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Exa-scale simulations for severe accident analysis
 JAEA promotes the development of multiphase thermal-hydraulic CFD code 

for analyzing severe accidents in the Fukushima Daiichi Nuclear Power Plant

 JUPITER code [Yamashita,ICONE2013] simulates relocation of molten materials in 
nuclear reactors as incompressible viscous fluids. 
 Finite difference method in structured grids
 Volume of fluid method for multiphase flows
 Multi-components (UO2, Zry, B4C, SUS)
 3D domain decomposition (MPI+OpenMP)

 Target problems
 Peta-scale (K-computer)

 Simulate melt-relocation behavior of several fuel assemblies
 Exa-scale

 Severe accident analysis for whole reactor pressure vessel 
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Scalability issue of Poisson solver on K-computer
 K-computer(11.3PF/82,944nodes)

 SPARC64VIIIfx(128GF=16GF x 8cores, B/F=0.5)
 Tofu Interconnect(3D torus, 5GB/s x 4ways)

 Poisson solver in JUPITER
 2nd order centered finite difference in structured grids (7-stencils) 
 CG method with Block-Jacobi preconditioner (PETSc/in-house solver)
 Occupy over 90% of computational cost for large problems 
 Large density contrast of multiphase flows gives ill-conditioned problem, 

and conditions become worse in large problems
→proper preconditioning is essential

 Scalability issue
 P2P comm. scales on 3D torus
 Collective comm. is bottleneck

→In this work, we resolve this issue using
Communication Avoiding CG methods

3Strong scaling of CG method on K-computer



Communication-Avoiding CG method
Review of CA-CG method based on [Hoemmen,PhD2010]

 CG
dependency between rj and pj
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P2P Comm. 

Collective Comm. 



Communication-Avoiding CG method
Review of CA-CG method based on [Hoemmen,PhD2010]

 CG
dependency between rj and pj

 CG with 3-term recurrence
use only rj (decouple rj-pj dependency)
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Communication-Avoiding CG method
Review of CA-CG method based on [Hoemmen,PhD2010]

 CG
dependency between rj and pj

 CG with 3-term recurrence
use only rj (decouple rj-pj dependency)
 CG with outer/inner loops
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Communication-Avoiding CG method
Review of CA-CG method based on [Hoemmen,PhD2010]

 CG
dependency between rj and pj

 CG with 3-term recurrence
use only rj (decouple rj-pj dependency)
 CG with outer/inner loops
 CG with Matrix Power Kernel
compute Arsk+j based on recurrence formula
using basis vectors given by MPK
→CA for halo comm.
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Communication-Avoiding CG method
Review of CA-CG method based on [Hoemmen,PhD2010]

 CG
dependency between rj and pj

 CG with 3-term recurrence
use only rj (decouple rj-pj dependency)
 CG with outer/inner loops
 CG with Matrix Power Kernel
compute Arsk+j based on recurrence formula
using basis vectors given by MPK
→CA for halo comm.
 CA-CG
compute inner product using Gram matrix
→CA for reduction comm.

CA-CG is equivalent to CG in exact arithmetic
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Related works – Application of CA-Krylov methods
 Stability and convergence properties of CA-Krylov methods [Carson,PhD2015]

 Convergence properties with different basis vectors
 Improved convergence with residual replacement technique

 CA preconditioners for CA-Krylov methods [Yamazaki,SC14]

 CA-GMRES implementation on GPUs
 CA-preconditioning underlap approach

 Chebyshev basis CA-CG on K-computer [Kumagai,PPAM2015]

 Strong scaling of CBCG up to 100k cores 
→Most of former works were successful for

 large CA steps with s>10 
 No or approximate preconditioning

→We apply LP-CA-CG to ill-conditioned 
problem which is limited to s=3

Performance of CBCG on K-computer
[Kumagai,PPAM2015]



Convergence issue of CA-CG in JUPITER
Poor convergence of CA-CG in JUPITER
 CA steps with s>3 do not converge
 Causes of convergence degradation

 Orthogonality of basis vectors generated 
during CA steps

 Round off errors in inner product 
operations using Gram matrix

 Possible solutions
 Newton and Chebyshev basis vectors 

[Hoemmen,PhD2010, Carson,PhD2015]

 Mixed precision approach
(quadruple precision only in Gram matrix)

→Preliminary tests did not show large 
performance gain

→We pursue performance improvement at s=3 
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Convergence of CA-CG
(JUPITER:800x500x3540)

Convergence of CA-CG with mixed precision
(JUPITER:104x104x265)



 Serial optimization
 Avoid indirect data access by changing data format from CSR to CDR
 Minimize memory access by data blocking and loop splitting
→Maximize impact of CA by minimizing cost of calculation

 Comparisons of two Block-Jacobi based preconditioners
 Original Block-Jacobi (bj) preconditioning 
 CA-preconditioning with underlap (u) approach [Yamazaki,SC14]

→Explore preconditioners suitable for CA-CG on K-computer

Optimization of CA-CG on K-computer
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Optimize data format for JUPITER
 Compressed Sparse Row (CSR) format

 Widely used in many matrix libraries such as PETSc
 Indirect memory access is overhead for structured grid data

 Compressed Diagonal Storage (CDS) format
 Used in our in-house solvers
 Direct memory access for structured grid data
→ 3.3x performance gain compared to CSR format

CSR format
Pointer table

Column index

Coefficients

SpMV sample code

1 3 6 9

1 2 1 2 3 2 3 4 3 4

11 12 21 22 23 32 33 34 43 44

for(i=0; i<n; i++){

for(i2=ia[i]; i2<ia[i+1]; i2++){
q[i] =q[i] + a[i2] * p[ja[i2]];}}

-1 0 1

CDS format
Offset from diagonal

Coefficients

SpMV sample code

Sample matrix

for(j=0;j<ndia;j++){offset=index[j];
for(i=0;i<n;i++){

q[i]=q[i]+a[i+j*n]*p[i+offset];}}

0 21 32 43 11 22 33 44 12 23 34 0

indirect access



Analysis of arithmetic intensity of CA-CG kernels
 Outer loop: SpMV and Block-Jacobi preconditioning (62%)

 Outer loop: Gram matrix computation (10%)

 Inner loop: Inner product and 3-term recurrence (28%)
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SpMV BJ-precond.

Arithmetic intensity (f/b) 0.163 0.116

Roofline (Gflops) 7.15 5.22

Sustained (Gflops) 6.37 4.99

s=1 s=2 s=3

Arithmetic intensity (f/b) 0.300 0.469 0.636

Roofline (Gflops) 12.60 18.66 24.08

Sustained (Gflops) 14.35 23.60 27.16

s=1 s=2 s=3

Arithmetic intensity (f/b) 0.105 0.118 0.130

Roofline (Gflops) 4.39 5.13 5.70

Sustained (Gflops) 3.33 3.67 4.32

s=1 s=2 s=3

0.188 0.354 0.521

8.18 14.62 20.40

7.30 12.85 19.14

optimized

2nd order centered finite difference 
with 7-stencils
→ low arithmetic intensity



Improve arithmetic intensity of inner loop
 Original 

{Q,V} and {Z,W} are loaded s times

Reuse {Q,V} and {Z,W} for s times via  
loop splitting and data blocking
→Reduce memory access from s2 to s

 Optimized
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 Original Block-Jacobi preconditioning with SpMV
 P2P comm. of halo data at every step
 No additional comm. for BJ preconditioning
→Hybrid CA-CG method

(CA inner product + no-CA SpMV)

 Block-Jacobi preconditioning with CA-SpMV
 Halo data for s-steps is transferred in advance
 Additional computation for extended halo data
→Additional P2P comm. for BJ preconditioning 

 Underlap preconditioning with CA-SpMV
 Point-Jacobi preconditioning for surface part
→CA step and parallelization affect convergence

→Explore optimum preconditioner for K-computer

Block-Jacobi based preconditioners for CA-CG

15

Underlap with CA-SpMV(s=2)
Halo data

Point-Jacobi

Block-
Jacobi

2 2

Halo data

Block-Jacobi 2

Halo data

Block-Jacobi

Block-Jacobi with CA-SpMV(s=2)

Block-Jacobi with SpMV



Converge property
 Matrix data from Poisson solver in JUPITER

 Melt relocation of a fuel assembly
 Problem size: n = 800 x 500 x 3,540 =1.4 x 109

 Comparisons of CG solvers
 Original CG
 Hybrid CA-CG with Block-Jacobi (bj) 
 CA-CG with underlap (u) 

 Impact of CA step and parallelization on Block-Jacobi is weak
 Convergence of underlap degrades with CA step and number of nodes 

because of expansion of surface part with Point-Jacobi approximation

Visualization of JUPITER test problem

CA steps s=1 s=2 s=3 s=4

CG(bj) 6206 - - -

CA-CG(bj) 6208 6224 6222 ×

CA-CG(u) 6214 7188 7668 8072

Nodes 1000 2000 4000 8000

CG(bj) 6333 6428 6313 6633

CA-CG(bj) 6354 6444 6516 6636

CA-CG(u) 8274 8556 9582 10206

CA step scan of number of iteration at 125 nodes Node number scan of number of iteration at s=3



Strong scaling of CA-CG on K-computer

 CA-CG solvers show good strong scaling up to 30,000 nodes (240k cores)
 Hybrid CA-CG(bj) is fastest, and total cost is reduced by 47% from CG(bj)
 In CA-CG(u), advantage of CA is almost cancelled by worse convergence 



Detailed cost distribution in CG and hybrid CA-CG

 Collective communication is reduced by 1/s=1/3
 P2P communication is almost comparable
 Calculation part shows different features between 15k and 30k nodes

 Up to 15k nodes, calculation cost of CA-CG is slightly higher than CG
 FP operations/Performance of CA-CG is increased by 2.4x/2x

 At 30k nodes, calculation cost of CG is lower than CA-CG
 Inner most loop size is not enough for pipelining

→Compute rich CA-CG can keep performance in such strong scaling limit 
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Runtime(s) at 15,000 nodes Runtime at 30,000 nodes



Conclusion
 LP-CA-CG method is applied to ill-conditioned pressure Poisson equation in 

multiphase CFD code JUPITER
 CA procedures affect convergence and CA steps are limited to s=3 
 Even at s=3, significant performance gain was achieved on K-computer

 Optimum data format for structured grid data 
 Improved arithmetic intensity with loop splitting implementation
 Hybrid CA-CG approach based on 3D torus network
→CA-Krylov solver design strongly depends on computing platforms

Future Work
 Development of CA-Krylov solvers for different computing platforms
 Improvement of CA-Krylov methods

(e.g. preconditioning, basis vectors, residual replacement, mixed-precision)
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