Optimizing PLASMA Eigensolver on Large SGI UV Shared Memory Systems

Cheng Liao SR Software Engineer November, 2016

List of Eigensolvers

SCALAPACK	ELPA	EIGENEXA	PLASMA
PDSYEVD, PDSYEVX, PDSYEV, PDSYEVR	ELPA1, EPLA2	EIGEN_S, EIGEN_SX	DSYEVR (SMP only, no MPI, dataflow scheduler)
1-stage tridiagonalization, 50% memory bound kernel	1-stage & 2-stage, the latter tridiagonalizes much faster	improved 1-stage penta- diagonalization with sym2v	2-stage tridiagonalization with tile storage layout
tridiagonal system solvers: D&C, BI, QR, MRRR	D&C tridiagonal solver	D&C pentadiagonal solver that takes longer to execute	LAPACK MRRR tridiagonal solver dstemr
compute bound 1-stage back-transformation	compute bound 1/2-stage back-transformation	compute bound 1-stage back-transformation	compute bound 2-stage back-transformation
de facto Industrial standards but slow	likes high FLOPS systems	likes high memory bandwidth systems	likes high FLOPS systems

©2016 SGI

2

sgi

SGI UV3000 – Commodity CPUs + Proprietary Node Controllers with Routing Options for Cache Coherence

To backplane

To backplane

copy with shared memory, THP on

latency bet node 0 and node 0: 87.5ns latency bet node 0 and node 1: 400.5 ns latency bet node 0 and node 2: 507.8 ns latency bet node 0 and node 3: 507.7ns

bcopy on node 0 dest 0 src 0 BW: 6.407 GB/s bcopy on node 0 dest 0 src 1 BW: 2.465 GB/s bcopy on node 0 dest 0 src 2 BW: 1.977 GB/s bcopy on node 0 dest 0 src 3 BW: 1.981 GB/s

bcopy on node 0 dest 0 src 0 BW: 6.316 GB/s bcopy on node 0 dest 1 src 0 BW: 5.906 GB/s bcopy on node 0 dest 2 src 0 BW: 5.275 GB/s bcopy on node 0 dest 3 src 0 BW: 5.380 GB/s

3

52

...

©2016 SGI

Five Computational Phases of PLASMA Eigensolver

Sg

NUMA Considerations

 scratch buffers (MKL + PLASMA, etc.)

• A, V & T are in this category

Watch out for "OpenMP

Sg

ambush"

5

Arrange data and pin threads to minimize communication and avoid network hotspots!

©2016 SGI

Sample 'Best' NUMA Placement – Matrix Multiply on 4 Quad Core Nodes

memory placement color coded!

©2016 SGI

6

Sgi

Algorithmic Issue(1) – DBR Degree of Parallelism

HD-

HD.

©2016 SGI

Employing tree parallel QR with multiple Householder domains can improve dense to band reduction performance very significantly:

Number of HDs vs run time (secs)

Incremental Sequential QR Factorization As Illustrated in LAWN204

©2016 SG

8

Sgi

A Note on FP OP Counts

```
for (k = 0; k < NT-1; k++) // NT(==N/Nb): #tiles/row, BS: subdomain size
 BS = (NT - k - 2)/HD + 1; //HD: Number of Householder domains
//local QR factorizations on leading tiles of subdomains
 for (m = k+1; m < NT; m += BS) DGEQRT;
 // Apply the local reflectors
 // LEFT and RIGHT on the diagonal blocks
 for (m = k+1; m < NT; m += BS) DSYRFB;
 // RIGHT on tile column until the bottom
 for (m = k+1; m < NT; m += BS) { for (n = m+1; n < NT; n++) DORMQR; }
 // LEFT on tile row until the diagonal
 for (m = k+1; m < NT; m += BS) { for (n = k+1; n < m; n++) DORMQR; }
 // include other tiles in the subdomains
 for (M = k+1; M < NT; M += BS) {
  for (m =M+1; m < min(M+BS,NT); m++) {
    DTSQRT:
    for (i = k+1; i < m; i++) DTSMQR; // LEFT, excluding i=M
    for (j = m+1; j < NT; j++) DTSMQR; // RIGHT
    DTSMQRLR; // LEFT or RIGHT
 // tree-based merge of the local factors
 for (RD = BS; RD < NT-k-1; RD *= 2) {
  for (M = k+1; M+RD < NT; M += 2*RD)
    DTTORT:
    for (i=k+1; I<M+RD-1; i++) DTTMQR; // LEFT, excluding i=M
    for (j=M+RD+1; j <NT; j++) DTTMQR; // RIGHT
    DTTMQRLR; // LEFT or RIGHT
```

Compute Kernel	Number of calls							
dgeqrt	1	2						
dsyrfb	1	2						
dormqr	5	10						
dtsqrt	5	4						
dtsmqr	20	16						
dtsmqrlr	5	4						
dttqrt	n/a	1						
dttmqr	n.a	4						
dttmqrlr	n/a	1						

Modest numbers of Householder domains do not change the complexity of D2B reduction:

$$\sum_{k=0}^{NT-2} \sum_{m=k+2}^{NT-1} \sum_{j=k+1}^{NT-1} 5Nb^3 \sim = \left(\frac{5}{3}\right) N^3$$

The 1st stage back-transformation complexity also does not change.

9

dormqr OPs need to be considered if the number of Householder domains is significant relative to number of tiles/row.

Algorithmic Issue(2)- Communication and Thread Placement in Bulge Chasing

٠											1	E	1			E	Г	1			٠											•	1		Γ							Г
٠	•										Т						\square				٠	٠										•	•									Г
٠	•	٠										6										٠	٠										•	•								Г
٠	•	٠	•								•	•	6									٠	٠	٠									•	٠	•							Г
	•	•	•	•		Г					Ie	•	•	٠			Г					٠	•	•	6							Г	•	•	•	•						Г
		٠	•	•	٠						•	•	•	٠	•		\square					•	٠	•	•	0							T	٠	•	•	•					Г
			•	•	٠	•					•	•	•	٠	•	•						•	٠	•	•	•	0						Г	٠	•	•	•	•				Г
		Г	Г	•	٠	•	•	Г						•	•	•	•								•	•	•	•				Г	Г			•	•	•	2			Г
					•	•	•	•							•	•	•	٠							٠	٠	٠	•	٠							•	•	•	٠	0		Γ
						•	•	•	•							•	•	•	•						٠	٠	٠	•	٠	•						•	•	•	٠	٠	0	Γ
	L.	[Г	Γ	—	Г	•	•	•	٠	T						•	٠	•	•								•	•	•	•	Г	Т		Γ				٠	٠	٠	

PLASMA implementation:

- All work is done by 3 types of compute kernels/tasks.
- T?y(z-1) and T?(y-1)(z+2) done before T?yz.

Shortcomings:

- Left and right applications of Householder reflectors need to load matrix blocks 4 times.
- No thread placement strategy.

Improved communication:

$$(\mathbf{I} - \dot{\alpha} \bullet \boldsymbol{u} \bullet \boldsymbol{u}^{t}) \bullet \mathbf{B} \bullet (\mathbf{I} - \tau \bullet \mathbf{v} \bullet \mathbf{v}^{t})$$

(4x loads of **B**)

B - $\dot{\alpha} \bullet u \bullet u^{t} \bullet B + WORK \bullet v^{t}$

Where $w = B \bullet v$, $b = u^t \bullet w$, $s = \dot{\alpha} \bullet \tau \bullet b$, and WORK = $-\tau \bullet w + s \bullet u$. (column-wise, 2x loads of B) Improved performance:

Problem/	Bulge	Bulge Chasing performance on 60 e5-4627 v3 sockets													
Tile Size	Origir	nal code	Improv th	/ed+linear reads	Improved+round- robin threads										
	sec	gflops	sec	gflops	second	gflops									
N=115200, NB=480	106	360	74	518	78	490									
N=115200,N B=640	173	295	139	366	109	468									
N=115200,N B=960	684	112	458	167	240	318									
N=288000,N B=960	7676	62	8917	54	1387	345									

Round-Robin Thread Placement:

number, *y* represents the bulge chasing sweep number and *z* is the taskid of the sweep.

Socket #0	Socket #1	Socket #2	Socket #3
Thread 0	Thread 1	Thread 2	Thread 3
Thread 4	Thread 5	Thread 6	Thread 7

©2016 SGI

Algorithmic Issue(3)- 1D Parallel Decomposition in Eigenvector Back-transformations

It is straightforward to implement 1D parallel decomposition for eigenvector backtransformation. However it also is well known that 1D parallel decomposition has a high communication to computation ratio. The problem size needs be sufficient large to ensure good performance.

$$\sum_{j=vblksiz}^{N,vblksiz} \frac{j}{NB} (4N(NB + vblksiz)vblksiz + Nvblksiz^2)$$

$$\sim = 2N^3 \left(1 + 1.25 \frac{vblksiz}{NB}\right)$$

Per Socket Communication for Q2 BT:

11

©2016 SGI

 $\frac{N^{2}}{2} * size of (double) + \frac{N^{2} v b l k s i z}{2 * N B} * size of (double) = \sim 5N^{2} b y tes$ **V T**

Communication/computation ratio is roughly $2/\beta$: $\frac{N}{\alpha}_{NP}$, where α , β , NP are the BW, FP speed and number of sockets

PLASMA Eigenvector Back-transformations

Illustrations from Haidar, Luszczek and Dongarra 2014 paper

Sgl

Effects of Tile & Memory Page Sizes

©2016 SGI

13

Sgl

Performance Comparisons

Elapsed times of N=64000 on 60 sockets

Elapsed times of N=115200 on 60 sockets

Elapsed times of N=288000 on 60 sockets

PLASMA GFLOPS improvement w.r.t. problem size

©2016 SGI

Conclusion

The PLASMA Eigensolver works well with large problem sizes. Can the strengths of PLASMA and ELPA be combined?

15

Sg