Mining event log patterns in HPC systems

Ana Gainaru

joint work with Franck Cappello and Bill Kramer

HPC Resilience Summit 2010: Workshop on Resilience for Exascale HPC
Table of contents

- Introduction
- Related work
- HELO (Hierarchical Event Log Organizer)
 - Offline clustering
 - Online classification
- Log files
- Results
- Conclusions
Introduction

• Find the representation of message types that exist in a log file

• Why?
 – Changes in the normal behavior of a message type could indicate a problem
 – Group of related messages - a better indicator of problems than individual messages
 • Anomalies are indicated by incomplete message sequences
 – Other open source tools perform poorly
Introduction

[2008-07-08 02:32:47][c1-0c1s5n0] 157 CMC Errors

Header Message

- Event: Header + Message
- Message
 - Constants - describe the message type
 - Variables – identify manipulated objects or states for the program
- Group template: $d^+\ CMC\ Errors$
Introduction

• HELO - Offline classification and online clustering

• Group wildcards: three types
 – d+ represents numeric tokens,
 – * represents any other single token
 – n+ represents all columns of tokens that have a value for some of the messages and don’t exist for others.

• Example
 – machine check interrupt (bit=0x1d): L2 dcache unit read parity error
 – machine check interrupt (bit=0x10): L2 DCU read error
 – machine check interrupt (bit=d+): L2 * * * n+
Related work

• Supervised clustering

• Unsupervised clustering
 – Group messages based on the similarity between their descriptions
 • Pattern matching
 • Apriori
 • K-mean
 • Latent Semantic Indexing

• Advantages HELO
Other tools

• Loghound and SLCT
 – Limitations
 • High dimensional without having a fixed number of attributes
 • Not able to discover clusters irrespective to how frequent the pattern instances appear in the input log file.

• IPLoM
 – Pattern matching algorithm
 • Searches for bijections between tokens from different messages
 – Limitations:
 • Syntactic depth of the mining process
Other tools

• **StrAp**
 - Offline and online
 - Numerical input data
 - Modifications made:
 - Unstructured text messages as input
 - Different lengths for messages

• **MTE**
 - Extracts two template sets:
 - Constants and variables
 - Limitation
 - Variable construction
 - *ciod: Error loading ./userfunc sqrt: invalid*
HELO algorithm - Offline

- Cluster goodness
 - Percentage of constant words
 - Over the average message length.
 - Default value: 40%
Splitting process

• Three type of words:
 – Numeric values – least priority
 – Hybrid tokens – extract the English words
 – English words – are left the way they are

• The column with:
 – The least number of distinct words, the most number of English words

Added 8 subnets and 409600 addresses to DB
address parity check..0
address parity check..1
Added 10 subnets and 589500 addresses to DB
data TLB error interrupt
Group reorganization

- If the splitting process splits constants
- Similarity between group templates 80%

Example:
- node card * check: missing u11 node
- node card * check: missing u01 node
- node card * check: missing * node
Online classification

1. Log message
2. Extract the most similar templates
3. Set of templates and similarities
 - if similarity 100%
 - Classify the message
 - else
 - Compute cluster goodness
 - if one cluster goodness > threshold
 - Modify template Classify message
 - else
 - Choose the best fit
 - New cluster
 - Group statistics

HPC Resilience Summit 2010: Workshop on Resilience for Exascale HPC, Santa Fe, 13th October 2010
Log files

<table>
<thead>
<tr>
<th>System</th>
<th>Messages</th>
<th>Time</th>
<th>Log type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlueGene/L</td>
<td>4,747,963</td>
<td>6 months</td>
<td>event and login logs</td>
</tr>
<tr>
<td>Mercury</td>
<td>>10 million</td>
<td>3 months</td>
<td>event logs</td>
</tr>
<tr>
<td>PNNL</td>
<td>4,750</td>
<td>4 years</td>
<td>event logs</td>
</tr>
<tr>
<td>Cray XT4</td>
<td>3,170,514</td>
<td>3 months</td>
<td>event, syslog, console</td>
</tr>
<tr>
<td>LANL</td>
<td>433,490</td>
<td>9 years</td>
<td>cluster node outages</td>
</tr>
</tbody>
</table>

Table 1. Log data statistics.

- Extracted groups from each log file manually to compute the performance
- All logs have a description and different characteristics
Log files

- LANL has a friendly format
- Cray has a large amount of event patterns
- Mercury has a large amount of total messages, a few hundred thousand events per day
- PNNL has a large number of groups but having a small amount of messages
- BlueGene, Mercury and Cray put a lot of semantic problems
Definitions

• Information retrieval measures:
 – True positives
 – False positives
 – False negatives
 – Precision - measure of exactness
 – Recall – measure of completeness
 – F-measure - evenly weights precision and recall into a single value
Experiments

• Offline/online

• Offline: two cases
 – Measure the corrected found groups
 – Measure the corrected classified messages

• Online
 – Determine the percentage of corrected classified events
Results – Offline – Case 1

Performance for corrected clustered templates

HPC Resilience Summit 2010: Workshop on Resilience for Exascale HPC, Santa Fe, 13th October 2010
Results – Offline – Case 1

• Semantic problems
 – \(fpr1 = 0x100556200000003e1004562008000815 \)
 – \(lr = 0x00205034 \) \(xer = 0x00000002 \)

• Message length
 – Corrective Measures SDE / DS2100 (upper) need to be replaced
 – Corrective Measures Upper DS2100 in need of Replacement

• Message frequency
Results – Offline – Case 2

Performance for corrected clustered messages

a) HELO b) StrAp c) IPLoM d) Loghound e) SLCT f) MTE
• Compare HELO with StrAp
• Divide each log into 10 sets:
 – One for training
 – 9 for testing
• The output:
 – Array of group ids, one value for each message received for classification.
Online

Performance for corrected clustered incoming events
- For each training set
Online

- Different methodology for both tools
- Training set with semantic problems
 - The distance between the two tools will be higher
- Many cluster messages with different length
 - The distance between the tool is smaller

Mean value for all test cases
Conclusions

• Event analysis needs an automatic and efficient clustering approach

• HELO extracts group templates
 – Are used to describe events
 – Are user-friendly

• Comparison with 5 different tools for 5 different log files
Conclusions

• Other tools:
 – Do not scale well for the size and dimensionality of logs
 – Have limitations in the syntactic depth of the mining
 – Have problems with messages with different length
 – Are unable to adapt the templates to new messages

• HELO performance:
 – Average precision and recall of 0.9
 – Increase the correct number of groups by a factor of 1.5
 – Decrease the number of false positives and negatives by an average factor of 4.
Future work

• Correlations between templates
 – Message sequences – time or location

• Analyzing changes in the normal behavior of a message type
 – Precursor for faults
 – Influences on other message types
Q&A

• Thank you

Ana Gainaru
againaru@ncsa.illinois.edu