large workflows

» Separation between workflow
description and workflow execution

» Workflow planning and scheduling
(scalability, performance)

» Task execution (monitoring, fault
tolerance, debugging, web
dashboard)

» Workflow optimization,
restructuring for performance and
fault tolerance.




Pegasus Workflow Management System est. 2001

Automates the execution of scientific workflows across national CI
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Heterogeneous Environments

Data Management

Pegasus can execute workflows in
a variety of distributed computing
environments such as HPC
clusters, Amazon EC2, Google registration by adding them

Cloud, Open Science Grid or as auxiliary jobs to the
ACCESS workflow

asr

Pegasus handles data
transfers, input data
selection and output

Collaboration with I-"COH
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Provenance Tracking Error Recovery

Pegasus allows users to
trace the history of a
workflow and its outputs,

Pegasus handles errors by
retrying tasks, workflow-
level checkpointing, re-
including information mapping and alternative

about data sources and data sources for data

software used staging

This work is funded by NSF, award # 1664162




1. Resource-independent Specification

Input Workflow Specification yamL formatted directed-acyclic graphs  Output Workflow

Portable Description
Users do not worry about low level execution details /7

Stage-in Job

Transfers the workflow input data

= Logical Filename (LFN) Q
o platform independent (abstraction) g
—l
= S
a4 >
S @
= = m
- / —
c&) Cleanup Job (@)
(o' Removes unused data )
- Transformation _Ix_l
8 Executables (or programs) -
< platform independent Stage-out Job ~ @)

Stage-out generated output data E

Registration Job ~
Registers the workflow output data
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Pegasus: Support Science over Generations of CI

Nobel
Prize

Working with LIGO (Laser-Interferometer Gravitational Wave Observatory) — w_

0
Tima [seconcs)
_Signal st LIGO Livingston Observatory

Multi-messenger
neutron star merger
observation

First Pegasus Blind injection detection First detection of black
prototype hole collision

Image credit: LIGO Scientific Collaboration



2. Submit locally, run globally

Pegasus o
4

Pegasus Lite Input Data Site
4 Pegasus Pegasus planner (mapper) +  Fin
dependencies and reliability

Instance
WMS ==  DAGMan workflow engine +
T1
T2
HTCondor is used as a m

HTCondor scheduler/broker
broker to interface with .

.©
different schedulers % nad .H’ _H’ F.out
= =

4 Planning converts an abstract workflow R
into a concrete, executable workflow

F.in

Pegasus maps workflows to
target infrastructure (1 or
more resources)

DAGMan manages

Compute Site n

Pegasus Lite
Instance

Output Data Site

T—wn T wn [ i i
\_ Staging Site
- F.int

Planner is like a compiler LEGEND
Optimized performance
. Task flow + Direct Dat Check P Lit
PrOV|deS faUIt t0|erance R Ciicksi}Nms Sg&cp%r(})/b . Staageout Job . Int:grity Job @ ngr}r?sgtse j(fb
____________________________________________________________ Data Directory Checksum Worker Node
»  Data Flow Stagein Job . Cleanup Job ‘ Generation Job g’ (WN)

gscb 4 Can leverage distributed and heterogeneous Cl
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Cutting-edge Science: Southern California Earthquake Center

Broadband CyberShake workflow

1 parallel task

y
i
N

\ Velocity Mesh

Low-frequency CyberShake workflow

Graves & Pitarka
kinematic rupture

generator
600,000;- events
Uniform California
Earthquake Rupture
Forecast 1.5TB output
UCVM AWP-ODC-SGT Low-frequency
—>| wave propagation |7 SZ':r"'t‘I‘:gsr?sm

1 paralle] task
2 parallel tasks P el

0-1 Hz low-frequency
seismograms

High-frequency
seismogram |—> Né%rg‘i ié:‘lld
synthesis (BBP)

e ————

1-50 Hz seismograms RotD50, PGA, PGV

> 0-50 Hz broadband
data products

e

45

B85

Aggregate

Intensit
: data products

measures

l 77,000 tasks l

USC, KK D, QOIV5.5.2, AP O0C SGT G, VIS4, 26 M0} with
aver

|
st

]

- e 0.0 OTZ 0.4 0.6 0.8 1.0
RotD50, PGA, PGV ] e s o ]

Hazard Curve

Hazard Map

Slide Courtesy of Scott Callaghan, USC




CyvberShake Computational Requirements

CvberShake Stage Number of Tasks Node-Hours Output Data
Velocity mesh creation (parallel) 1 10 CPU 300 GB
Wave propagation (parallel) 2 80 GPU 1500 GB
Low-frequency seismogram synthesis (parallel) 1 1000 CPU 38 GB
High-frequency seismogram synthesis (serial) 77,000 1000 CPU 187 GB
Total, 1 site (including small jobs) 77,020 2090 2025 GB
Total, full region 25.8 million 700,000 680 TB

 Large computational and data requirements
« Mix of large parallel CPU and GPU jobs with HTC

« High degree of automation required to support continuous execution

Slide Courtesy of Scott Callaghan, USC



3. Flexible Data Staging Configurations

Pegasus

HTCondor I/0 (HTCondor pools, 0SG, ...

Worker nodes do not share a file system data transfers
Data is pulled from / pushed to the submit host via /
HTCondor file transfers o 1'% ——]
. . . . ompute site
Staging site is the submit host P e _—
1 Input data site
Shared File System N f:} - —
(HPC sites AéCESS Campus clusters, ...) A NS
' - Camp Zal" O O O J=
Data staging site
I/0 is directly against the shared file system s {:} »
A i, -
Non-shared File System (clouds, 0SG, ...) \ S ——
submit host Qutput data
Worker nodes do not share a file system (e.g., user's laptop) S

Data is pulled / pushed from a staging site,
possibly not co-located with the computation

USC
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Edge-2-Cloud Applications

CASA: Collaborative and Adaptive Sensing of the Atmosphere

e Has deployed a network of short-range Doppler radars
e Compute and data repositories at the edge, close to the radars

e Use on demand cloud resources to scale up their computations http://www.casa.umass.edu/
F —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_—
|
|
: l
: I Runs at
| theEdge
l
| radar 1 netcdf| radar 2. netcdf| radar_N. netcdf I
l
I I Object
- _B Intermediate File v
@ Output File

@ Compute Job

(clow e | \. % i

Output data site

Typical cloud computing deployment
(Amazon S3, Google Storage)

Submit Host

This work is funded by NSF, award #2018074



http://www.casa.umass.edu/

4. Flexible Data movement Pegasus-transfer 7ie)

Pegasus’internal data transfer tool with support for a number of different protocols

(® Directory creation, file removal HTTP
If protocol can support it, also used for cleanup SCP
----------------------------------------------------------------------------------- GridFTP
(®  Two stage transfers Globus Online
e.g., GridFTP to S3 = GridFTP to local file, local file to S3 iRods
----------------------------------------------------------------------------------- Amazon S3
(® Parallel transfers Google Storage
----------------------------------------------------------------------------------- Y
(®  Automatic retries FDT
----------------------------------------------------------------------------------- Stashcp
(®  Credential management Rucio

Uses the appropriate credential for each site and each protocol
(even 3rd party transfers)

USC
Viterbi
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Pegasus Workflow Applications 25)

'PC@QS(AS

Automating the work of one scientist

» Need to perform a large amount of analysis on large-scale
data sets

» Automatically adapt to the dynamic resources
Ariella Gladstein, Ph.D.
Student » Need to have a record of how data was produced

University of Arizona

By Facility

WallHoursSpenOnjobsByFacility
450 K

40 Execution sites
12 Million jobs across 342 Workflows

HOW DID HUMANS SPREAD ACROSS THE
WO R L D ’ (Nielsen etal. 2017,

~ 7.3 Million Core Hours
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WHAT DEMOGRAPHIC EVENTS LEAD US TO WHERE 2017-5 2017-6 2017-7 2017-8 2017-9 2017-10 2017-11 2017-12 20181 20182 20183 20184 20185
WE ARE TODAY AND THE DIVERSITY WE SEE? .
— SU-OG-CE ~ SU-OG-CE1 — MWT2-COREOS == UCR-HEP == UCSDT2 == GLOW = UColorado_HEP == BNL-ATLAS == USCMS-FNAL-WC1 = SPRACE == Hyak == Nebraska == GPGrid
— AGLT2 = CIT.CMS_T2 = OSG_US_WSU_GRID ~ Comet - OSG-Connect — MWT2 — NUMEP_CE = UCD = MIT_CMS — cinvestav = OSG_US_NDSU_CCAST_CLUSTER2

. . . . . = NWICG_NDCMS = uprm-cms == BU_ATLAS Tier2 == Sandhills == Tusker == Crane == FIU_HPCOSG_CE == UMisSHEP == GLUEX_US_FSU_HNPGRID ~ UTA_SWT2 = GridUNESP_CENTRAL
Image credit: Gladstein , Gr aph credit: Open Science Grid ( OSG) = SU-ITS-CE2 == SU-ITS-CE3 == j5-104-39 jetstream-cloud.org == IIT_CE2 == IIT_CE1

Sciences Institute




5. “Up and down" integrations with diverse Cl, common
languages, and Portal/GUI interfaces

[72]

s Science Gateways and (= .. g

¢ @ python” " jupyter hubzero Portals “ 3
5 ¢ (open 3
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Cloudware OpenStack HTCondor / GRAM
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Campus Clusters Middleware E‘
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= Amazon EC2 & AWS Batch Local Clusters PBS SLURM LSF SCE g
g Compute Google Cloud | RackSpace c ¢ Contai -
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Processing instrument data in real time

Real-time ‘ Semi-automatic Processing:
Feedback pre-processing: CryoSPARC
Motion Correction RELION
CTF Estimation EMAN2
Cryo-EM Discovery/Endeavor
GPU HPC Cluster

iAutomatic
¢ Data i
Transfer!
- - ! s
Thermofisher CARC
Data Data
Workstation Server

| e D D
E 10 PB Project Filesystem
E USC CARC HPC Facility

Cryo-EM Imaging Facility

User Interaction with the Cryo-EM Web Portal

I

Processing on GPU Cluster
Pegasus WMS

Explicit workflow construction

USC
Viterbi
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Workflow Planning: challenges and Solutions for 455
Improving Performance and Robustness

PE9asus

Distributed execution environment

* Design custom workflow engines and utilize the right tools for job
submission and data management

Workflow tasks can be small
* Increase the tasks’ computational granularity through task clustering

Workflows can be large
* Reduce the number of tasks through workflow partitioning

Overcome system and network overheads in executing applications
remotely

* Provision resources and/or send more work at any one time

Data need to be moved to the computation
» Discover data and stage it across heterogeneous systems

Computations need to be moved to the data (performance/privacy)
« Make smart decisions, explore benefits/drawbacks



Workflow Execution 15
Challenges and Solutions for Fault Tolerance

 Computations fail within a workflow

e Automatically checkpoint the workflow, automate
restart

m
Pa
m
)
C
=
o
4

* Resources fail

,(Automatically retr)clj, or replan: try other Sesources 5
computing sites, data storage systems

 Services fail (data movement, data registration)

* Retry the action, choose a different service e m
* Run out of resources/Storage gets filled up
 Anal zde ther\]/vorkflck)%/lv and clean up data no longer D e
needed as the workflow execution progresses m —

registration

* Data gets corrupted
usc » Detect corruption/retry transfer

Viterbi
School of Lagineering
Infermation




Users’ Experiences and Expectations

Users are often not exposed to complex programming
Users are not exposed to command-line interfaces
Users have uneven access to Cl (even networks)

Expect easy to use, intuitive interfaces
* Graphical, conversational, common behavior

Expect robust systems that are fault tolerant and
adaptable

Want quick response time and/or good information

Current cyberinfrastructure (Cl) is very complex,
heterogeneous, and fragmented

Even simple tasks (remote job submission, monitoring,
debugging) are difficult (2-factor authentication) James Webb Telescope Image

Limited support for long-running services and dynamic
resource management 17




Means

Reaeration Reach (500 m)

Wadeable Stream
: Biology and Morphology Reach (1 km)
i c Sediment Reach (500 m)
1 .

Legend
O Sensor Station
. Water Chemistry Sampling

€= Groundwater Well

. Riparian Assessment

m Meteorological Station Courtesy of NEON

[ : .
» Reaeration Drip
/\ Rearation Sampling
School of Lagineering
Information
S Anstitute

)
45

* More Data and Data Sources

* Small and cheap sensor devices

* Sophisticated instruments (CryoEM
~7TB per experiment)

* Large-scale data archives: LHC, NASA,
(Rubin will produce 20TB/night)

* Faster Networks
* 100Gbps, ESnet6 > 400 Gbps

* Access to more computing
* (0SG's OSPool can reach 70,000 cores in
a single day, 75M jobs/year (spanning 50
campuses and organizations)

* (QLCF's Frontier reached exascale in
2022

18



Create a Pegasus WMS Python workflow generator for a workflow that has 3 steps, first step
What can divides the input data file into 10 pieces, the second step takes each file and does and fft on

d it, and the final step collects the results.
bette r? Pegasus is a workflow management system that allows users to design workflows in abstract

terms and execute them efficiently and reliably on complex computing resources. Writing a

workflow to divide a file into 10 pieces, apply Fast Fourier Transform (FFT) to each piece, and

then collect the results can be done by defining tasks and dependencies between themin a

workflow.
: Here's an example of how you might set up this workflow using Pegasus WMS with Python:
Cl 1. Step 1: Divide the input data file into 10 pieces.

2. Step 2: Perform an FFT on each piece.
3. Step 3: Collect the results.

ChatGPT
for
WOI'kﬂOW [j Copy code

Meatlon pip install Pegasus-wms
Viterbi

School of Lagincering
Infarmation

First, ensure you have the necessary dependencies installed, including Pegasus:




# Create the workflow
wf = Workflow( )

# Create the input file

input_file = File( )

# Step 1: Divide the input data file into 10 pieces
oput_files_stepl ™[]
for i in range(10):
output_file = Filef )
autout fileso¥cpl.append(output_file)
job_split = Job(split_filel)
.add_args(input_file, i, )\
.add_inputs(input_file)\
.add_outputs(output_file)
wf.add_jobs(job_split)

# Step 2: Perform FFT on each piece
output_files_step2 = []
for i, input_file in enumerate(output_files_stepl):
output_file = File( )
output_files_step2.append(output_file)
job_fft = Job(fft_transform)\
.add_args(input_file)\
.add_inputs(input_file)\
.add_outputs(output_file)
wf.add_jobs(job_fft)

You would need to have corresponding scripts “split_file.py’, "£ft_transform.py", and

“collect_results.py " to carry out the splitting, FFT, and collection processes respectively.

Make sure to customize the paths to the transformation scripts and modify the
transformations to suit your specific requirements. The above example sets up the structure

of the workflow, but the details of each task would depend on the specific operations you
want to perform on the da # Define the number of pieces
# Change this to the desired value

# Step 1: Divide the input data file into n pieces

output_files_stepl = []

for i in range(n):
output_file = File( )
output_files_stepl.append(output_file)
job_split = Job(split_file)\
.add_args(input_file, i, n)\

Magic number
You can ask
ChatGPT to fix

.add_inputs(input_file)\

.add_outputs(output_file)
wf.add_jobs(job_split)

(rest of the code remains the same)




ChatGPT for workflow creation

A
N\
‘Pegasus
[aw] [ o]  [om] [ [meew]  [aw]  [erm] [an] [ @ ChatGP1
fit-0.txt ml\ fit-2.txt I fit- ‘nxt | fit-4.txt | fft-5.txt fit-6.txt fit-7.txt fft-8.txt fft-9.txt
result.txt input.txt
part-0.txt part-1.txt part-2.txt part-3.txt part-4.txt part-5.txt part-6.txt part-7.txt part-8.txt part-9.txt
fit-0.txt fit-1.txt fit-2.txt fit-3.txt fit-4.txt fit-5.txt fit-6.txt fit-7.txt fft-8.txt fit-9.txt
Karan Vahi, M.S.
SENIOR COMPUTER SCIENTIST
I\%l%CCI;bl result.txt
schnfpl of Lngmeening
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What can we do better? Can we use ML to make our systems @
“smarter”/more autonomous

PoSeiDon
= Anomaly detection
= Anomaly/error classification and attribution
= Predictive models of performance USER
= Better workflow adaptation based on failures and anomalies
= Challenges:
= Collect enough (quality data, richness, balanced class representation)

= Enough labeled data, need to augment data

= Structure (normalize, scale, transform) the data in a way that is amenable to the
application of current techniques (or develop new ones)

= Select the appropriate ML algorithms or architectures
DL hyperparameter optimization (learning rate, #epochs, hidden layers, activations functions..)
USC

Viterbi This work is funded by ~ ZSRR
P DOE under grant #DE-  BE

https://pegasus.isi.edu SC0022328




* Data processing: process
simulated anomalies on workflows,
parse logs as
« Tabular (features as columns)

* Image (Gantt charts)
* Graph (nodes as jobs, edges as dep.)
e Text (sentences describing jobs)

* Build base models:; supervised /
unsupervised learning to identify the
anomalies by deep learning

e Analytics: improve the ,
performance, quantify uncertainty,
provide explanation, étc.

USC Viterbie

School of Engineering

Analysis

Base models

Parsed data

Logs

Clouds

\ %gﬁnﬂ%{ggg http://poseidon-workflows.org

2. U.S. DEPARTMENT OF

'ENERGY

Krawczuk et al. Jin et al. Jin et al. Und
PEARC’21 WORKS’22 Review
UHPCS’23
PoSeiDon Managed Workflows ’

Papadimitriou et al. CORR’23

Chameleon Cloud / NRECA / etc.

Fig. Anomaly Detection Framework

© PoSeiDon



Identifying anomalies and their causes

Gantt Charts: normal execution and different anomalies:

Work by P ja K Kk
hard drive load, network packet loss ork by Patrycja Krawczu

and George Papadimitriou
o

normal_1000genome-20200616T174351Z-run0044.png hdd_50_1000genome-20200610T041238Z-run0006.png loss_0.5_1000genome-20200520T031010Z-
run0017.png

I ready_delay wms_delay B queue_delay B runtime Il post_script_delay Bl finished

https://pegasus.isi.edu 90% accuracy on the workflows we trained on




Robust Execution: Anomaly Detection and
Classification using Graph Neural Networks (GNN)  oseioor

H,;
‘\V ly ‘\{% \,\// ﬁ -
Readout Yy
y H;
g =(A,X) GCN layers Hidden emb. MLP layers

Figure: Graph neural networks architecture

Input: directed acyclic graphs (DAGSs) represent normal and anomaly workflows

Output: the normal/anomaly labels for workflow-level (entire graph) and job-level (single node)

Our GNN models achieved 25% improvement accuracy over conventional methods for anomaly detection.
We achieve 2-4 times faster training time when compared with conventional machine learning models.
Developing explainable Al methods to explain anomalies in the workflow performance.

This work is funded by  4ZEd,

DOE under grant #DE- §|
http://poseidon-workflows.org SC0022328 >

USC Viterbi

School of Engineering




Graph Neural Networks - performance

Available
workflows

Single model for

<

-

Work flow Binary _ Multi-label
Accuracy Fl1 Recall Precision Accuracy

1000 Genome 0917 £ .014 00915+ .019 0.921 £.009 0.938 + .010 | 0.882 £ .006

Nowcast w/ clustering 8 0.768 £ .009 0.715 4+ .017 0.778 £ .023 0.768 £ .15 | 0.792 £ .009

Nowcast w/ clustering 16
Wind w/ clustering casa
Wind w/o clustering casa

1000 Genome (partial anomaly)

0.837 £+ .012

0.776 L .002
0.781 £ .02
1.000 £ .0

0.675 £ .020

002 o= 0052

0.853 £+ .013
1.000 £ .0

0.815 £+ .012

0.769 1+ .021

0.800 £ .012
1.000 £ .0

0.837 + .011

0.776 + .017

0.781 4 .008
1.000 £ .0

0.830 £ .007

0.764 + .19

0.886 4 .007
1.000 £ .0

S ofiowe < _ALL 0.836 4 .006 0.878 + .013 0.886 -+ .011 0.856 +.009 | 0.877 + .008
Figure: Graph-level classification
Model Acc. Recall Prec. Fl _
SVM 0.622 0622 0.667 0.550 SVM: Support vector machines (SVMs)
MLP 0.874 0.874 0875 0.874 MLP: Multilayer perceptron with
RF 0.898 0.898 0.908 0.887 hidden layers (128, 128, 128)
T, 0010 0014 0010 00910 RF: Random forest with maximum depth set to 3.
Gantt Chart VGG-16 0.900 0.900 0.900 0.900 (AlexNet,...) Gaptt Chart: computer vision inspired
ResNet-18 | 0.910 0916 0910 0.910 DNN by generating Gantt charts from node
Our GNN | 0.917 0.921 0.939 0.915 features.

USC Viterbi

School of Engineering

N
rencl Arg%ﬂﬂﬁ$

Figure: Model comparison

S,
|
rrrrrrr

BERKELEY LAB

http://poseidon-workflows.org

@ PoSeiDon
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Methods are changing

More Al-based methods are being
used to analyze and synthesize data,
chose solutions, etc..

LLM used to generate codes:
ChatGPT, Google Copilot

More black boxes in the methods—
not only Al, lots of software available
for reuse and repurposing

Viterbi
School of Lagineering
Infermation

Growing emphasis

_—"" on validation

l

Growing need for Automation

« Meta-analysis: Need be be able to

easily re-run the same analysis with
different data and parameters
(potentially a large number of
times)

 Easily replicate our own work
 Easily reproduce others’ finding

27



Conclusions

The world is changing around us (quickly)
« Users’ experiences and expectations

« Means and methods are growing more complex
and less tractable

We need to expand more effort to support
accessible, robust and open science (reusability,
scalability, reproducibility, trustworthiness)

Workflow and resource management systems and
other ClI should continue to increase the level of
automation, component reuse, and ease of use

We need to explore how we can better
systematize system development to support CI
component reuse and development and improve
user experience.

http://pegasus.isi.edu
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