Two-stage Asynchronous Iterative Solvers for multi-GPU Clusters

Pratik Nayak
pratik.nayak@kit.edu

Terry Cojean
terry.cojean@kit.edu

Hartwig Anzt
hartwig.anzt@kit.edu

Steinbuch Center for Computing,
Karlsruhe Institute for Technology

12th November, 2020
Objectives

1 Our objectives:

- To Study two-stage asynchronous iterative algorithms for Exascale.
- In particular, study multi-GPU, multi-node problems.
- And provide a framework to test these algorithms for a wide variety of problems and architectures.
Motivation
Begin of the Accelerator era

42 Years of Microprocessor Trend Data

- Transistors (thousands)
- Single-Thread Performance (SpecINT x 10^3)
- Frequency (MHz)
- Typical Power (Watts)
- Number of Logical Cores

Year: 1970 to 2020

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten.
New plot and data collected for 2010-2017 by K. Rupp

Figure: Computing trends
Current and future computing trends

<table>
<thead>
<tr>
<th>Rank</th>
<th>System</th>
<th>Cores</th>
<th>Rmax (TFlop/s)</th>
<th>Rpeak (TFlop/s)</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science, Japan</td>
<td>7,299,072</td>
<td>415,530.0</td>
<td>513,854.7</td>
<td>28,335</td>
</tr>
<tr>
<td>2</td>
<td>Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory, United States</td>
<td>2,414,592</td>
<td>148,600.0</td>
<td>200,794.9</td>
<td>10,096</td>
</tr>
<tr>
<td>3</td>
<td>Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL, United States</td>
<td>1,572,480</td>
<td>94,640.0</td>
<td>125,712.0</td>
<td>7,438</td>
</tr>
</tbody>
</table>

Figure: Top 3 of the top 500

1. **Frontier:** AMD Epyc CPUs + AMD Instinct GPUs (\approx1.5 EF, by 2021, First Exascale system)
2. **El Capitan:** AMD Epyc CPUs + AMD Instinct GPUs (\approx2 EF, by 2023)
3. **Aurora:** Intel Xeon + Intel Xe GPUs (2021-2022)
4. **Leonardo (EuroHPC):** Intel CPU + NVIDIA A100 GPUs (\approx200 PF)
5. **LUMI (EuroHPC):** AMD Epyc CPUs + AMD Instinct GPUs (\approx550 PF, by Q4 2021)
Synchronous v/s Asynchronous models

1. Bulk synchronous model of parallel execution (Most algorithms today).
 - A known task graph.
 - Needs regular synchronization between processes.
 - Not feasible for large number of processes.
Synchronous v/s Asynchronous models

1. Bulk synchronous model of parallel execution (Most algorithms today).
 - A known task graph.
 - Needs regular synchronization between processes.
 - Not feasible for large number of processes.

2. Asynchronous model of execution (Where algorithms need to be).
 - Ideally, no synchronization.
 - Feasible and possibly necessary for large number of processes.
 - Possibly unknown task graph.
Synchronous v/s Asynchronous models

1. Bulk synchronous model of parallel execution (Most algorithms today).
 - A known task graph.
 - Needs regular synchronization between processes.
 - Not feasible for large number of processes.

2. Asynchronous model of execution (Where algorithms need to be).
 - Ideally, no synchronization.
 - Feasible and possibly necessary for large number of processes.
 - Possibly unknown task graph.

 - Regular synchronization (relaxed) between processes.
 - Might work for large number of processes.
 - Partially known task graph.
Background
Problem Formulation.

Problem:

\[\mathcal{L}x = f \text{ in } \Omega; \quad \mathcal{B}x = g \text{ on } \partial \Omega \]

Linear system:

\[Ax = f \]
Schwarz methods

1. Initially used to prove convergence of the Poisson problem for general domains (Schwarz, 1870). Alternating method. Slow convergence.

2. Solve each subset (subdomain) independently and communicate between each "iteration".

Source: ddm.org
Restricted Additive Schwarz methods

An improvement of the parallel version of the Schwarz method for faster convergence.

Group unknowns into subsets:

\[x_j = \tilde{R}_j x, \quad j = 1, \ldots, N \]

\(\tilde{R}_j \) is the rectangular Restriction matrices which corresponds to a non-overlapping decomposition.

Used widely as a preconditioner:

\[M_{RAS}^{-1} = \sum_{j=1}^{N} \tilde{R}_j^T A_j^{-1} R_j \]

Source: Schematic inspired by Yamazaki et.al, 2019, doi: 10.1016/j.parco.2019.05.004
Restricted Additive Schwarz methods

RAS:

\[x_p^{k+1} = x_p^k + \sum_{j}^{N} \tilde{R}_p (R_j f - (R_j A R_j^T)^{-1} R_j x_k) \]

Advantages:

1. Saves communication compared to Additive Schwarz.
2. Reduced subdomain update count compared to Additive Schwarz.
3. Collision free parallel implementation, free from weightings.

Asynchronous iterative methods

Asynchronous iteration:

\[
\begin{align*}
 x^{(s)}(0) &= x_0^{(s)} \\
 x^{(s)}(n + 1) &= \begin{cases}
 \mathcal{R}^{(s)} \left(x^{(1)}(\tau_1^{(s)}(n)), \ldots, x^{(p)}(\tau_p^{(s)}(n)) \right) & \text{if } s \in \sigma(n) \\
 x^{(s)}(n) & \text{if } s \notin \sigma(n)
 \end{cases}
\end{align*}
\]

where, \(s = 1, \ldots, p \) and \(p \) is the number of subdomains.

\(\tau_j^{(s)}(n) \) is the delay function that represents the subdomain update number of the data from subdomain \(j \) available at \(s \) at subdomain update number \(n \).

\(\sigma(n) \) is the set of subdomains which update at subdomain update number \(n \).

Source: Magoules, et.al, doi: 10.1007/s00211-017-0872-z
Necessary conditions for convergence

Necessary conditions (not necessarily sufficient):

1. \(\forall s, j \in 1, ..., p, \forall n \in \mathbb{N}^*, \tau_j^n(s) \leq n \) (2)

 States that the delay function cannot return future iterations.

2. \(\forall s \in 1, ..., p, \#\{n \in \mathbb{N} \mid s \in \sigma(n)\} = +\infty \) (3)

 States that no subdomain can stop updating its neighbors.

3. \(\forall s, j \in 1, ..., p, \lim_{n \to \infty} \tau_j^n(s) = +\infty \) (4)

 States that new data will eventually always be provided to the subdomain.

Source: Magoules, et.al, doi: 10.1007/s00211-017-0872-z
Implementation and Experimentation
Motivation	Background	Implementation and Experimentation	Results	Outlook

The RAS iterative solver.

Algorithm 1 RAS Iterative solver

1. procedure **ITERATIVE SOLUTION**\((A, x, b)\)
2. procedure **INITIALIZATION**
3. \(\text{Partition matrix} \quad \triangleright \text{objective based}\)
4. Distribute data
5. Initialize data
6. procedure **SOLVE**
7. while \((\text{subd_update_count} < \text{max_subd_update_count} \text{ or until convergence})\) do
8. \(\text{Locally solve the matrix} \quad \triangleright \text{Iterative / direct}\)
9. Exchange boundary information
10. Update boundary information
11. **Check for Convergence** \(\triangleright \text{Decentralized}\)
12. Gather the final solution vector and post-processing
Motivation Background Implementation and Experimentation Results Outlook

Experimentation Parameters

1. Everything implemented with Ginkgo.
2. Experiments performed on Summit, ORNL.
 - 6 GPU’s per node, NVIDIA Tesla V100’s.
3. RDMA communication with MPI-onesided functions (IBM Spectrum MPI with CUDA Aware).
4. Partitioning with METIS.
5. Global convergence detection is decentralized (leader election based) (Bahi et.al, 2005).
6. Test problems:
 - 3D Laplacian problem with 2nd order basis functions (deal.ii, example 6) (PCG)
 - 2D Advection problem with 5th order basis functions (deal.ii, example 9) (PGMRES)

Source: Bahi et.al, doi: 10.1109/TPDS.2005.2
Experimentation Parameters

1. Global relative residual reduction goal: 1e-12
2. Local subdomain iteration count varies from 30 to default (def, a local relative residual reduction goal of 1e-6)
3. Experiments run on up to 36 GPUs.
4. We compute final true residual norm ($\|r\|_2 = \|b - Ax\|_2$) to verify correctness along with comparing the solutions by visualization (for a token problem size)
System configuration: Summit, ORNL

Source: Kahle et.al, doi: 10.1109/ISSCC.2019.8662426
Results
Comparison with local direct solver - Time per subdomain update

1. Communication time similar between direct and iterative solvers.
2. Local solve time is significantly lesser.
3. Advection problem (with preconditioned GMRES) is harder to solve.
Controlling the local iteration criterion - Synchronous

1. Optimal local iteration count depends on problem size.
2. Number of subdomain updates decreases with increasing local max-iter counts.
3. Local solver cost increases with increasing local max-iter counts.

(a) Laplacian problem

(b) Advection problem
Preconditioner effects and comparisons with synchronous

1. Asynchronous is better than synchronous in almost all cases.
2. Block-jacobi preconditioner seems to be the most efficient.
3. ILU(0) seems to be too expensive compared to its effectiveness.

(a) Laplacian problem

(b) Advection problem
Outlook
Summary

- Asynchronous methods can improve the overall time to solution.
- Two stage methods can be efficient, particularly in conjunction with asynchronous communication.
- Balancing local max-iteration count and global subdomain update count is essential with multi-stage methods.

Future Work

- Estimating error and convergence bounds for these multi-stage asynchronous methods.
- Extension to multi-level Schwarz methods.