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I Exa-scale simulations for severe accident analysis

= JAEA promotes the development of multiphase thermal-hydraulic CFD code
for analyzing severe accidents in the Fukushima Daiichi Nuclear Power Plant

m JUPITER code [Yamashita,ICONE2013] simulates relocation of molten materials in
nuclear reactors as incompressible viscous fluids.

= Finite difference method in structured grids
= Volume of fluid method for multiphase flows
= Multi-components (UO,, Zry, B,C, SUS)

= 3D domain decomposition (MPI+OpenMP)

e -

= Target problems P
= Peta-scale (K-computer) AU present JUPITER
= Simulate melt-relocation behavior of several fuel assemblies
= Exa-scale

= Severe accident analysis for whole reactor pressure vessel



I Scalability issue of Poisson solver on K-computer

s K-computer(11.3PF/82,944nodes)
= SPARC64VIIIfx(128GF=16GF x 8cores, B/F=0.5)

= Tofu Interconnect(3D torus, 5GB/s x 4ways) . & el -
m Poisson solver in JUPITER il . ORIKEN

= 2" order centered finite difference in structured grids (7-stencils)
= CG method with Block-Jacobi preconditioner (PETSc/in-house solver)
= Occupy over 90% of computational cost for large problems

= Large density contrast of multiphase flows gives ill-conditioned problem,
and conditions become worse in large problems

—>proper preconditioning is essential 80
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I Communication-Avoiding CG method

Review of CA-CG method based on [Hoemmen,PhD2010]

g CG Algorithm 1 Conjugate Gradient method
Input: Az = b, Initial guess x;
dependency between rj a nd pj Output: Approximate solution x;

I ryi=b—Azx1,p1 =1
2: for j = 1,2, ... until convergence do
3:  Compute w :=|Ap; P2P Comm.

aj = (rj,75) /(w,p;)]
Tjy1 = X5+ o p;

4

5 .
Collective Comm.

6: rj+1 =Ty - jw

7

8

9

=i, i)/ (s m5)

: pj+1 = rj4+1 + B;p;; test convergence
: end for




I Communication-Avoiding CG method

Review of CA-CG method based on [Hoemmen,PhD2010]

- CG Algorithm 2 CG3 (3-term recurrence variant of CG)

Input: Ax = b, Initial guess x;

dependency between rj and pj Output: Approximate solution z;

I: zg:=0,r9:=0,7r1 :=b— Ax;
m CG with 3-term recurrence 2: for j =1,2,... until convergence do

3:  Compute w; :=|Ar; P2P Comm.
. pj :=|(r;,7;)} test for convergence

use only r; (decouple r-p; dependency)

Vj = \W;,Tj

4
5 Collective Comm.
6: vj o= ,uj/l/j

7.

8

if 7 =1 then

: ,Oj =1

9: else
) (1 Y B 1 y—1

10: '03.'_ (1 'inl Hjil Pjﬂ)

11:  end if

12: Tj41 1= pj(LL’j + ’}/j’l“j) + (1 — pj)iL'j_l

13 1= p(rg + ywg) + (1= pj)rio

14: end for




I Communication-Avoiding CG method

Review of CA-CG method based on [Hoemmen,PhD2010]

m CG Algorithm 3 CG3 with outer and inner loops
Input: Ax = b, Initial guess =
dependency between r. and p. Output: Approximate solution z;
J J I: ¢g:=0,r9:=0,r; :=b— Ax
. o - ,To - , T - 1
m CG with 3-term recurrence 2: for k =0,1,2, ... until convergence do

33 forj=1,2,....,sdo

use only r; (decouple r-p; dependency) 4 Compute wekj :=|Arger;| P2P Comm.
- - 5: Wsk+j = |(Tsk+j,Tsk+j)} test for convergence

= CG with outer/inner loops 6 Vshsj = (Wakej, Tk Collective Comm.
7: Vsk+j ‘= Msktj/Vsk+j
8: if sk + j =1 then
9: Psk+j ‘= 1
10: else

. - _ _Dsk+j . _HMsk+j 1 -1
1: ’Osfﬂ'] T (1 Ysk4j—1 Msk+ji—1 psk+j—1)
12: end if
13: Tsktj+1 = Pskrj(Tskrj + VskriTsktrs) + (1 —
pskJrj)xskJrjfl

14: Tskij+1 = Psktj(Tsktj T YskrjWsktj) + (1 —

Psktj)Tskti—1
15: end for

16: end for




I Communication-Avoiding CG method

Review of CA-CG method based on [Hoemmen,PhD2010]

- CG Algorithm 4 CA-CG with MPK
Input: Ax = b, Initial guess x;
dependency between r. and of Output: Approximate solution g ;
J ) 1: 29 := 0,79 := 0,71 :=b— Ax;
m CG with 3-term recurrence 2: for £k = 0,1,2, ... until convergence do

3: Usk4+1 ‘= Tsk+1

use only r. (decouple r.-p. dependency) 4 Compute MPK|V;, = [vsk i1, ) Vsktst1]
J J ) 5. for j=1to s do P2P Comm.
= CG with outer/inner loops 6 Compute dykij (Arskj = [Ri1, Vildok))
| . 7: Wsktj = [Rk—1, Vi]dsk+j
= CG with Matrix Power Kernel B Hakey i Tk, Toky ) test for convergence
9: Vsktj = (Wsktj, Tsk-+j Collective Comm.
compute Ar,,; based on recurrence formula 1 Yskti = tskti/Vskts
11: if sk + j =1 then
using basis vectors given by MPK 2 Pk =1
13: eise
—>CA for halo comm. 14: payy = (1 — hacis . Jreti . o)™
15: end if
16: Tsk4j+1 = Psk:+j(33sk+j + 75k:+j7”sk+j) + (1 -
Psk+3)Tsk+j—1
17: Tsk+j+1 = psk+j(7"sk+j + ’Vsk—kjwsk—kj) + (1 -

Psk+3)Tsk+j—1
18: end for
19: end for




I Communication-Avoiding CG method

Review of CA-CG method based on [Hoemmen,PhD2010]

s CG Algorithm 5 CA-CG
Input: Ax = b, Initial guess x;
. . Output: Approximate solution xgjy ;
dependency between r; and p L 0 e O rn e Ove i b A
: _ 2: for £k =0,1,2, ... until convergence do
= CG with 3-term recurrence R S comm.
nlvr. le r-p. nden 4: Compute MPK| V; = [Ugki1, .-, Ustitst1]
use only j (deCOUp e j pJ dEpe de Cy) 50 | Grp—1:= R} _1Vy, Gik := V.V | Collective Comm.
s CG with outer/inner loops 6 Gj= ( é?f“‘l Gg:; ) Gram Matrix
kk—1
: . 7. for j=1to s do
s  CG with Matrix Power Kernel s Compute dus, (Aruess = [Re1,Velduos)
9: Compute ggptj (sktj = [Rr—1, V] gsk+5)
compute Arg; based on recurrence formula & BTFEEpe Uk ’
. . . 11: Psk+j = GaptjGrGsktj
using basis vectors given by MPK A e W
13: Vsk+j = Hsk+ '/VSIH—'
—>CA for halo comm. o if sk — 1 then
- 15: Psk+j = 1
" CA CG 16: else ’
. . . . e _ _Osk+j | _Msk+j | 1 -1
compute inner product using Gram matrix " ooty = (L 3,00 RS )
: end if
—>CA for reduction comm 9 Tkt = pakeg (T T YakeiTag) + (1
| Psk45)Tsktj—1
20: Tskijtl = Psktj(Tskrj + VshijWskrj) + (1 —

Psk+j)7"sk+j—1
21: end for

22: end for

CA-CG is equivalent to CG in exact arithmetic



I Related works — Application of CA-Krylov methods

= Stability and convergence properties of CA-Krylov methods [Carson,PhD2015]
= Convergence properties with different basis vectors
= Improved convergence with residual replacement technique
s CA preconditioners for CA-Krylov methods [Yamazaki,5C14]
= CA-GMRES implementation on GPUs
= CA-preconditioning underlap approach
s  Chebyshev basis CA-CG on K-computer [Kumagai,PPAM2015]
= Strong scaling of CBCG up to 100k cores

—>Most of former works were successful for 107 ' ' B —
P o
m large CA steps with s>10 CBCG(20)-model

s  No or approximate preconditioning

Time[sec]

—>We apply LP-CA-CG to ill-conditioned
problem which is limited to s=3

10

6144 12288 24576 49152 98304
Number of cores

Performance of CBCG on K-computer
[Kumagai,PPAM2015]



i Convergence issue of CA-CG in JUPITER

Poor convergence of CA-CG in JUPITER 51 eor
s CA steps with s>3 do not converge %E 1.E-02
= Causes of convergence degradation % 15232
= Orthogonality of basis vectors generated % :E:gg
during CA steps 2 E-07

.. 0 2,000 4,000 6,000 8,000
= Round off errors in inner product number of iterations

operations using Gram matrix
Convergence of CA-CG

m Possible solutions (JUPITER:800x500x3540)
= Newton and Chebyshev basis vectors 1E+00 |
[Hoemmen,PhD2010, Carson,PhD2015] 5 1.E-01 \
= Mixed precision approach g £ \\M\ T
- : , S 1.E-03 e/
(quadruple precision only in Gram matrix) 8 ¢4 A
.. . 2 —s=5,double
—>Preliminary tests did not show large 2 B0 double  \
. ® 1E-06 = -s=6mixed N
performance gain ey - -s=Tmixed \

0 300 600 900 1,200 1,500
number of iterations

—>We pursue performance improvement at s=3 Convergence of CA-CG with mixed precision
(JUPITER:104x104x265)
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Optimization of CA-CG on K-computer

= Serial optimization
= Avoid indirect data access by changing data format from CSR to CDR
= Minimize memory access by data blocking and loop splitting
—>Maximize impact of CA by minimizing cost of calculation

s Comparisons of two Block-Jacobi based preconditioners
= Original Block-Jacobi (bj) preconditioning
= CA-preconditioning with underlap (u) approach [Yamazaki,5C14]
—>Explore preconditioners suitable for CA-CG on K-computer

11



Optimize data format for JUPITER

s Compressed Sparse Row (CSR) format

= Widely used in many matrix libraries such as PETSc

= Indirect memory access is overhead for structured grid data
s  Compressed Diagonal Storage (CDS) format

= Used in our in-house solvers

= Direct memory access for structured grid data

— 3.3x performance gain compared to CSR format

Sample matrix CSR format CDS format
/ 3\ i :
112 0 0 Pointer table Offset from diagonal
1131619 110 | 1
21 22 23 0 ol .
0 32 33 34 olumn index
L0 0 43 a4 12“12323434
Coefficients Coefficients
1112|2122 |23 (3233|3443 44 0 |21|32]43|11|22|33 /4412|2334
SpMV sample code SpMV sample code
for(i=0; i<n; i++){ for(j=0;j<ndia;j++){offset=index[j];
for(i2=iali]; i2<iali+1]; i2++){ for(i=0;i<n;i++){
ali] =qli] + ali2] * p[jali2]];} alil=alil+ali+j*n]*p[i+offset];}}

indirect access



i Analysis of arithmetic intensity of CA-CG kernels

= OQOuter loop: SpMV and Block-Jacobi preconditioning (62%)

SpMV  BJ-precond. 2" order centered finite difference
Arithmetic intensity (f/b) 0.163 0.116 with 7-stencils
Roofline (Gflops) 715 5 29 — low arithmetic intensity
Sustained (Gflops) 6.37 4.99

= Outer loop: Gram matrix computation (10%)
s=1 s=2 s=3

Arithmetic intensity (f/b)  0.300 0.469 0.636
rithmetic intensity (f/b) £ (s+D)x(2s+1)x2
Roofline (Gflops) 12.60 18.66 24.08 = oc O(s)

b (35+3)x8
Sustained (Gflops) 14.35 23.60 27.16

= Inner loop: Inner product and 3-term recurrence (28%)

s=1 s=2 s=3 s=1 s=2 s=3
Arithmetic intensity (f/b)  0.105 0.118 0.130 . optimized 0.188 0.354 0.521
Roofline (Gflops) 4.39 5.13 5.70 | 8.18 14.62 20.40
Sustained (Gflops) 333 367 4.32 730 12.85 19.14
S (4s+D)x2+15)xs5+2 o consl. ]_‘:((4S+1)x2+15)xs+2 = O(s)
b ((22+(2s+3)x2)x8)xs b ((2s+6)x2+2s5)x8

13



ﬁ Improve arithmetic intensity of inner loop

= Original
for j=1, s, j++
Compute d]', Kj, Vj, p]'a Y]
for i=1, n, it++
for k=1, 2s+1, k++
uj[i] =/{Q, V}[i, k]d;[K]
yilil = {Z, W}i, kld;[k]
endfor
Xj+1[1]=p;(x;[1]+ v;q; [iD+(1—pj) Xj-1[1]
q;+1[11=p;(q;[1]—vju[iD+(1—p;) gj-1[i]
21 [11=p;(z; [1]—v;y; (D) +(1—py) Zj-1[i]
endfor

endfor

{Q,V} and {Z,W} are loaded s times

Optimized
for j=1 ,s ,j++
Compute dj, W, vj, pj, Y;
endfor
for ii=1 ,n ,ii=ii+nblock
for j=1 ,s ,j++
for i=ii ,ii+nblock-1 ,i++
for k=1, 2s+1, k++
wlil =/(Q V3[i, k]d; K]
yilil = {(Z, W3i, k]d;[k]
endfor
endfor
endfor
for j=1,s j++

for 1=ii ,ii+nblock-1 ,i++

X1 [1]=p;(X;[i+ v;q [iDH(1—pj) X1 [i]

- qj+1[i]=p;(q;[i]—yyu; [iD+(1—p;) qj-1[i]
Reuse {Q,V} and {Z,W} for s times via zj.1[i1=0)(z; i1 D +(1—p)) Zj-ai]
loop splitting and data blocking endfor

endfor

—>Reduce memory access from s?to s

endfor



l Block-Jacobi based preconditioners for CA-CG

= Original Block-Jacobi preconditioning with SpMV
s P2P comm. of halo data at every step
= No additional comm. for BJ preconditioning

—>Hybrid CA-CG method
(CA inner product + no-CA SpMV)

m  Block-Jacobi preconditioning with CA-SpMV
= Halo data for s-steps is transferred in advance
= Additional computation for extended halo data
—>Additional P2P comm. for BJ preconditioning

= Underlap preconditioning with CA-SpMV
= Point-Jacobi preconditioning for surface part

—>CA step and parallelization affect convergence

—>Explore optimum preconditioner for K-computer

Block-Jacobi with SpMV
[ [ Haloldata [ |

Block-Jacobi with CA-SpMV(s=2)

[TTTTTTITTT]

HNEEREEEER

Underlap with CA-SpMV(s=2)

|
ol d

oint=Jac

15



I Converge property

Visualization of JUPITER test problem

s Matrix data from Poisson solver in JUPITER
= Melt relocation of a fuel assembly
= Problem size: n =800 x 500 x 3,540 =1.4 x 10°

m  Comparisons of CG solvers
= Original CG
= Hybrid CA-CG with Block-Jacobi (bj)
= CA-CG with underlap (u)

CA step scan of number of iteration at 125 nodes Node number scan of number of iteration at s=3

CA steps s=1 s=2 s=3 s=4 Nodes 1000 2000 4000 8000
CG(bj) 6206 - - - CG(bj) 6333 6428 6313 6633

CA-CG(bj) 6208 6224 6222 X CA-CG(bj) 6354 6444 6516 6636

CA-CG(u) 6214 7188 7668 8072 CA-CG(u) 8274 8556 9582 10206

= Impact of CA step and parallelization on Block-Jacobi is weak

= Convergence of underlap degrades with CA step and number of nodes
because of expansion of surface part with Point-Jacobi approximation



I Strong scaling of CA-CG on K-computer

107.65 )
collevtive comm.

mP2P comm.

"g m calc.
§ 65.00
< 60
£
§ 10 24.16
= 9.52 7.27
20 15.86 13.64 13.05°
10.80

333 333 333 333 333 333
O 6 O 3 6 9 35 6 9 S o 9 3 6 O S 6 O
© o9 © o9 S o9 © o9 © o9 © o9
< < < < < < < < < < < <
o © o © O o © o © o ©
1,000 2,000 4,000 8,000 15,000 30,000

the number of nodes

= CA-CG solvers show good strong scaling up to 30,000 nodes (240k cores)
= Hybrid CA-CG(bj) is fastest, and total cost is reduced by 47% from CG(bj)
= In CA-CG(u), advantage of CA is almost cancelled by worse convergence



l Detailed cost distribution in CG and hybrid CA-CG

Runtime(s) at 15,000 nodes Runtime at 30,000 nodes
14 14 . . 1 Collective comm.
12 12 ", mP2P comm.
= _ H calc.
< 10 'g 10 K
O O
g 8¢
[¢}] [}]
g° E°
S 4 S 4
2 2
0 0

CG(bj) CA-CG(bj) CA-CG(bj)

Collective communication is reduced by 1/s=1/3
P2P communication is almost comparable
Calculation part shows different features between 15k and 30k nodes
= Up to 15k nodes, calculation cost of CA-CG is slightly higher than CG
= FP operations/Performance of CA-CG is increased by 2.4x/2x
= At 30k nodes, calculation cost of CG is lower than CA-CG
= Inner most loop size is not enough for pipelining
—>Compute rich CA-CG can keep performance in such strong scaling limit

18



§ Conclusion

s LP-CA-CG method is applied to ill-conditioned pressure Poisson equation in
multiphase CFD code JUPITER

= CA procedures affect convergence and CA steps are limited to s=3
= Even at s=3, significant performance gain was achieved on K-computer
= Optimum data format for structured grid data
= Improved arithmetic intensity with loop splitting implementation
= Hybrid CA-CG approach based on 3D torus network
—>CA-Krylov solver design strongly depends on computing platforms

Future Work
s Development of CA-Krylov solvers for different computing platforms
= Improvement of CA-Krylov methods
(e.g. preconditioning, basis vectors, residual replacement, mixed-precision)
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