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Exa-scale simulations for severe accident analysis
 JAEA promotes the development of multiphase thermal-hydraulic CFD code 

for analyzing severe accidents in the Fukushima Daiichi Nuclear Power Plant

 JUPITER code [Yamashita,ICONE2013] simulates relocation of molten materials in 
nuclear reactors as incompressible viscous fluids. 
 Finite difference method in structured grids
 Volume of fluid method for multiphase flows
 Multi-components (UO2, Zry, B4C, SUS)
 3D domain decomposition (MPI+OpenMP)

 Target problems
 Peta-scale (K-computer)

 Simulate melt-relocation behavior of several fuel assemblies
 Exa-scale

 Severe accident analysis for whole reactor pressure vessel 
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Scalability issue of Poisson solver on K-computer
 K-computer(11.3PF/82,944nodes)

 SPARC64VIIIfx(128GF=16GF x 8cores, B/F=0.5)
 Tofu Interconnect(3D torus, 5GB/s x 4ways)

 Poisson solver in JUPITER
 2nd order centered finite difference in structured grids (7-stencils) 
 CG method with Block-Jacobi preconditioner (PETSc/in-house solver)
 Occupy over 90% of computational cost for large problems 
 Large density contrast of multiphase flows gives ill-conditioned problem, 

and conditions become worse in large problems
→proper preconditioning is essential

 Scalability issue
 P2P comm. scales on 3D torus
 Collective comm. is bottleneck

→In this work, we resolve this issue using
Communication Avoiding CG methods

3Strong scaling of CG method on K-computer



Communication-Avoiding CG method
Review of CA-CG method based on [Hoemmen,PhD2010]

 CG
dependency between rj and pj
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Communication-Avoiding CG method
Review of CA-CG method based on [Hoemmen,PhD2010]

 CG
dependency between rj and pj

 CG with 3-term recurrence
use only rj (decouple rj-pj dependency)
 CG with outer/inner loops
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Communication-Avoiding CG method
Review of CA-CG method based on [Hoemmen,PhD2010]

 CG
dependency between rj and pj

 CG with 3-term recurrence
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 CG with Matrix Power Kernel
compute Arsk+j based on recurrence formula
using basis vectors given by MPK
→CA for halo comm.
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Communication-Avoiding CG method
Review of CA-CG method based on [Hoemmen,PhD2010]

 CG
dependency between rj and pj

 CG with 3-term recurrence
use only rj (decouple rj-pj dependency)
 CG with outer/inner loops
 CG with Matrix Power Kernel
compute Arsk+j based on recurrence formula
using basis vectors given by MPK
→CA for halo comm.
 CA-CG
compute inner product using Gram matrix
→CA for reduction comm.

CA-CG is equivalent to CG in exact arithmetic
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Related works – Application of CA-Krylov methods
 Stability and convergence properties of CA-Krylov methods [Carson,PhD2015]

 Convergence properties with different basis vectors
 Improved convergence with residual replacement technique

 CA preconditioners for CA-Krylov methods [Yamazaki,SC14]

 CA-GMRES implementation on GPUs
 CA-preconditioning underlap approach

 Chebyshev basis CA-CG on K-computer [Kumagai,PPAM2015]

 Strong scaling of CBCG up to 100k cores 
→Most of former works were successful for

 large CA steps with s>10 
 No or approximate preconditioning

→We apply LP-CA-CG to ill-conditioned 
problem which is limited to s=3

Performance of CBCG on K-computer
[Kumagai,PPAM2015]



Convergence issue of CA-CG in JUPITER
Poor convergence of CA-CG in JUPITER
 CA steps with s>3 do not converge
 Causes of convergence degradation

 Orthogonality of basis vectors generated 
during CA steps

 Round off errors in inner product 
operations using Gram matrix

 Possible solutions
 Newton and Chebyshev basis vectors 

[Hoemmen,PhD2010, Carson,PhD2015]

 Mixed precision approach
(quadruple precision only in Gram matrix)

→Preliminary tests did not show large 
performance gain

→We pursue performance improvement at s=3 
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Convergence of CA-CG
(JUPITER:800x500x3540)

Convergence of CA-CG with mixed precision
(JUPITER:104x104x265)



 Serial optimization
 Avoid indirect data access by changing data format from CSR to CDR
 Minimize memory access by data blocking and loop splitting
→Maximize impact of CA by minimizing cost of calculation

 Comparisons of two Block-Jacobi based preconditioners
 Original Block-Jacobi (bj) preconditioning 
 CA-preconditioning with underlap (u) approach [Yamazaki,SC14]

→Explore preconditioners suitable for CA-CG on K-computer

Optimization of CA-CG on K-computer
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Optimize data format for JUPITER
 Compressed Sparse Row (CSR) format

 Widely used in many matrix libraries such as PETSc
 Indirect memory access is overhead for structured grid data

 Compressed Diagonal Storage (CDS) format
 Used in our in-house solvers
 Direct memory access for structured grid data
→ 3.3x performance gain compared to CSR format

CSR format
Pointer table

Column index

Coefficients

SpMV sample code

1 3 6 9

1 2 1 2 3 2 3 4 3 4

11 12 21 22 23 32 33 34 43 44

for(i=0; i<n; i++){

for(i2=ia[i]; i2<ia[i+1]; i2++){
q[i] =q[i] + a[i2] * p[ja[i2]];}}

-1 0 1

CDS format
Offset from diagonal

Coefficients

SpMV sample code

Sample matrix

for(j=0;j<ndia;j++){offset=index[j];
for(i=0;i<n;i++){

q[i]=q[i]+a[i+j*n]*p[i+offset];}}

0 21 32 43 11 22 33 44 12 23 34 0

indirect access



Analysis of arithmetic intensity of CA-CG kernels
 Outer loop: SpMV and Block-Jacobi preconditioning (62%)

 Outer loop: Gram matrix computation (10%)

 Inner loop: Inner product and 3-term recurrence (28%)
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SpMV BJ-precond.

Arithmetic intensity (f/b) 0.163 0.116

Roofline (Gflops) 7.15 5.22

Sustained (Gflops) 6.37 4.99

s=1 s=2 s=3

Arithmetic intensity (f/b) 0.300 0.469 0.636

Roofline (Gflops) 12.60 18.66 24.08

Sustained (Gflops) 14.35 23.60 27.16

s=1 s=2 s=3

Arithmetic intensity (f/b) 0.105 0.118 0.130

Roofline (Gflops) 4.39 5.13 5.70

Sustained (Gflops) 3.33 3.67 4.32

s=1 s=2 s=3

0.188 0.354 0.521

8.18 14.62 20.40

7.30 12.85 19.14

optimized

2nd order centered finite difference 
with 7-stencils
→ low arithmetic intensity



Improve arithmetic intensity of inner loop
 Original 

{Q,V} and {Z,W} are loaded s times

Reuse {Q,V} and {Z,W} for s times via  
loop splitting and data blocking
→Reduce memory access from s2 to s

 Optimized
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 Original Block-Jacobi preconditioning with SpMV
 P2P comm. of halo data at every step
 No additional comm. for BJ preconditioning
→Hybrid CA-CG method

(CA inner product + no-CA SpMV)

 Block-Jacobi preconditioning with CA-SpMV
 Halo data for s-steps is transferred in advance
 Additional computation for extended halo data
→Additional P2P comm. for BJ preconditioning 

 Underlap preconditioning with CA-SpMV
 Point-Jacobi preconditioning for surface part
→CA step and parallelization affect convergence

→Explore optimum preconditioner for K-computer

Block-Jacobi based preconditioners for CA-CG
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Underlap with CA-SpMV(s=2)
Halo data

Point-Jacobi

Block-
Jacobi

2 2

Halo data

Block-Jacobi 2

Halo data

Block-Jacobi

Block-Jacobi with CA-SpMV(s=2)

Block-Jacobi with SpMV



Converge property
 Matrix data from Poisson solver in JUPITER

 Melt relocation of a fuel assembly
 Problem size: n = 800 x 500 x 3,540 =1.4 x 109

 Comparisons of CG solvers
 Original CG
 Hybrid CA-CG with Block-Jacobi (bj) 
 CA-CG with underlap (u) 

 Impact of CA step and parallelization on Block-Jacobi is weak
 Convergence of underlap degrades with CA step and number of nodes 

because of expansion of surface part with Point-Jacobi approximation

Visualization of JUPITER test problem

CA steps s=1 s=2 s=3 s=4

CG(bj) 6206 - - -

CA-CG(bj) 6208 6224 6222 ×

CA-CG(u) 6214 7188 7668 8072

Nodes 1000 2000 4000 8000

CG(bj) 6333 6428 6313 6633

CA-CG(bj) 6354 6444 6516 6636

CA-CG(u) 8274 8556 9582 10206

CA step scan of number of iteration at 125 nodes Node number scan of number of iteration at s=3



Strong scaling of CA-CG on K-computer

 CA-CG solvers show good strong scaling up to 30,000 nodes (240k cores)
 Hybrid CA-CG(bj) is fastest, and total cost is reduced by 47% from CG(bj)
 In CA-CG(u), advantage of CA is almost cancelled by worse convergence 



Detailed cost distribution in CG and hybrid CA-CG

 Collective communication is reduced by 1/s=1/3
 P2P communication is almost comparable
 Calculation part shows different features between 15k and 30k nodes

 Up to 15k nodes, calculation cost of CA-CG is slightly higher than CG
 FP operations/Performance of CA-CG is increased by 2.4x/2x

 At 30k nodes, calculation cost of CG is lower than CA-CG
 Inner most loop size is not enough for pipelining

→Compute rich CA-CG can keep performance in such strong scaling limit 
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Runtime(s) at 15,000 nodes Runtime at 30,000 nodes



Conclusion
 LP-CA-CG method is applied to ill-conditioned pressure Poisson equation in 

multiphase CFD code JUPITER
 CA procedures affect convergence and CA steps are limited to s=3 
 Even at s=3, significant performance gain was achieved on K-computer

 Optimum data format for structured grid data 
 Improved arithmetic intensity with loop splitting implementation
 Hybrid CA-CG approach based on 3D torus network
→CA-Krylov solver design strongly depends on computing platforms

Future Work
 Development of CA-Krylov solvers for different computing platforms
 Improvement of CA-Krylov methods

(e.g. preconditioning, basis vectors, residual replacement, mixed-precision)
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