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Overview
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Ground algorithm design
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Basic equations ]

Generalized eigen-value (GEV) equation wavefunction
formulation
Hyy = xSy

H., §': Hermitian, S: positive definite (S = /)

= Z

Generalized shifted linear (GSL) equations
(ZS et H)af: = b (z:complexenergy)

the propagation
(Green'’s) function
formulation

non-Hermitian
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(2S — H) ™! :the Green’s function
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Highly parallelizable mathematical structure }

A pioneering work : W. Kohn, Phys. Rev. Lett. (1996) ( W. Kohn won the Nobel Prize at 1998.)

Generalized eigen-value problem Physical quantity in trace form
Hy, = M\ S (1)
Physical quantity with a given matrix X with the density matrix
(Ex.the caseof X = H
--> Electronic structure energy) = Z f(Ak)yky}; (5)
k A 4
X) = i)y X
< > zk: f( k) Yt Yk ) Decomposition of the trace form
_ t ,
with a given weight funciton Ir [pX] — Z eije] (6)
(‘Fermi distribution function’) g THORTR
1 ‘projected physical quantity’
f ( /\) — 3) calculated in parallelism
exp(ﬁ()\ = ,u)) + 1 with €; (j-th unit vector)
_ t
(3. 1 :given parameters) | e; =(0,---0,1;0,---,0)" (7)




Highly parallelizable mathematical structure

The trace decomposition

Tr[pX]| = Z[e;-pXejJ (6)
J
gives the generalized shifted linear (GSL) equations
for calcualtion of projected physical quantities (PPQ).

GSL eqgns. PPQ .
((zB —Az? = 82\_>( ey pX ey ]-
> P <= (X)) = Tr[pX]
\(zB — A)zc(3) = e3> e; pXes |y [ ]




Highly parallelizable mathematical structure

\J\/\J\/\/\/\/\/-

Slmpllﬁed explanation
D+ decomposition of the trace form
- calculation of trace elements

as parallel computation

Tr[A] = Ain + Ao+ ... + Avm
1 1 |

parallel computation
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Highly parallelizable mathematical structure ]

Note on implimentation.
(a) MPI/OpenMP hybrid parallelism is used and
each trace element (4;;) is calculated
as single-core (single-thread) computation
(b) (Max # of parallelism)
= (matrix dimension) in principle
— (# of atoms) in our code
ex. 108-atom system — 108-core calculation is possible
(c) the severest bottleneck of the K computer
— The limitation of build-in memory size (16 GB / node)
ex. 108 atom system consumes 9 GB per node
(d) Flat MPl is also possible in our code
but consumes much larger memory



[ Result : strong scaling upto the full system of the K computer ]

100-nm-scale or 108 atoms calculations
parallel efficiency ratio a is determined with the reference data with 2,592 nodes.

(a) ideal diamond crystal (b) condensed polymer
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[ Result : strong scaling upto the full system of the K computer ]

100-nm-scale or 108 atoms calculations
parallel efficiency ratio a is determined with the reference data with 2,592 nodes.

(a) ideal diamond crystal (b) condensed polymer
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| | Tot +—glapsed
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Note r time

A higher parallel efficiency (a=0.92) appears

in (a) the ideal diamond case, ation time,
q because the atomic structure is ideal or exactly periodic

and the tasks are equivalent among nodes.

(a) ideal crystal (schematic) (b) condensed polymer
(schematic)

98,



[ Result : strong scaling upto the full system of the K computer ]

100-nm-scale or 108 atoms calculations
parallel efficiency ratio a is determined with the reference data with 2,592 nodes.

(a) ideal diamond crystal (b) condensed polymer
(a =0.92) (a =0.75)
10°. & 10° \
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[ Result : strong scaling upto the full system of the K computer ]

Smaller samples of condensed polymers

(c) 107-atom system (d) 106-atom system
(a=0.71) (a =0.38)
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[ Result : strong scaling upto the full system of the K computer ]

Smaller samples of condensed polymers

(c) 107-atom system (d) 106-atom system
(a=0.71) (a =0.38)

Note:

The parallel efficiency
ratio a is smaller than
108-atom system, but
the result shows the

qualified time-to-solution
(<102 sec).
pt  — satisfactory

3 Comm
% §Comm to real research

Elapsed time (s)

OI

Elapsed time (s

10 10°

10° 10" 10° 10° 10" 10°
Number of nodes Number of nodes




[ Result : strong scaling upto the full system of the K computer }

Bench mark with quantum mechanical MD simulation
— additional time and memory costs for calculation of force and velocity

Condensed polymer with 107 atoms
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[ Result : strong scaling upto the full system of the K computer }

Bench mark with quantum mechanical MD simulation
— additional time and memory costs for calculation of force and velocity

Condensed polymer with 107 atoms
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Note:
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is not negligible, when
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We have not yet well
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( Applications with ELSES software )

Organic devie materls
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(The algorithmic strategy of the use of the (generalized) shifted linear eqns,\

instead of eigen-value equations, is general and
was applied to many scientific areas with large computation.
\ Here is the examples of the papers ).

[1]1 (QCD) A. Frommer, Computing 70, 87 (2003)
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S. Yamamoto, T. Sogabe, T. Hoshi, S.-L. Zhang and T. Fujiwara,
J. Phys. Soc. Jpn., 77,114713 (2008).
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F. Giustino, M. L. Cohen, S. G. Louie, Phys. Rev. B. 81, 115105 (2010)
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( 100-million-atom caulation of condensed organic polymers )
Investigation on wave propagation mechanism (for device property)

(a) material : poly-(phenylene-ethynylene) (PPE) (b) Quantum dynamics
(size=200nm, P=100,000 polymers) Fig: Charge dynamics with 1 ps
Figure of a partial retion (~50nm)

15nm
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(a) material : poly-(phenylene-ethynylene) (PPE)
(size=200nm, P=100,000 pol




( 100-million-atom caulation of condensed organic polymers )
Investigation on wave propagation mechanism (for device property)

(a) material : poly-(phenylene-ethynylene) (PPE) (b) Quantum dynamics
(size=200nm, P=100,000 pol ;

Quantum mechanical analysis
(1) calculation of the propagation function §
(2) construct a coarse-grained system
— network between polymer
(Matrix size) = (# polymers) = 105

(3) eigen-value analysis for propagation
pathbetween polymers
(4) quantum dynamics
(wave propagation simulation)
for confirmation
of the propagation mechanism




[ Conclusion

» A novel linear algebraic algorithm realizes 108 atom or 100-nm-scale quantum
material simulations with an extreme scalability and a qualified time-to-solution
on the full system of the K computer

» The highly parallelizable mathematical structure comes from the quantum
mechanics not in wavefunction formula but in propagation function formula.

» The idea is general and is applicable to many materials and
now we focus on the flexible (organic polymer) device materials for next
generation Internet-of-Things (loT) products, such as display, sensor and battery.
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