
Batched Generation of Incomplete
Sparse Approximate Inverses on GPUs
Hartwig Anzt, Edmond Chow, Thomas Huckle, Jack Dongarra

ScalA16: Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems
Salt Lake City, 11/13/2016

http://www.icl.utk.edu/~hanzt/talks/ISAI.pdf

Preconditioner application involves solving triangular systems , .

2

Ly = z Ux = y

S(A = LU) for some sparsity pattern S
S = spy(A)

S = Rn⇥n exact fact.

ILU(0){Compute factorization
Goal: Find solution to sparse linear problem .

Ax = b, A 2 Rn⇥n

Incomplete Sparse Approximate Inverse (ISAI) Preconditioner

Incomplete factorizations attractive for preconditioning iterative solvers.

Preconditioner application involves solving triangular systems , .

3

Ly = z Ux = y

S(A = LU) for some sparsity pattern S
S = spy(A)

S = Rn⇥n exact fact.

ILU(0){Compute factorization
Goal: Find solution to sparse linear problem .

Ax = b, A 2 Rn⇥n

Incomplete Sparse Approximate Inverse (ISAI) Preconditioner

• Exact triangular solves

• Inherently sequential, level scheduling often provides little parallelism.

Incomplete factorizations attractive for preconditioning iterative solvers.

Preconditioner application involves solving triangular systems , .

4

Ly = z Ux = y

S(A = LU) for some sparsity pattern S
S = spy(A)

S = Rn⇥n exact fact.

ILU(0){Compute factorization
Goal: Find solution to sparse linear problem .

Ax = b, A 2 Rn⇥n

Incomplete Sparse Approximate Inverse (ISAI) Preconditioner

• Exact triangular solves

• Inherently sequential, level scheduling often provides little parallelism.
• Replace with approximate triangular solve

• Relaxation steps like (Block) Jacobi iterations.

Incomplete factorizations attractive for preconditioning iterative solvers.

Preconditioner application involves solving triangular systems , .

5

Ly = z Ux = y

S(A = LU) for some sparsity pattern S
S = spy(A)

S = Rn⇥n exact fact.

ILU(0){Compute factorization
Goal: Find solution to sparse linear problem .

Ax = b, A 2 Rn⇥n

Incomplete Sparse Approximate Inverse (ISAI) Preconditioner

• Exact triangular solves

• Inherently sequential, level scheduling often provides little parallelism.
• Replace with approximate triangular solve

• Relaxation steps like (Block) Jacobi iterations.

• Incomplete Sparse Approximate Inverse (ISAI)1:
for some sparsity pattern , e.g. S⇤ S⇤ = spy(A)

Incomplete factorizations attractive for preconditioning iterative solvers.

1Huckle, Anzt, Dongarra “Parallel Preconditioning”. In: SIAM PP 2016.

S⇤ = spy(A2)
S⇤ = spy(A3)

ISAI(1)
ISAI(2)
ISAI(3)

(L ·ML = I)S⇤

S⇤ = JAC(4)

6

for i=1:n
J = find(M(:,i));
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end

Generating ISAI for triangular factor

with for S⇤ = spy(A)

Algorithm composes into solving a set of small triangular systems

(L ·ML = I)S⇤ML

(L ·ML(:, i) = ei)S⇤ 8i = 1 . . . n

7

for i=1:n
J = find(M(:,i));
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end

Generating ISAI for triangular factor L(J,J) x M(J,i) = ei(J)

 x =
J = find(M(:,i))

8

for i=1:n
J = find(M(:,i));
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end

Generating ISAI for triangular factor L(J,J) x M(J,i) = ei(J)

 x =

 x =

J = find(M(:,i))

9

for i=1:n
J = find(M(:,i));
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end

Generating ISAI for triangular factor L(J,J) x M(J,i) = ei(J)

 x =

 x =

trsv to solve system

insert into M

generate small dense system

J = find(M(:,i))

10

for i=1:n
J = find(M(:,i));
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end

Generating ISAI for triangular factor L(J,J) x M(J,i) = ei(J)

 x =

 x =

...

generate set of small systems

J = find(M(:,i))

11

for i=1:n
J = find(M(:,i));
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end

Generating ISAI for triangular factor L(J,J) x M(J,i) = ei(J)

 x =

 x =

...

trsv for system i
batched generation of M(:,i), i=1..n

generate set of small systems

J = find(M(:,i))

12

for i=1:n
J = find(M(:,i));
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end

Generating ISAI for triangular factor L(J,J) x M(J,i) = ei(J)

 x =

 x =

...

trsv for system i
batched generation of M(:,i), i=1..n

insert into M

generate set of small systems

J = find(M(:,i))

13

for i=1:n
J = find(M(:,i));
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end

Generating ISAI for triangular factor

Four Batched Routines:
• Find the locations in each row

• store size information for small tri-systems
• store nonzero-locations to find matches

• Generate batch of small triangular systems
• different sizes in uniformly-sized blocks

• Batched trsv
• different sizes
• non-coalescent in memory (uniform blocks)
• use kernel-switch for hard-coded sizes

• Batched re-insertion into sparse ISAI matrix
• non-coalescent reads/writes

14

for i=1:n
J = find(M(:,i));
generate L(J,J);
solve L(J,J) M(J,i) = ei(J);
insert M(J,i) into M;

end

Generating ISAI for triangular factor L(J,J) x M(J,i) = ei(J)

 x =

 x =

...

trsv for system i
batched generation of M(:,i), i=1..n

insert into M

generate set of small systems

J = find(M(:,i))

15

Generating ISAI using one batched routine

16

Generating ISAI using one batched routine

• Generate triangular system in registers only & batched triangular solve in registers2.

2Kurzak et al. “Implementation and Tuning of Batched Cholesky Factorization and Solve on NVIDIA GPUs”. TPDS, 2015.

17

Mapping sparsity pattern

• Generate triangular system in registers only & batched triangular solve in registers2.
• Identify matching locations by traversing triangular matrices from the diagonal.

S⇤ = JAC(2) S⇤ = JAC(6) S⇤ = spy(A2)

Nonzero locations in (blue) in (green), and matching locations (red).MLL

18

Two strategies for generating ISAI
L(J,J) x M(J,i) = ei(J)

 x =

 x =

...

trsv for system i
batched generation of M(:,i), i=1..n

insert into M

generate set of small systems

J = find(M(:,i))

Combination of 4 batched routines
• Batch of systems in main memory
• Coalesced memory access

One batched routine
• Linear system in registers
• __shfl() for communication

19

Performance comparison of ISAI generation

0 5 10 15 20 25 30 35
Jacobi block size

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p

AF3
ECO
OFF
PARA
THM
TMT

Speedup of batched routine vs. sequence of batched routines for block Jacobi pattern.

0 5 10 15 20 25 30 35

Jacobi block size

0

10

20

30

40

50

60

70

S
p
e
e
d
u
p

AF3
ECO
OFF
PARA
THM
TMT

Nvidia K40 GPU
• 1.4 TF DP, 280 GB/s (4.86 : 1)
• Local memory as L1 cache/shared memory

Nvidia P100 GPU
• 5.3 TF DP, 720 GB/s (7.36 : 1)
• No cache, only registers and shared memory

(MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)

20

Performance comparison of ISAI generation

(MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)

Speedup of batched routine vs. sequence of batched routines for ISAI pattern.

Nvidia K40 GPU
• 1.4 TF DP, 280 GB/s (4.86 : 1)
• Local memory as L1 cache/shared memory

Nvidia P100 GPU
• 5.3 TF DP, 720 GB/s (7.36 : 1)
• No cache, only registers and shared memory

AF3 ECO OFF PARA THM TMT

Matrix

0

5

10

15

20

25

30

S
p
e
e
d
u
p
 in

 I
S

A
I
g
e
n
e
ra

tio
n

ISAI(1)
ISAI(2)
ISAI(3)
ISAI(4)

AF3 ECO OFF PARA THM TMT
Matrix

0

1

2

3

4

5

6

7

8

S
p
e
e
d
u
p
 in

 I
S

A
I
g
e
n
e
ra

tio
n

ISAI(1)
ISAI(2)
ISAI(3)
ISAI(4)

21

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Solver execution time [s]

10-4

10-3

10-2

10-1

100

R
e
la

tiv
e
 r

e
si

d
u

a
l n

o
rm

trisolve
ISAI(1)

Incomplete Sparse Approximate Inverse in Iterative Solvers

(Nvidia K40 GPU, MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)

Overhead for ISAI generation.

22

Performance of Batched ISAI implementation

0 50 100 150 200

Preconditioner generation overhead [%]

0

10

20

30

40

50

60

70

80
N

u
m

b
e
r

o
f
te

st
 m

a
tr

ic
e
s

ISAI(1)

ISAI(2)

ISAI(3)

460 UFSMC matrices

ISAI(1)
251 systems
overhead 37.8%

ISAI(2)
192 systems
overhead 77.4%

ISAI(3)
164 systems
overhead 113.9%

(Nvidia K40 GPU, MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)

23

Performance of Batched ISAI implementation

458 UFSMC matrices

ISAI(1)
251 systems
overhead -- 20.9%

ISAI(2)
192 systems
overhead -- 13.9%

ISAI(3)
164 systems
overhead -- 6.6%

(Nvidia K40 GPU, MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)

-100 -50 0 50 100

Preconditioner generation overhead [%]

0

5

10

15

20

25

30
N

u
m

b
e
r

o
f
te

st
 m

a
tr

ic
e
s

ISAI(1)

ISAI(2)

ISAI(3)

24

Performance of Batched ISAI implementation

fastest solver
with prec. setup

fastest solver
without prec. setup

ISAI generation successful for 251 of 460 UFSMC matrices

(Nvidia K40 GPU, MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)

25

Performance of Batched ISAI implementation

fastest solver
with prec. setup

fastest solver
without prec. setup

ISAI generation successful for 251 of 460 UFSMC matrices

(Nvidia KP100 GPU, MAGMA 2.1.0, ILU taken from cuSPARSE 8.0)

26

This research is based on a cooperation between Hartwig Anzt (University of Tennessee), Edmond Chow
(Georgia Tech), and Thomas Huckle (TU Munich), and partly funded by the Department of Energy.

http://icl.cs.utk.edu/magma/

All functionalities are included in the MAGMA 2.2.0 release

http://www.icl.utk.edu/~hanzt/talks/ISAI.pdf

