Fault Tolerance in Numerical Library Routines

Jack Dongarra (University of Tennessee, Knoxville, USA)

Dense matrix factorizations, such as LU, Cholesky and QR, are widely used for scientific applications that require solving systems of linear equations, eigenvalues and linear least squares problems. Such computations are normally carried out on supercomputers, whose ever-growing scale induces a fast decline of the Mean Time To Failure (MTTF). This talk proposes a new hybrid approach, based on Algorithm-Based Fault Tolerance (ABFT), to help matrix factorizations algorithms survive fail-stop failures. We consider extreme conditions, such as the absence of any reliable component and the possibility of loosing both data and checksum from a single failure. We will present a generic solution for protecting the right factor, where the updates are applied, of all above mentioned factorizations.