Fault Tolerant Matrix-Matrix Multiplication: Correcting Soft Errors On-Line

Panruo Wu, Chong Ding, Longxiang Chen, Teresa Davies, Christer Karlsson, and Zizhong Chen

Colorado School of Mines

November 13, 2011
Errors

- Soft errors
 - We focus on fail-continue soft errors
 - Soft errors have already been reported in tera-scale systems.

- How to tolerate errors
 - Triple Modular Redundancy (TMR)
 - Algorithm Based Fault Tolerance (ABFT)

- We designed a novel ABFT algorithm for DGEMM
 - on-line: meaning that our algorithm checks the validity of the partial results during computation
 - low overhead: compared with high performance non-fault-tolerant DGEMM
Related Work

- **Triple Modular Redundancy (TMR)**
 - General technique;
 - Requires a factor of 2 or 3 additional hardware; big overhead

- **traditional ABFT:**
 - Specific algorithm for every operation
 - Very little overhead;
 - Offline, checks only at the end of computation thus cannot prevent errors from propagating.

- **online ABFT**
 - Extension to traditional ABFT;
 - very little overhead;
 - online, checks validity of computation in the middle of the computation; more flexible and reliable
In 1984 Huang & Abraham proposed the ABFT mm algorithm. The idea is: To compute $C = AB$,

- encode A, B into checksum matrices A^c, B^r
- do mm on encoded matrices $C^f = A^c B^r$
- verify the full checksum relationship of C^f

$$A^c = \begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn} \\
 \sum_{i=1}^n a_{i1} & \cdots & \sum_{i=1}^n a_{in}
\end{bmatrix}$$

$$B^r = \begin{bmatrix}
 b_{11} & \cdots & b_{1n} & \sum_{j=1}^n b_{1j} \\
 \vdots & \ddots & \vdots & \vdots \\
 b_{n1} & \cdots & b_{nn} & \sum_{j=1}^n b_{nj}
\end{bmatrix}$$
It turns out that the result of $C^f = A^c B^r$ (whatever mm algorithm is used) is a full checksum matrix:

$$C^f = \begin{bmatrix}
 c_{11} & \cdots & c_{1n} & \sum_{j=1}^n c_{1j} \\
 \vdots & & \vdots & \vdots \\
 c_{m1} & \cdots & c_{mn} & \sum_{j=1}^n c_{nj} \\
 \sum_{i=1}^m c_{i1} & \cdots & \sum_{i=1}^m c_{in} & \sum_{i=1}^m \sum_{j=1}^n c_{ij}
\end{bmatrix}$$

If the full checksum relationship does not maintain then the mm procedure is faulty. If only one entry c_{ij} is corrupted, then it can be recovered:

$$c_{ij} = \sum_{j=1}^n c_{ij} \text{(is } C^f_{i,n+1}) - \sum_{k=1, k \neq j}^n c^f_{ik}$$
Online ABFT MM: Motivation

- The traditional ABFT only checks the result at the end of the whole computation.
- What if we can check some partial results in the middle?
 - Handle faults in time
 - More reliable and flexible
- The key problem: does the checksum relationship maintain in the middle of the mm computation?
 - for most MM algorithms, NO
 - for Outer Product MM, YES
Outer product mm algorithm (rank-1 update each iteration)

\[\text{for } s = 1 \text{ to } k \text{ do}\]
\[C = C + A(:, s) \ast B(s,:)\]
\[\text{end for}\]

\[AB = \begin{bmatrix} A_1 A_2 \cdots A_n \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} = A_1 B_1 + \ldots + A_n B_n\]
Theorem

If outer product version of mm is used to compute $A^c \times B^f$, and we denote the partial result C at the end of iteration s by C^f_s, then $C^f_s (s = 1, \ldots, k)$ preserve the full checksum relationship.

Proof: Let $A_s := A(1 : n, 1 : s)$ and $B_s := B(1 : s, 1 : n)$ then

$$C_s = A^c_s \times B^r_s$$

$$= \begin{bmatrix} A_s \\ e^T A_s \end{bmatrix} \times \begin{bmatrix} B_s & B_s e \end{bmatrix}$$

$$= (A_s B_s)^f$$

We now have at most n opportunities to tolerate faults during one mm execution. In practice, we can do the FT routine every several iterations to achieve high performance.
Differentiate soft errors from roundoff errors

- Computers do floating point calculation in finite precision. Therefore the checksum relationship cannot hold exactly due to roundoff errors.
- We need a threshold to differentiate soft errors from roundoff errors.
- How to choose the threshold?
 - Too large a threshold may hide errors
 - Too small one may interrupt correct computation
Theorem

For outer product matrix multiplication \(C = AB \), the floating point result \(\text{fl}(AB) \) satisfies:

\[
\|\text{fl}(AB) - AB\|_\infty \leq \gamma_k \|A\|_\infty \|B\|_\infty =: \lambda
\]

where \(\gamma_n = \frac{nu}{1-nu} \), and \(u \) is the unit roundoff error of the machine.

We begin by assuming the computations are correct, i.e. \(C^f = A^c B^r \). As a convention the floating point version of a variable has a hat over the corresponding name. Then we have

\[
\left| \sum_{j=1}^{n} \hat{c}_{ij} - \hat{c}_{i,n+1} \right| \leq \|\text{fl}(C^f) - C^f\|_\infty \leq \gamma_n \|A^c\|_\infty \|B^r\|_\infty =: \lambda
\]
Performance Analysis

- The time complexity of generating row or column checksum for input matrices can be expressed as follow.

\[T_{\text{encode}} = 4N^2\gamma \] \hfill (1)

- Because of the matrix size increases the overhead of computation is

\[T_{\text{comp}} = 2(N + 1) \times N \times (N + 1) - 2N^3 \]
\[= (4N^2 + 2N)\gamma \]
\[\approx 4N^2\gamma \] \hfill (2)

- If the program is to tolerate \(m \) errors, the overhead to detect a matrix is:

\[T_{\text{detect}} = 2mN^2\gamma \] \hfill (3)
Experimental Results

- Performance and overhead of on-line FTGEMM (Fault Tolerant General Matrix Multiply).
- Performance comparison between on-line FTGEMM, ABFT and TMR.
- Performance comparison between on-line FTGEMM and ATLAS.

We show tests done on Alamode machines provided by CCIT in Colorado School of Mines. The CPU one Alamode is Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz and theoretical peak FLOPS is 13.60 GFLOPS. For simplicity we test on square matrix of size 10,000 and 15,000
Special note

- The failure rate, or *Number of failures/execution* in the x-axis of all figures and texts in this section is a design parameter which refers to the maximum number of errors our implementation is able to tolerate during one matrix multiplication.

- Be aware that this number does not indicate our implementation is guaranteed to tolerate that many errors; this parameter should be set higher than expected actual failure rate of applications to ensure reliability.
Approx DGEMM(by ATLAS) runtime: 147s

Overhead of on-line FTGEMM (matrix size: 10000) on ALAMODE

- Overhead of Computation
- Error Recovery
- Error Detection
- Build Checksum Matrix

Number of failures/executions vs. Runtime (Second)
Approx DGEMM(by ATLAS) runtime: 147s

Performance of different strategies (matrix size: 10000) on ALAMODE

- on-line FTGEMM(D)
- ABFT
- TMR

Number of failures/executions vs. Runtime (Second)

Panruo Wu, Chong Ding, Longxiang Chen, Tifault Tolerant Matrix-Matrix Multiplication: Correcting Soft Errors On-Line

November 13, 2011
Approx DGEMM(by ATLAS) runtime: 147s

Performance of different failure rate (matrix size: 10000) on ALAMODE

Panruo Wu, Chong Ding, Longxiang Chen, Tifault Tolerant Matrix-Matrix Multiplication: Correcting Soft Errors On-Line
November 13, 2011 16 / 1
In this paper we extended the traditional ABFT matrix multiplication technique from off-line to on-line.

In our approach, soft errors are detected, located, and corrected in the middle of the computation in a timely manner, before they propagate.

Experimental results demonstrate that the proposed technique can correct one error per ten seconds with negligible performance penalty over ATLAS DGEMM().
That’s all, Thank you!