Left-Preconditioned Communication-Avoiding
Conjugate Gradient Methods for Multiphase
CFD Simulations on the K Computer

Akie Mayumi?, Yasuhiro Idomura?, Takuya Ina?,
Susumu Yamada?, Toshiyuki Imamura?

lJapan Atomic Energy Agency “RIKEN

Acknowledgements
T. Kawamura, S. Yamashita (JAEA)
This work is supported by the MEXT, Grant for Post-K priority issue No. 6: Development
of Innovative Clean Energy, and the computation is performed on the K-computer at the
Riken (hp160208).

@ £

K covnpudfes

I Exa-scale simulations for severe accident analysis

= JAEA promotes the development of multiphase thermal-hydraulic CFD code
for analyzing severe accidents in the Fukushima Daiichi Nuclear Power Plant

m JUPITER code [Yamashita,ICONE2013] simulates relocation of molten materials in
nuclear reactors as incompressible viscous fluids.

= Finite difference method in structured grids
= Volume of fluid method for multiphase flows
= Multi-components (UO,, Zry, B,C, SUS)

= 3D domain decomposition (MPI+OpenMP)

e -

= Target problems P
= Peta-scale (K-computer) AU present JUPITER
= Simulate melt-relocation behavior of several fuel assemblies
= Exa-scale

= Severe accident analysis for whole reactor pressure vessel

I Scalability issue of Poisson solver on K-computer

s K-computer(11.3PF/82,944nodes)
= SPARC64VIIIfx(128GF=16GF x 8cores, B/F=0.5)

= Tofu Interconnect(3D torus, 5GB/s x 4ways) . & el -
m Poisson solver in JUPITER il . ORIKEN

= 2" order centered finite difference in structured grids (7-stencils)
= CG method with Block-Jacobi preconditioner (PETSc/in-house solver)
= Occupy over 90% of computational cost for large problems

= Large density contrast of multiphase flows gives ill-conditioned problem,
and conditions become worse in large problems

—>proper preconditioning is essential 80

65.00
= Scalability issue

m collective communication

[=2]
o

B point—to—point communication

m calculation

m P2P comm. scales on 3D torus

runtime (second)

40 33.63
s Collective comm. is bottleneck 2109
20 I I 15.02 10.80 1.3_54
. . . . H B N
—In this work, we resolve this issue using 1000 2000 4000 8000 15000 30000
Communication Avoiding CG methods the number of nodes

Strong scaling of CG method on K-computer

I Communication-Avoiding CG method

Review of CA-CG method based on [Hoemmen,PhD2010]

g CG Algorithm 1 Conjugate Gradient method
Input: Az = b, Initial guess x;
dependency between rj a nd pj Output: Approximate solution x;

I ryi=b—Azx1,p1 =1
2: for j = 1,2, ... until convergence do
3: Compute w :=|Ap; P2P Comm.

aj = (rj,75) /(w,p;)]
Tjy1 = X5+ o p;

4

5 .
Collective Comm.

6: rj+1 =Ty - jw

7

8

9

=i, i)/ (s m5)

: pj+1 = rj4+1 + B;p;; test convergence
: end for

I Communication-Avoiding CG method

Review of CA-CG method based on [Hoemmen,PhD2010]

- CG Algorithm 2 CG3 (3-term recurrence variant of CG)

Input: Ax = b, Initial guess x;

dependency between rj and pj Output: Approximate solution z;

I: zg:=0,r9:=0,7r1 :=b— Ax;
m CG with 3-term recurrence 2: for j =1,2,... until convergence do

3: Compute w; :=|Ar; P2P Comm.
. pj :=|(r;,7;)} test for convergence

use only r; (decouple r-p; dependency)

Vj = \W;,Tj

4
5 Collective Comm.
6: vj o= ,uj/l/j

7.

8

if 7 =1 then

: ,Oj =1

9: else
) (1 Y B 1 y—1

10: '03.'_ (1 'inl Hjil Pjﬂ)

11: end if

12: Tj41 1= pj(LL’j + ’}/j’l“j) + (1 — pj)iL'j_l

13 1= p(rg + ywg) + (1= pj)rio

14: end for

I Communication-Avoiding CG method

Review of CA-CG method based on [Hoemmen,PhD2010]

m CG Algorithm 3 CG3 with outer and inner loops
Input: Ax = b, Initial guess =
dependency between r. and p. Output: Approximate solution z;
J J I: ¢g:=0,r9:=0,r; :=b— Ax
. o - ,To - , T - 1
m CG with 3-term recurrence 2: for k =0,1,2, ... until convergence do

33 forj=1,2,....,sdo

use only r; (decouple r-p; dependency) 4 Compute wekj :=|Arger;| P2P Comm.
- - 5: Wsk+j = |(Tsk+j,Tsk+j)} test for convergence

= CG with outer/inner loops 6 Vshsj = (Wakej, Tk Collective Comm.
7: Vsk+j ‘= Msktj/Vsk+j
8: if sk + j =1 then
9: Psk+j ‘= 1
10: else

. - _ _Dsk+j . _HMsk+j 1 -1
1: ’Osfﬂ'] T (1 Ysk4j—1 Msk+ji—1 psk+j—1)
12: end if
13: Tsktj+1 = Pskrj(Tskrj + VskriTsktrs) + (1 —
pskJrj)xskJrjfl

14: Tskij+1 = Psktj(Tsktj T YskrjWsktj) + (1 —

Psktj)Tskti—1
15: end for

16: end for

I Communication-Avoiding CG method

Review of CA-CG method based on [Hoemmen,PhD2010]

- CG Algorithm 4 CA-CG with MPK
Input: Ax = b, Initial guess x;
dependency between r. and of Output: Approximate solution g ;
J) 1: 29 := 0,79 := 0,71 :=b— Ax;
m CG with 3-term recurrence 2: for £k = 0,1,2, ... until convergence do

3: Usk4+1 ‘= Tsk+1

use only r. (decouple r.-p. dependency) 4 Compute MPK|V;, = [vsk i1,) Vsktst1]
J J) 5. for j=1to s do P2P Comm.
= CG with outer/inner loops 6 Compute dykij (Arskj = [Ri1, Vildok))
| . 7: Wsktj = [Rk—1, Vi]dsk+j
= CG with Matrix Power Kernel B Hakey i Tk, Toky) test for convergence
9: Vsktj = (Wsktj, Tsk-+j Collective Comm.
compute Ar,,; based on recurrence formula 1 Yskti = tskti/Vskts
11: if sk + j =1 then
using basis vectors given by MPK 2 Pk =1
13: eise
—>CA for halo comm. 14: payy = (1 — hacis . Jreti . o)™
15: end if
16: Tsk4j+1 = Psk:+j(33sk+j + 75k:+j7”sk+j) + (1 -
Psk+3)Tsk+j—1
17: Tsk+j+1 = psk+j(7"sk+j + ’Vsk—kjwsk—kj) + (1 -

Psk+3)Tsk+j—1
18: end for
19: end for

I Communication-Avoiding CG method

Review of CA-CG method based on [Hoemmen,PhD2010]

s CG Algorithm 5 CA-CG
Input: Ax = b, Initial guess x;
. . Output: Approximate solution xgjy ;
dependency between r; and p L 0 e O rn e Ove i b A
: _ 2: for £k =0,1,2, ... until convergence do
= CG with 3-term recurrence R S comm.
nlvr. le r-p. nden 4: Compute MPK| V; = [Ugki1, .-, Ustitst1]
use only j (deCOUp e j pJ dEpe de Cy) 50 | Grp—1:= R} _1Vy, Gik := V.V | Collective Comm.
s CG with outer/inner loops 6 Gj= (é?f“‘l Gg:;) Gram Matrix
kk—1
: . 7. for j=1to s do
s CG with Matrix Power Kernel s Compute dus, (Aruess = [Re1,Velduos)
9: Compute ggptj (sktj = [Rr—1, V] gsk+5)
compute Arg; based on recurrence formula & BTFEEpe Uk ’
. . . 11: Psk+j = GaptjGrGsktj
using basis vectors given by MPK A e W
13: Vsk+j = Hsk+ '/VSIH—'
—>CA for halo comm. o if sk — 1 then
- 15: Psk+j = 1
" CA CG 16: else ’
. . . . e _ _Osk+j | _Msk+j | 1 -1
compute inner product using Gram matrix " ooty = (L 3,00 RS)
: end if
—>CA for reduction comm 9 Tkt = pakeg (T T YakeiTag) + (1
| Psk45)Tsktj—1
20: Tskijtl = Psktj(Tskrj + VshijWskrj) + (1 —

Psk+j)7"sk+j—1
21: end for

22: end for

CA-CG is equivalent to CG in exact arithmetic

I Related works — Application of CA-Krylov methods

= Stability and convergence properties of CA-Krylov methods [Carson,PhD2015]
= Convergence properties with different basis vectors
= Improved convergence with residual replacement technique
s CA preconditioners for CA-Krylov methods [Yamazaki,5C14]
= CA-GMRES implementation on GPUs
= CA-preconditioning underlap approach
s Chebyshev basis CA-CG on K-computer [Kumagai,PPAM2015]
= Strong scaling of CBCG up to 100k cores

—>Most of former works were successful for 107 ' ' B —
P o
m large CA steps with s>10 CBCG(20)-model

s No or approximate preconditioning

Time[sec]

—>We apply LP-CA-CG to ill-conditioned
problem which is limited to s=3

10

6144 12288 24576 49152 98304
Number of cores

Performance of CBCG on K-computer
[Kumagai,PPAM2015]

i Convergence issue of CA-CG in JUPITER

Poor convergence of CA-CG in JUPITER 51 eor
s CA steps with s>3 do not converge %E 1.E-02
= Causes of convergence degradation % 15232
= Orthogonality of basis vectors generated % :E:gg
during CA steps 2 E-07

.. 0 2,000 4,000 6,000 8,000
= Round off errors in inner product number of iterations

operations using Gram matrix
Convergence of CA-CG

m Possible solutions (JUPITER:800x500x3540)
= Newton and Chebyshev basis vectors 1E+00 |
[Hoemmen,PhD2010, Carson,PhD2015] 5 1.E-01 \
= Mixed precision approach g £ \\M\ T
- : , S 1.E-03 e/
(quadruple precision only in Gram matrix) 8 ¢4 A
.. . 2 —s=5,double
—>Preliminary tests did not show large 2 B0 double \
. ® 1E-06 = -s=6mixed N
performance gain ey - -s=Tmixed \

0 300 600 900 1,200 1,500
number of iterations

—>We pursue performance improvement at s=3 Convergence of CA-CG with mixed precision
(JUPITER:104x104x265)

10

Optimization of CA-CG on K-computer

= Serial optimization
= Avoid indirect data access by changing data format from CSR to CDR
= Minimize memory access by data blocking and loop splitting
—>Maximize impact of CA by minimizing cost of calculation

s Comparisons of two Block-Jacobi based preconditioners
= Original Block-Jacobi (bj) preconditioning
= CA-preconditioning with underlap (u) approach [Yamazaki,5C14]
—>Explore preconditioners suitable for CA-CG on K-computer

11

Optimize data format for JUPITER

s Compressed Sparse Row (CSR) format

= Widely used in many matrix libraries such as PETSc

= Indirect memory access is overhead for structured grid data
s Compressed Diagonal Storage (CDS) format

= Used in our in-house solvers

= Direct memory access for structured grid data

— 3.3x performance gain compared to CSR format

Sample matrix CSR format CDS format
/ 3\ i :
112 0 0 Pointer table Offset from diagonal
1131619 110 | 1
21 22 23 0 ol .
0 32 33 34 olumn index
L0 0 43 a4 12“12323434
Coefficients Coefficients
1112|2122 |23 (3233|3443 44 0 |21|32]43|11|22|33 /4412|2334
SpMV sample code SpMV sample code
for(i=0; i<n; i++){ for(j=0;j<ndia;j++){offset=index[j];
for(i2=iali]; i2<iali+1]; i2++){ for(i=0;i<n;i++){
ali] =qli] + ali2] * p[jali2]];} alil=alil+ali+j*n]*p[i+offset];}}

indirect access

i Analysis of arithmetic intensity of CA-CG kernels

= OQOuter loop: SpMV and Block-Jacobi preconditioning (62%)

SpMV BJ-precond. 2" order centered finite difference
Arithmetic intensity (f/b) 0.163 0.116 with 7-stencils
Roofline (Gflops) 715 5 29 — low arithmetic intensity
Sustained (Gflops) 6.37 4.99

= Outer loop: Gram matrix computation (10%)
s=1 s=2 s=3

Arithmetic intensity (f/b) 0.300 0.469 0.636
rithmetic intensity (f/b) £ (s+D)x(2s+1)x2
Roofline (Gflops) 12.60 18.66 24.08 = oc O(s)

b (35+3)x8
Sustained (Gflops) 14.35 23.60 27.16

= Inner loop: Inner product and 3-term recurrence (28%)

s=1 s=2 s=3 s=1 s=2 s=3
Arithmetic intensity (f/b) 0.105 0.118 0.130 . optimized 0.188 0.354 0.521
Roofline (Gflops) 4.39 5.13 5.70 | 8.18 14.62 20.40
Sustained (Gflops) 333 367 4.32 730 12.85 19.14
S (4s+D)x2+15)xs5+2 o consl.]_‘:((4S+1)x2+15)xs+2 = O(s)
b ((22+(2s+3)x2)x8)xs b ((2s+6)x2+2s5)x8

13

ﬁ Improve arithmetic intensity of inner loop

= Original
for j=1, s, j++
Compute d]', Kj, Vj, p]'a Y]
for i=1, n, it++
for k=1, 2s+1, k++
uj[i] =/{Q, V}[i, k]d;[K]
yilil = {Z, W}i, kld;[k]
endfor
Xj+1[1]=p;(x;[1]+ v;q; [iD+(1—pj) Xj-1[1]
q;+1[11=p;(q;[1]—vju[iD+(1—p;) gj-1[i]
21 [11=p;(z; [1]—v;y; (D) +(1—py) Zj-1[i]
endfor

endfor

{Q,V} and {Z,W} are loaded s times

Optimized
for j=1 ,s ,j++
Compute dj, W, vj, pj, Y;
endfor
for ii=1 ,n ,ii=ii+nblock
for j=1 ,s ,j++
for i=ii ,ii+nblock-1 ,i++
for k=1, 2s+1, k++
wlil =/(Q V3[i, k]d; K]
yilil = {(Z, W3i, k]d;[k]
endfor
endfor
endfor
for j=1,s j++

for 1=ii ,ii+nblock-1 ,i++

X1 [1]=p;(X;[i+ v;q [iDH(1—pj) X1 [i]

- qj+1[i]=p;(q;[i]—yyu; [iD+(1—p;) qj-1[i]
Reuse {Q,V} and {Z,W} for s times via zj.1[i1=0)(z; i1 D +(1—p)) Zj-ai]
loop splitting and data blocking endfor

endfor

—>Reduce memory access from s?to s

endfor

l Block-Jacobi based preconditioners for CA-CG

= Original Block-Jacobi preconditioning with SpMV
s P2P comm. of halo data at every step
= No additional comm. for BJ preconditioning

—>Hybrid CA-CG method
(CA inner product + no-CA SpMV)

m Block-Jacobi preconditioning with CA-SpMV
= Halo data for s-steps is transferred in advance
= Additional computation for extended halo data
—>Additional P2P comm. for BJ preconditioning

= Underlap preconditioning with CA-SpMV
= Point-Jacobi preconditioning for surface part

—>CA step and parallelization affect convergence

—>Explore optimum preconditioner for K-computer

Block-Jacobi with SpMV
[[Haloldata [|

Block-Jacobi with CA-SpMV(s=2)

[TTTTTTITTT]

HNEEREEEER

Underlap with CA-SpMV(s=2)

|
ol d

oint=Jac

15

I Converge property

Visualization of JUPITER test problem

s Matrix data from Poisson solver in JUPITER
= Melt relocation of a fuel assembly
= Problem size: n =800 x 500 x 3,540 =1.4 x 10°

m Comparisons of CG solvers
= Original CG
= Hybrid CA-CG with Block-Jacobi (bj)
= CA-CG with underlap (u)

CA step scan of number of iteration at 125 nodes Node number scan of number of iteration at s=3

CA steps s=1 s=2 s=3 s=4 Nodes 1000 2000 4000 8000
CG(bj) 6206 - - - CG(bj) 6333 6428 6313 6633

CA-CG(bj) 6208 6224 6222 X CA-CG(bj) 6354 6444 6516 6636

CA-CG(u) 6214 7188 7668 8072 CA-CG(u) 8274 8556 9582 10206

= Impact of CA step and parallelization on Block-Jacobi is weak

= Convergence of underlap degrades with CA step and number of nodes
because of expansion of surface part with Point-Jacobi approximation

I Strong scaling of CA-CG on K-computer

107.65)
collevtive comm.

mP2P comm.

"g m calc.
§ 65.00
< 60
£
§ 10 24.16
= 9.52 7.27
20 15.86 13.64 13.05°
10.80

333 333 333 333 333 333
O 6 O 3 6 9 35 6 9 S o 9 3 6 O S 6 O
© o9 © o9 S o9 © o9 © o9 © o9
< < < < < < < < < < < <
o © o © O o © o © o ©
1,000 2,000 4,000 8,000 15,000 30,000

the number of nodes

= CA-CG solvers show good strong scaling up to 30,000 nodes (240k cores)
= Hybrid CA-CG(bj) is fastest, and total cost is reduced by 47% from CG(bj)
= In CA-CG(u), advantage of CA is almost cancelled by worse convergence

l Detailed cost distribution in CG and hybrid CA-CG

Runtime(s) at 15,000 nodes Runtime at 30,000 nodes
14 14 . . 1 Collective comm.
12 12 ", mP2P comm.
= _ H calc.
< 10 'g 10 K
O O
g 8¢
[¢}] [}]
g° E°
S 4 S 4
2 2
0 0

CG(bj) CA-CG(bj) CA-CG(bj)

Collective communication is reduced by 1/s=1/3
P2P communication is almost comparable
Calculation part shows different features between 15k and 30k nodes
= Up to 15k nodes, calculation cost of CA-CG is slightly higher than CG
= FP operations/Performance of CA-CG is increased by 2.4x/2x
= At 30k nodes, calculation cost of CG is lower than CA-CG
= Inner most loop size is not enough for pipelining
—>Compute rich CA-CG can keep performance in such strong scaling limit

18

§ Conclusion

s LP-CA-CG method is applied to ill-conditioned pressure Poisson equation in
multiphase CFD code JUPITER

= CA procedures affect convergence and CA steps are limited to s=3
= Even at s=3, significant performance gain was achieved on K-computer
= Optimum data format for structured grid data
= Improved arithmetic intensity with loop splitting implementation
= Hybrid CA-CG approach based on 3D torus network
—>CA-Krylov solver design strongly depends on computing platforms

Future Work
s Development of CA-Krylov solvers for different computing platforms
= Improvement of CA-Krylov methods
(e.g. preconditioning, basis vectors, residual replacement, mixed-precision)

	Left-Preconditioned Communication-Avoiding Conjugate Gradient Methods for Multiphase CFD Simulations on the K Computer
	Exa-scale simulations for severe accident analysis
	Scalability issue of Poisson solver on K-computer
	Communication-Avoiding CG method
	Communication-Avoiding CG method
	Communication-Avoiding CG method
	Communication-Avoiding CG method
	Communication-Avoiding CG method
	Related works – Application of CA-Krylov methods
	Convergence issue of CA-CG in JUPITER
	Optimization of CA-CG on K-computer
	Optimize data format for JUPITER
	Analysis of arithmetic intensity of CA-CG kernels
	Improve arithmetic intensity of inner loop
	Block-Jacobi based preconditioners for CA-CG
	Converge property
	Strong scaling of CA-CG on K-computer
	Detailed cost distribution in CG and hybrid CA-CG
	Conclusion

