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Do We Need Resilience?

Resilience:
Collection of techniques to keep applications running to a correct solution

in a timely and efficient manner despite underlying system faults.

Addressing Failures in Exascale Computing, Snir et al., 2012.
Toward Exascale Resilience, Cappello et al., 2014.
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IEEE, Feb.2016, Al Geist (ORNL)
“As a child, were you ever afraid that a
monster lurking in your bedroom would
leap out of the dark and get you?”

“Lack of resilience is a similar monster,
hiding in the steel cabinets of the
supercomputers and threatening to
crash the largest computing machines.”
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Faults: Broadly Speaking

• Hard: activation is systematically reproducible.

• Soft: activation is not systematically reproducible.

• Active: fault causes an error.

• Dormant: fault does not cause an error.
The dormant fault is activated when it causes an error.

• Permanent: presence is continuous in time.

• Transient: presence is temporary.

• Intermittent: fault is transient and reappears.

Addressing Failures in Exascale Computing, Snir et al., 2012.
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Challenges & Needs

• Hypothetically hardware can take care of most of it...

• ...at the expense of energy consumption, money, and asynchrony.

• Power is a big obstacle towards exascale.

• High tradeoffs between power, resiliency and performance.

For instance: if an application can tolerate memory bit flips for certain
parts of its memory, it can ask the OS to turn off ECC checks for those
memory regions and potentially improve power and performance.

• Cross-cutting research needed to explore these areas.
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The Lorenz attractor

• Ed N. Lorenz, meterologist (1963): simplified model of convection in the
earths atmosphere (also found in models of lasers and dynamos).

• System of coupled non-linear differential equations:

dx
dt

= σ(y − x),
dy
dt

= x(ρ− z)− y ,
dz
dt

= xy − βz

• Lorenz used σ = 10, β = 8/3, and ρ = 28.

• Systems exhibits chaotic behavior for these (and nearby) values.

• Chaotic means highly sensitive to initial conditions.
Small differences in initial conditions (such as those due to rounding
errors in numerical computation) yield widely diverging outcomes for
such dynamical systems, making long-term prediction impossible.
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The Lorenz attractor: effect of Silent Data Corruption (SDCs)

• SDC: data corruption not raising errors/warnings.
• Start from x0 = 8, y0 = 5, z0 = 1. Solve over 0 ≤ t ≤ 40.
• Simulate SDC by randomly selecting a bit to flip in x at t = 12.
• 25th bit, before = −11.02263241724513, after = −11.02312069849513.
• Small change, but completely different solution for this “simple” test!
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Algorithm
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Resilient EXtreme Scale Scientific Simulations (REXSSS)

What?
Domain-decomposition-based preconditioner for PDEs.

• Currently for elliptic equations (1D, 2D).
• Other PDEs (in progress).

How?
Recasting the original PDE problem as a sampling problem, followed by
a resilient data manipulation to achieve the final solution update.

Why?
• We do not characterize all types of system faults that can occur, but

focus solely on the information that a simulation provides.
• Target: silent data corruptions (SDCs) and nodes/cores failing.
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Algorithm Overview

1D problem: 
Ly(x) = g(x), in Ω = (x−, x+)

y(x−) = y−,

y(x+) = y+,

L is a linear, elliptic operator.

The solution at point x0 linearly depends on the boundary conditions:

y(x0) = a + by− + cy+.
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Algorithm Overview: Domain Decomposition & Boundary Maps

• Grid with current state.
• Partition space with

overlapping subdomains.
• Treat subdomains

independently.
• Define sampling range for

each boundary. Sample and
solve PDE locally.

• From samples build maps:
y1 = f (y2, yL) = a + by2 + cyL

y2 = g(y1, yR) = d + ey1 + fyR

Maps link the subdomains.
• yL, yR are known BC.
• Solve, new state: (y∗

1 , y
∗
2 ).

• If needed: update range,
repeat loop.
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Extension
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Robust Regression: Resilience to SDCs

• High-dim boundary maps:
u(x∗) = a + bu1 + cu2 + . . .

• Generate samples, suppose some are
corrupted, run regression.

• `1 noise model is robust against
presence of corrupted data.
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Implementation
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Server/Client-based Implementation
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• Cluster: 1 server + n clients.

• Servers:

• Communicate between each other.
• Safe data/state storage

(sandboxed).

• Clients:

• Independent from one another.
• Only serve as computing units.

• Separates state from computation: reduces the overall vulnerability.

• Fault-tolerance supported via ULFM-MPI: resilient to MPI ranks crashing.

• Resilient to clients crashing because even if tasks are lost, state is safe.

• It aligns with the vision of future exascale architectures involving heterogeneous
and hierarchical hardware required to meet energy and cost constraints.

• C++ code, two external dependencies: Trilinos and Boost.
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ULFM and SCM: Why is this a good combination?

• MPI ranks crashing.

• Server simply continues the execution
using only the clients that are alive.
X Avoid ULFM collective procedures to

rebuild the client/communicators.

• Servers probe the corresponding cluster
communicator using MPI_ANY_SOURCE to
assess whether a new message is arriving
from one of the clients.

• Client crash:
1 tell ULFM we are aware of the failure.
2 Fix communicators, etc.
3 continue normal execution.
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ULFM on Edison (NERSC): not an easy task

• Edison: Cray XC30, 2.57 petaflops, 133,824 cores, 357 TB memory.
Cray Aries high-speed interconnect with Dragonfly topology.

• Current ULFM-MPI release (1.1) is based on OpenMPI version 1.7.1,
which lacks functioning native support for Cray uGNI.
× Openib byte transfer layer (BTL)/Infiniband: limite to 4096 MPI ranks.
X TCP byte transfer layer does not have this limitation.

• Necessary to set btl_tcp_if_include = ipogif0 to ensure that
TCP/IP packets were sent through the correct network interface.
self and sm BTLs are used for in-node communications.

• This version of OpenMPI has some issues with newer versions of gcc
(mostly with string handling), so we resorted to gcc/4.9.3.

• Unloaded the darshan module since that can cause an overhead for
large scale jobs.

• With these settings, we were able to have good performance.
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Results
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Injecting SDC and MPI Ranks Failures

Selective reliability

Inject/perturb applications at target points and evaluate how it behaves.
Parts of the algorithm are assumed to be handled more reliably than others.
M.Hoemmen,M.Heroux,2012

Silent Data Corruptions (SDC)
• Injected during the sampling stage.
• Injection at random as % of tasks.
• Corrupt all boundary conditions data of a task.
• How: double -> binary -> random bit-flip -> convert to double.

MPI Ranks Failures
• Injected during the sampling stage.
• Injection occurs at random.
• Actually terminate (SIGKILL) the processes owing those ranks.
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Details

Resilience Condition:
• Out of the samples used in the regression, the number of uncorrupted

samples has to be greater than the minimum set needed to have a
well-posed regression problem.

• Ensured via oversampling: ρ > 1, such that N = ρNs
nom.

Ns
nom: number of samples for the fault-free scenario.

Silent Data Corruptions (SDC)
• The `1-model enables resilience to corrupted data.

MPI Ranks Failures
• Server continues the execution using only the clients that are alive.
• No need for ULFM collectives to rebuild broken communicators.
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Kahuna Scaling: Uncertainty due to SDCs and client failures

• Kahuna: total 3080 cores.
• Blue: 1% clients failing,

SDCs=0.1% of total tasks.
• Red: 2% clients failing,

SDCs=0.1% of total tasks.
• Oversampling ρ = 1.05.
• 4 samples: mean, errors ±3σ.
• Times normalized by smallest

nominal case: highlights scaling
and overhead wrt nominal.
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• Black for NOMINAL: excellent scalability and minimal variability.
• Faulty runs show larger variability due to random loss of resources, and

additional regression overhead to overcome SDCs.
• Red has larger overhead because number of failed clients doubles.
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Edison Scaling

• Edison, elliptic PDE.

• Of total faults: SDCs=97%,
ranks failures=3.0%.

• Constant machine fault rate.

• Oversampling of ρ = 1.05.

• Times normalized by smallest
nominal case: highlights scaling
and overhead wrt nominal. 10k 15k 20k 25k 30k 35k 40k 45k50k
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• Excellent scalability with and without faults:
within 95% for weak scaling, withn 90% for strong.

• Overhead wrt nominal case:
for weak it shows as downward shift, for strong as upward shift.
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Subdomain Size

Effect of subdomain size on execution time, and its interplay with
computational workload, communication costs and size of the clients.

• Use in-house cluster.

• SCM with fixed 36 client ranks:
• 36 clients size 1
• 18 clients size 2
• 9 clients size 4

• 5% of the clients are terminated;
corrupt 0.1% samplings tasks.

• Multiple samples for each case
and extract mean values.

• Overhead due to faults is small.

• Best performance is obtained for
small subdomains.
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Power Consumption

• Resilience and energy consumption are tightly linked: voltage decrease
is linked to higher faults rates. a

• Decreasing the energy consumption is possible via variable-voltage
CPUs, which can reduce power consumption quadratically at the
expense of linearly reduced speed . b

• Another possibility is for given frequency, to decrease voltage only up to
the a certain threshold.

aD. Zhu, R. Melhem, and D. Mosse, “The effects of energy management on reliability
in real-time embedded systems”, IEEE-ACM International Conference, 2004

bD. Zhu, R. Melhem, D. Mosse, and E. Elnozahy, “Analysis of an energy efficient
optimistic tmr scheme”, ICPADS 2004
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Power Consumption

• How to exploit the resilience of the application and the small overhead
for energy purposes?

• Idea: lower the energy consumption during the sampling stage by
means of voltage scaling.

• Compare three scenarios:
(A) machine running at full operational capacity/speed
(B) voltage/frequency scaling on clients during sampling
(C) voltage scaling on clients during sampling

• Same problem, same SC configuration, same machine.

• The servers always run at full capacity to keep the state safe.

• This framework can be enabled because of the SCM, which allows us to
separate state from computation.
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Power Consumption

Power consumption and energy over T = t2 − t1 a:

P = P̂ + CV 2f E = (P̂ + CV 2f )T .

P̂ = frequency independent active power
C is the switch capacitance
V is the voltage, and f is the frequency.
no sleep power: system always on.

aD. Zhu, R. Melhem, and D. Mosse, IEEE-ACM, 2004
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Power Consumption

Full operational mode: (A)
• VA, fA
• ts

A = time for one task.

• Energy for NA samples: Es
A = NA(P̂ts

A + CV 2
A fAts

A)

Reduced voltage/frequency: (B)

• VB < VA, fB < fA such that VB/VA = fB/fA.
• ts

B = ts
A

fA
fB

.

• Energy for NB = ρNA samples: Es
B = ρNA(P̂ts

A
fA
fB

+ CV 2
A fAts

A
f 2
B

f 2
A

)

Reduced voltage: (C)

• VC = γVA, with γ < 1, fC = fA.
• ts

C = ts
A.

• Energy for NC = ρNA samples: Es
C = ρNA(P̂ts

A + Cγ2V 2
A fAts

A).
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Power Consumption

• Voltage scaling causes fault rates increase exponentially.
• For full application: energy usage due to regression overhead is smaller

than the energy gain during sampling.
• Kahuna: 6% regression overhead due to 5% oversampling, 1% client

failures, and 0.1% SDCs.
• Case(B), left fig, ρ = 1.05:

20% voltage reduction − > ∼ 20% potential saving during sampling.
• − > 5% regression overhead − > net 15% energy gain.
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Conclusions and Ongoing Work

• Application is resilient to:
• Silent Data Corruptions.
• MPI ranks failing.

• Convergence is achieved in all cases.

• Sampling/decomposition approach provides concurrency/parallelism.

• Scalability is excellent with and without faults.

• Interesting tradeoffs between energy and resilience.

• Ongoing work/outlook:
• Dimensionality reduction.
• Extension to other types of PDE.
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