Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Randomiz	ed Sketching for	Large-Scale Sparse	Ridge Regression	
	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	Drohlomo		
		Froblems		

Chander lyer ¹ Christopher Carothers ¹ Petros Drineas ²

¹Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY ²Department of Computer Science, Purdue University, West Lafayette, IN

Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems November 13, 2016

.

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Outline				

- Introduction.
 - "Big Data" in real time.
 - Randomization : An HPC perspective.
- Sparse least squares regression.
 - Regularized least squares solvers : exact v/s randomized.
 - Blendenpik : A randomized iterative least squares solver.
- Implementing Blendenpik on the Blue Gene/Q.
 - Distributed Blendenpik for large-scale sparse matrices.
 - Batchwise Blendenpik.
- Evaluation and Results.
 - Datasets.
 - Scalability analysis.
 - Performance analysis.
 - Numerical stability analysis.
- Summary and Future work.

- E - E

Introduction

イロト イポト イヨト イヨト

"Big Data" in real time (Arjun Shankar, SOS17 Conference)

Social Medium	Data generation rate
	400M / day
f	Images : 30B / month
	Mails : 419B / day
	Videos : 76PB / year

Table : Social Media data generation rate

	Sensor	Data generation rate
🏄 🕫 🏀 📷	Ion mobility spectroscopy	10TB / day
🔊 . E	Boeing Flight recorder	240TB / trip
A 5 1	Astrophysics Data	10PB / year
	Square kilometer telescope array	480 PB / day

Table : Sensor data generation rate

Introduction Blendenpik BGQImplementation Evaluation Future Work

Randomization : An HPC perspective

Numerical Algorithms and Libraries at Exascale, Dongarra et. al., 2015, HPCwire

- "... one of the most interesting developments in HPC math libraries is taking place at the intersection of numerical linear algebra and data analytics, where a new class of randomized algorithms is emerging...".
- "... powerful tools for solving both least squares and low-rank approximation problems, which are ubiquitous in large-scale data analytics and scientific computing."
- "these algorithms are playing a major role in the processing of the information that has previously lain fallow, or even been discarded, because meaningful analysis of it was simply infeasible-this is the so called 'Dark Data phenomenon'."

Randomized Algorithms (random sampling / random projections)

- Can be scaled with relative ease(!) compared to traditional solvers to modern HPC architectures.
- Numerically robust due to implicit regularization.

-

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト ・

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Least squares	solvers			

Regularized least squares Regression

 $y^* = \arg \min \|y\|_2$ subject to $y \in \arg \min \|Ax - b\|_2^2 + \lambda \|x\|_2^2$ where

 $A \in \mathbb{R}^{m \times n}$; $\mathbf{nnz}(A) \approx m * n$; $m \gg n$; $x \in \mathbb{R}^n$.

Traditional ridge regression solvers are based on the solving in the dual space or using kernelized ridge regression that runs in $O(mn^2)$.

Randomized least squares solvers(Existing approaches)

• Sample rows after preprocessing *A*. Then apply QR on the sampled matrix. *Drineas, Mahoney, Muthukrishnan & Sarlós, Numer. Math., 2011*

 Construct a preconditioner from A. Then iteratively solve the preconditioned matrix. Rokhlin & Tygert, PNAS, 2008

Blendenpik(Avron, Maymounkov & Toledo, SISC, 2010)

- Combines both approaches that runs in $O(mn \log m)$ time.
- Preprocess *A* by applying a unitary transform. Then sample rows from this transform and apply QR to construct a preconditioner. Then iteratively solve the preconditioned matrix to construct an approximate solution.

Introduction Blendenpik BGQImplementation Evaluation Future Work The *Blendenpik* algorithm **Input:** $A' \in \mathbb{R}^{(m+n) \times n}$ matrix, where $A' = \begin{pmatrix} A \\ \lambda I \end{pmatrix}$ $m \gg n$ and rank (A) = n. $b' \in \mathbb{R}^{m+n}$ vector where $b' = \begin{pmatrix} b \\ 0 \end{pmatrix}$. $F \in \mathbb{R}^{(m+n) \times (m+n)}$ random unitary transform matrix. regularization parameter $\lambda > 0$ $\gamma (\geq 1)$ - Sampling factor. **Output:** $\hat{x} =$ Solution of min_x $||Ax - b||_2$. while Output not returned do M = FA'Let $S \in \mathbb{R}^{(m+n) \times (m+n)}$ be a random diagonal matrix: random unitary transformation $S_{ii} = \begin{cases} 1 & \text{with probability } \frac{\gamma n}{m+n} \\ 0 & \text{with probability } 1 - \frac{\gamma n}{m+n} \end{cases}$ $M_{\epsilon} = SM$ Sampling $M_s = Q_s R_s$ Thin QR preconditioning $\hat{\kappa} = \kappa_{\text{estimate}}(R_s)$ if $\hat{\kappa}^{-1} > 5\epsilon_{\text{maching, then}}$ $y = \min_{z} \|A' R_s^{-1} z - b'\|_2$ Preconditioned iterative solve Solve $R_{\epsilon}\hat{x} = v$ return \hat{x} else if # iterations > 3 then solve using Baseline Least squares and return end if イロト 不同ト イヨト イヨト

Introduction Blendenpik BGQImplementation Evaluation Future Work
Distributed Blendenpik for large-scale sparse matrices

- The sparse unitary transformation is implemented using the Randomized Sparsity Preserving Transform (RSPT) proposed by Clarkson and Woordruff (runs in O(nnz(A)) time) and a combination of RSPT and 1-D routines of Discrete Cosine Transform(DCT) of the FFTW library.
- Distributed Blendenpik is implemented on top of Elemental. Elemental partitions the input matrices into rectangular process grids in a 2D cyclic distribution. The 2D input distribution format is locally non-contiguous, while the 1-D unitary transform needs locally contiguous columns on the input matrix. This redistribution is done by an MPI_AlltoAll collective operation.

Challenges

- **Memory Constraints:** The number of elements in a column is limited by the RAM available to the process assigned to that column. Also, a process may share the buffer with several columns at once.
- MPI Framework Constraints: The number of elements that can be redistributed in a collective operation is limited upto INT_MAX(2³¹ - 1).

イロト イポト イヨト イヨト

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Batchwise Ble	ndenpik			

Solution Batchwise redistribution and transformation.

3.1 3

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work

Datasets

Matrix Name	# of rows	# of columns	<pre># of entries (Millions)</pre>	Condition num- ber
ns3Da—8	163, 312	20, 414	16.77	7.07E + 002
mesh deform-4	936, 092	9, 393	12.2	1.17E + 003
memplus-32	568, 256	17, 758	13.26	1.29E + 005
sls-1	1, 748, 122	62, 729	116.462	8.67E + 007
rma10-8	374, 680	46,835	36.18	7.98E + 010
c-41-32	312, 608	9,769	6.3	4.78E + 012

Table : Matrices used in our evaluations.

æ

・ロト ・聞ト ・ヨト ・ヨト

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Evaluation metrics	5			
$h \to h/ - m(t)$	$(n+n) \times n$	(m+n)		• •

Let $A' \in \mathbb{R}^{(m+n) \times n}$ be the input matrix, $b' \in \mathbb{R}^{(m+n)}$ be the right hand side vector and let:

 $\hat{x} \longleftarrow$ the min-norm solution obtained from batchwise Blendenpik

 $x^* \longleftarrow$ the exact solution

 $\hat{r} \longleftarrow$ the residual error, defined as $b' - A'\hat{x}$.

- $\hat{t}_{run} \longleftarrow$ running time of Blendenpik.
- $t_{run}^{*} \leftarrow running time of baseline (Elemental).$

We evaluate the Blendenpik algorithm using the following metrics.

Speedup : given by $\frac{t_{run}^*}{\hat{t}_{run}}$. **Accuracy :** defined in terms of the relative error for the min-norm solution \hat{x} given by $\frac{||A'\hat{x} - A'x^*||_2}{||A'x^*||_2}$ and the backward error given by $||A'^T\hat{r}||_2$.

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー わなび

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work

< □ > < 同 >

A B M A B M

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Speedup analysis fo	or ill-conditioned mat	rices for increasing regula	rization values.	

< A >

∃ ► < ∃ ►</p>

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Relative Error	as a function of λ .			

Randomized Sketching for Large-Scale Sparse Ridge Regression Problems

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work

Strong Scaling as a function of increasing Blue Gene/Q nodes at optimal regularization value λ^* .

э

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work

Speedup as a function of increasing oversampling factors at optimal regularization value λ^* .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work

Relative Error as a function of increasing oversampling factors at optimal regularization value λ^* .

< □ > < 同 >

∃ ► < ∃ ►</p>

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Backward Error a λ*	s a function of i	ncreasing oversampling facto	ors at optimal regula	rization value

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Summary				

- The speedup achieved by RSPT is always better than the RSPT-RDCT transform for two reasons. First, the Blendenpik algorithm spends reasonable time to compute the RDCT transform. Second, the RSPT produces a better preconditioner than the RSPT-RDCT transform that leads to faster convergence of the LSQR stage.
- As the regularization values increase, the speedup increases until it peaks for a certain regularization value and then reduces again for all matrices with the exception of the rma10-8 matrix.
- The relative error decreases with increasing values of the regularization parameter until it achieves the smallest relative error at $\lambda = \lambda^*$ chosen as the optimal regularizer for our evaluations. As the condition numbers of the matrices increase, λ^* for each matrix also increases.
- The sparse randomized transforms demonstrate significant strong scaling for all matrices at λ^* with the exception of the rma10-8 matrix.
- The Blendenpik solver demonstrates excellent speedup and numerical stability in terms of the relative error at λ* for increasing oversampling factors. The backward error is somewhat worse yet comparable to the backward error achieved by the baseline sparse Elemental solver at λ*.

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Future Work				

- Sparse QR preconditioning The most inhibitive stage of the Blendenpik algorithm is the dense QR preconditioning stage which for a sketched matrix $M_s \in \mathbb{R}^{\gamma n \times n}$ runs in $O(n^3)$ time. For sparse approximately-square matrices applying a sparse random transform results in a sparse sketch which makes a dense QR preconditioner an unsuitable choice. In such a scenario, Sparse QR based on multifrontal QR factorization is a suitable choice for this stage due to its $O(n^2)$ runtime.
- **Restarted LSQR** A common problem with certain matrices that have heavy-tailed singular spectra is that even though the preconditioner constructed in well-conditioned, the LSQR stage for such matrices converge extremely slowly leading to stagnancy. One way to resolve stagnancy is using a Restarted LSQR solver similar to the Bidiagonal Block Lanczos approach in Algorithm.
- **Ridge Regression variants** Another key improvement for the sparse ridge-regression problem that we envision is extending the Blendenpik algorithm framework to include other ridge-regression variants like dual ridge regression and kernel ridge regression.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work

Thank you !!!

Randomized Sketching for Large-Scale Sparse Ridge Regression Problems

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト