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Background

I Domain: atomic-level molecular dynamics
I Classical MD: good scalable methods, but static bonding and fixed

charges limit modeling capability
I Reactive, polarizable MD: expand modeling ability but pose new

computational challenges: dynamic charge distribution for reactivity
I Idea: distribute charge (electrons) to atoms according to min. energy

configuration (ground state)

I Goal: improve performance of expensive, poorly scaling charge
distribution kernel

I Models for Charge Distribution:
I charge equilibration (QEq)
I electronegativity equilibration (EEM)
I atom condensed Kohn-Sham DFT approximated to second order

(ACKS2)
I split charge equilibration (SQE)
I others (active research)

I Approaches for Finding Charges in Models:
I linear solvers: iterative (GMRES with preconditioning)
I extended Lagrangian
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QEq Overview

Minimize Eele(Q) =
∑
i

χiqi +
1

2

∑
i,j

Hijqiqj

where Hij = Jiδij +
1− δij

3

√
r3ij + γ−3

ij

subject to Qnet =
∑
i

qi

After applying the Lagrange multiplier method:

−χk =
∑
i

Hkisi, k = 1, . . . , n

−1 =
∑
i

Hkiti, k = 1, . . . , n

where:
qi = si −

∑
i si∑
i ti
· ti

I R = (r1, r2, . . . , rn): positions in
system with n atoms (∈ R3)

I Q = (q1, q2, . . . , qn): partial
charges (unknowns)

I χi: electronegativity of atom i

I Ji: idempotential of atom i

I rij = ||rj − ri||2: distance
between atoms i and j

I γ: electrostatic shielding term
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Preconditioner Design and Considerations

Design
I Idea: use good initial guesses (already done via extrapolation)
I Idea: apply preconditioning to GMRES residual vector

I Relatively different than those for PDE discretizations: much higher
NNZ per row on average

Considerations
I Effectiveness: reduction in num. of solver iters.
I Cost: computation and application time
I Longevity: num. of sim. iters. for which preconditioner is usable
I Parallelizabilty: shared mem. scalability of preconditioner

I Important building block for dist. mem. algorithms!
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Preconditioner Computation Methods
Basic Techniques

I Diagonal inverse (Diag)

P−1
ij =

{
1

Hij
, i = j

0, otherwise

I Incomplete factorizations with 0 fill-in
I Cholesky with level scheduling (IC(0))

I Idea: analyze sparsity pattern, perform parallel operations on
independent levels

H ≈ UTU
I Fine grained (FG-ILU(0))

I Idea: asynchronous constraint-based approach
H ≈ LU

Preconditioner Cost Longevity Effectiveness Parallelism
Diagonal Very Low High Low High
IC(0) High Moderate High Low
FG-ILU(0) Very High Moderate High High
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Preconditioner Computation Methods

Enhanced Techniques
I Distance drop (IC-dist(d), FG-ILU-dist(d))

I Insight: off-diagonal entries are inversely proportional to distance
between atoms

rij > rnonb · d, d ∈ (0, 1)

I Dual drop (IC-dual(t), FG-ILU-dual(t))
I Numeric thresholding based on row-wise 1-norm

Hij > ||Hi,:||1 · t, t ∈ R+

I Apply during and post factor computation for IC-dual(t), but only
post for FG-ILU-dual(t) to achieve convergence
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Preconditioner Application Methods

Techniques for Incomplete Factorizations
I Level scheduling

I Symbolic stage: find available parallelism in triangular solves (once per
preconditioner computation)

I Numeric stage: perform solves in parallel per level
I Combine with IC(0), IC-∗(∗) computation methods

I Jacobi iteration
I Approximate traingular solve:

I To solve the triangular system Fx = b, instead iterate

xk+1 =
(
I − D

−1
F
)
xk + D

−1
b

I Fixed num. of iters. (SpMV, vector-vector ops.)
I Combine with FG-ILU(0), FG-ILU-∗(∗) computation methods
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Numeric Experiments

Setup
I Platform

I NERSC Edison: Cray XC30
I 12-core Intel Ivy Bridge, 2.4 GHz (dual socket)
I Private L1 (32 KB inst., 32 KB data), L2 (256 KB) caches
I Shared 30 MB L3
I 64 GB DDR3, 1866 MHz bus

I Software and Tools
I PuReMD ReaxFF
I Intel compiler v15.0.1
I Optimization flags: -fast

I Chemical Systems

Name Chemical Formula #Atoms Type
Water H2O 78,480 Liquid
Silica SiO2 72,000 Amorphous material
PETN C5H8N4O12 48,256 Perfect crystal
Bilayer Phospholipid bilayer 56,800 Soft matter
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Numeric Experiments

Cost-Effectiveness Trade-off
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Figure: Effectiveness vs. expected cost of various preconditioned GMRES solvers
(averaged across all four benchmark systems)
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Numeric Experiments
Longevity

Figure: FG-ILU-dual(0.01) for the bulk water system, 100 steps before
re-computing preconditioner
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Numeric Experiments
Overall Solver Performance
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Figure: Average QEq times for different solvers, numbers over each bar group show
the speedup achieved by the IC-dual scheme over the Diag solver
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Numeric Experiments
Thread Scalability

Figure: IC-dual(0.01) with water (left) and PETN (right) at solver tol. 10−14

Table: Num. of levels in preconditioner factors

System IC(0) IC-dual(0.01) IC-dist(0.8) IC-dist(0.6)
Bilayer 4921 711 3280 1851
PETN 13181 13181 39078 16003
Silica 10799 634 6147 1705
Water 25479 1769 12365 5142
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Future Work and Acknowledgements

Future Work
I Reduce num. levels and sync. of PreApp through explicit permutations

via graph coloring
I Experiment with further combinations of enhanced preconditioning

techniques
I Implement approaches on many-core architectures (Xeon Phi)
I Develop an automated parameter tuning method
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