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Preconditioner application involves solving triangular systems ,                  .
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Ly = z Ux = y

S(A = LU) for some sparsity pattern S
S = spy(A)

S = Rn⇥n exact fact.

ILU(0){Compute factorization    
Goal: Find solution to sparse linear problem                                    . 

Ax = b, A 2 Rn⇥n

Incomplete Sparse Approximate Inverse (ISAI) Preconditioner

Incomplete factorizations attractive for preconditioning iterative solvers.
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ILU(0){Compute factorization    
Goal: Find solution to sparse linear problem                                    . 

Ax = b, A 2 Rn⇥n

Incomplete Sparse Approximate Inverse (ISAI) Preconditioner

• Exact triangular solves

• Inherently sequential, level scheduling often provides little parallelism.
• Replace with approximate triangular solve

• Relaxation steps like (Block) Jacobi iterations.

• Incomplete Sparse Approximate Inverse (ISAI)1:  
for some sparsity pattern      , e.g.    S⇤ S⇤ = spy(A)

Incomplete factorizations attractive for preconditioning iterative solvers.

1Huckle, Anzt, Dongarra “Parallel Preconditioning”. In: SIAM PP 2016.

S⇤ = spy(A2)
S⇤ = spy(A3)

ISAI(1)
ISAI(2)
ISAI(3)

(L ·ML = I)S⇤

S⇤ = JAC(4)
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for i=1:n
J = find(M(:,i)); 
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end 

Generating ISAI for triangular factor

with                                   for  S⇤ = spy(A)

Algorithm composes into solving a set of small triangular systems

(L ·ML = I)S⇤ML

(L ·ML(:, i) = ei)S⇤ 8i = 1 . . . n
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solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end 

Generating ISAI for triangular factor L(J,J) x M(J,i) = ei(J)

         x       =
J = find(M(:,i))
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for i=1:n
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Generating ISAI for triangular factor L(J,J) x M(J,i) = ei(J)

         x       =

         x   =

trsv to solve system

insert into M

generate small dense system

J = find(M(:,i))
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for i=1:n
J = find(M(:,i)); 
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end 

Generating ISAI for triangular factor

Four Batched Routines:
• Find the locations in each row

• store size information for small tri-systems
• store nonzero-locations to find matches

• Generate batch of small triangular systems 
• different sizes in uniformly-sized blocks

• Batched trsv
• different sizes
• non-coalescent in memory (uniform blocks)
• use kernel-switch for hard-coded sizes

• Batched re-insertion into sparse ISAI matrix 
• non-coalescent reads/writes
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Generating ISAI using one batched routine
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Generating ISAI using one batched routine

• Generate triangular system in registers only & batched triangular solve in registers2.

2Kurzak et al. “Implementation and Tuning of Batched Cholesky Factorization and Solve on NVIDIA GPUs”. TPDS, 2015.  
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Mapping sparsity pattern

• Generate triangular system in registers only & batched triangular solve in registers2.
• Identify matching locations by traversing triangular matrices from the diagonal.

S⇤ = JAC(2) S⇤ = JAC(6) S⇤ = spy(A2)

Nonzero locations in     (blue) in        (green), and matching locations (red).MLL
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Two strategies for generating ISAI
L(J,J) x M(J,i) = ei(J)

         x       =

         x   =

...

trsv for system i ......
batched generation of M(:,i), i=1..n

insert into M

generate set of small systems

J = find(M(:,i))

Combination of 4 batched routines
• Batch of systems in main memory
• Coalesced memory access

One batched routine
• Linear system in registers
• __shfl() for communication 
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Performance comparison of ISAI generation
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Speedup of batched routine vs. sequence of batched routines for block Jacobi pattern.
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Nvidia K40 GPU
• 1.4 TF DP, 280 GB/s ( 4.86 : 1 )
• Local memory as L1 cache/shared memory 

Nvidia P100 GPU
• 5.3 TF DP, 720 GB/s ( 7.36 : 1 ) 
• No cache, only registers and shared memory

(MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)
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Performance comparison of ISAI generation

(MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)

Speedup of batched routine vs. sequence of batched routines for ISAI pattern.

Nvidia K40 GPU
• 1.4 TF DP, 280 GB/s ( 4.86 : 1 )
• Local memory as L1 cache/shared memory 

Nvidia P100 GPU
• 5.3 TF DP, 720 GB/s ( 7.36 : 1 ) 
• No cache, only registers and shared memory
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Incomplete Sparse Approximate Inverse in Iterative Solvers

(Nvidia K40 GPU, MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)

Overhead for ISAI generation.
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Performance of Batched ISAI implementation
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460 UFSMC matrices

ISAI(1) 
251 systems
overhead 37.8% 

ISAI(2) 
192 systems
overhead  77.4%

ISAI(3) 
164 systems
overhead  113.9% 

(Nvidia K40 GPU, MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)
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Performance of Batched ISAI implementation

458 UFSMC matrices

ISAI(1) 
251 systems
overhead -- 20.9% 

ISAI(2) 
192 systems
overhead -- 13.9%

ISAI(3) 
164 systems
overhead  -- 6.6% 

(Nvidia K40 GPU, MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)
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Performance of Batched ISAI implementation

fastest solver
with prec. setup 

fastest solver
without prec. setup 

ISAI generation successful for 251 of 460 UFSMC matrices

(Nvidia K40 GPU, MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)
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Performance of Batched ISAI implementation

fastest solver
with prec. setup 

fastest solver
without prec. setup 

ISAI generation successful for 251 of 460 UFSMC matrices

(Nvidia KP100 GPU, MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)
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This research is based on a cooperation between Hartwig Anzt (University of Tennessee), Edmond Chow 
(Georgia Tech), and Thomas Huckle (TU Munich), and partly funded by the Department of Energy.

http://icl.cs.utk.edu/magma/

All functionalities are included in the MAGMA 2.2.0  release

http://www.icl.utk.edu/~hanzt/talks/ISAI.pdf


