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Introduction

“Big Data” in real time (Arjun Shankar, SOS17 Conference)

Social Medium | Data generation ra

te

400M / day

n Images : 30B / month

Lk Mails : 419B / day

I Videos : 76PB / year

Table : Social Media data generation rate

Sensor Data generation rate
lon mobility spectroscopy 10TB / day

Boeing Flight recorder 240TB / trip
Astrophysics Data 10PB / year

Square kilometer telescope array | 480 PB / day

Table : Sensor data generation rate
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Randomization : An HPC perspective

Numerical Algorithms and Libraries at Exascale, Dongarra et. al.,2015 HPCwire

9 “...one of the most interesting developments in HPC math libraries is
taking place at the intersection of numerical linear algebra and data
analytics, where a new class of randomized algorithms is emerging. ..".

@ “...powerful tools for solving both least squares and low-rank
approximation problems, which are ubiquitous in large-scale data analytics
and scientific computing.”

9 “these algorithms are playing a major role in the processing of the
information that has previously lain fallow, or even been discarded,
because meaningful analysis of it was simply infeasible-this is the so called

'Dark Data phenomenon’.

Randomized Algorithms (random sampling / random projections)

@ Can be scaled with relative ease(!) compared to traditional solvers to
modern HPC architectures.

@ Numerically robust due to implicit regularization.
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Blendenpik

Least squares solvers

Regularized least squares Regression
y* = argmin||y||> subject to y € argmin||Ax — b||3 4+ A||x||3 where
AcR™", nnz(A)x~mxn, m>n, xecR"

Traditional ridge regression solvers are based on the solving in the dual space
or using kernelized ridge regression that runs in O(mn?).

Randomized least squares solvers(Existing approaches)

@ Sample rows after preprocessing A. Then apply QR on the sampled matrix.
Drineas, Mahoney, Muthukrishnan & Sarlés, Numer. Math., 2011

@ Construct a preconditioner from A. Then iteratively solve the
preconditioned matrix.
Rokhlin & Tygert, PNAS, 2008

Blendenpik(Avron, Maymounkov & Toledo, SISC, 2010)

@ Combines both approaches that runs in O(mnlog m) time.

@ Preprocess A by applying a unitary transform. Then sample rows from this
transform and apply QR to construct a preconditioner. Then iteratively
solve the preconditioned matrix to construct an approximate solution.
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Blendenpik

The Blendenpik algorithm

Input: A’ € RU™™X" matrix,  where A’ = (ﬂ) m > n and rank (A) = n.

b’ € R™" vector where b’ = (8)

F € RmnX(m+n) random unitary transform matrix.
regularization parameter A > 0 v(> 1) - Sampling factor.
Output: % = Solution of miny||Ax — b||2.

S = 1 with probability —X m+n
! 0 with probability 1 —

Ms = SMm Sampling i

Py = mlnz||A R Preconditioned iterative solve }
Solve RX =y H
i return %
else

if # iterations > 3 then
solve using Baseline Least squares and return
end if
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BGQImplementation

Distributed Blendenpik for large-scale sparse matrices

@ The sparse unitary transformation is implemented using the Randomized
Sparsity Preserving Transform (RSPT) proposed by Clarkson and
Woordruff (runs in O(nnz(A)) time) and a combination of RSPT and 1-D
routines of Discrete Cosine Transform(DCT) of the FFTW library.

@ Distributed Blendenpik is implemented on top of Elemental. Elemental
partitions the input matrices into rectangular process grids in a 2D cyclic
distribution. The 2D input distribution format is locally non-contiguous,
while the 1-D unitary transform needs locally contiguous columns on the
input matrix. This redistribution is done by an MPI_A11toAll collective
operation.

Challenges

@ Memory Constraints: The number of elements in a column is limited by
the RAM available to the process assigned to that column. Also, a process
may share the buffer with several columns at once.

@ MPI Framework Constraints: The number of elements that can be
redistributed in a collective operation is limited upto INT MAX(2*' — 1).
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BGQImplementation

Batchwise Blendenpik

Solution Batchwise redistribution and transformation.
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Evaluation

Datasets

Matrix Name # of rows # of columns # of entries Condition num-
‘ ‘ (Millions) ber

ns3Da—8 163, 312 20, 414 16.77 7.07E + 002
mesh deform—4 936, 092 9,393 12.2 1.17E + 003
memplus—32 568, 256 17,758 13.26 1.29E + 005
sls—1 1,748,122 62, 729 116.462 8.67E + 007
rmal0—8 374, 680 46, 835 36.18 7.98E + 010
c-41—32 312, 608 9, 769 6.3 4.78E + 012

Table : Matrices used in our evaluations.

.
=
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Evaluation

Evaluation metrics

Let A" € R™MX" be the input matrix, b € R{™*" be the right hand side
vector and let:
X +— the min-norm solution obtained from batchwise Blendenpik
x* <— the exact solution
? +— the residual error, defined as b’ — A'%.
t.un <— running time of Blendenpik.
te, <— running time of baseline (Elemental).

run

We evaluate the Blendenpik algorithm using the following metrics.

Speedup : given by .

run

Accuracy : defined in terms of the relative error for the min-norm solution
JA’% — A'x*||2

A2 and the backward error given by

X given by

IAT?]l2.

Randomized Sketching for Large-Scale Sparse Ridge Regression Problems



Evaluation

Speedup analysis for well-conditioned matrices for increasing regularization values.

Speedup
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Evaluation

Speedup analysis for ill-conditioned matrices for increasing regularization values.
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Evaluation

Relative Error as a function of A\
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Evaluation

Backward Error as a function of A\
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Evaluation

Strong Scaling as a function of increasing Blue Gene/Q nodes at optimal regularization value \*.
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Evaluation

Speedup as a function of increasing oversampling factors at optimal regularization value A*.
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Evaluation

Relative Error as a function of increasing oversampling factors at optimal regularization value A*.
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Evaluation

Backward Error as a function of increasing oversampling factors at optimal regularization value

Backward Error

Rando
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Evaluation

Summary

@ The speedup achieved by RSPT is always better than the RSPT-RDCT
transform for two reasons. First, the Blendenpik algorithm spends
reasonable time to compute the RDCT transform. Second, the RSPT
produces a better preconditioner than the RSPT-RDCT transform that
leads to faster convergence of the LSQR stage.

@ As the regularization values increase, the speedup increases until it peaks
for a certain regularization value and then reduces again for all matrices
with the exception of the rmal10-8 matrix.

@ The relative error decreases with increasing values of the regularization
parameter until it achieves the smallest relative error at A = \* chosen as
the optimal regularizer for our evaluations. As the condition numbers of
the matrices increase, \* for each matrix also increases.

@ The sparse randomized transforms demonstrate significant strong scaling
for all matrices at \* with the exception of the rma10-8 matrix.

@ The Blendenpik solver demonstrates excellent speedup and numerical
stability in terms of the relative error at A\* for increasing oversampling
factors. The backward error is somewhat worse yet comparable to the
backward error achieved by the baseline sparse Elemental solver at A*.
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Future Work

Future Work

@ Sparse QR preconditioning The most inhibitive stage of the Blendenpik
algorithm is the dense QR preconditioning stage which for a sketched
matrix Ms € R?™*" runs in O(n®) time. For sparse approximately-square
matrices applying a sparse random transform results in a sparse sketch
which makes a dense QR preconditioner an unsuitable choice. In such a
scenario, Sparse QR based on multifrontal QR factorization is a suitable
choice for this stage due to its O(n?) runtime.

@ Restarted LSQR A common problem with certain matrices that have
heavy-tailed singular spectra is that even though the preconditioner
constructed in well-conditioned, the LSQR stage for such matrices
converge extremely slowly leading to stagnancy. One way to resolve
stagnancy is using a Restarted LSQR solver similar to the Bidiagonal
Block Lanczos approach in Algorithm.

@ Ridge Regression variants Another key improvement for the sparse
ridge-regression problem that we envision is extending the Blendenpik
algorithm framework to include other ridge-regression variants like dual
ridge regression and kernel ridge regression.
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Future Work

Thank you !!!

Randomized Sketching for Large-Scale Sparse Ridge Regression Probl

21/21



	Introduction
	Dense least squares Regression
	Blue Gene/Q Implementation
	Evaluation and Results
	Future Work

