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Introduction
Figure 2: Average electric power between
October 2012 and September 2013

Figure 3: Electric power (red line) and PUE
(blue line) for 60 hours from November 12 to
November 14, 2013

Figure 4: Failure rates in terms of hardware compo-
nents and the number of failures resulting in abnor-
mal termination of jobs

Figure 5: Number of failures in terms of
software components

components, i.e., “Compute rack,” “Storage,” and “Peripheral” groups. The compute rack
group includes the failures of parts inside the compute rack such as CPU, ICC, memory mod-
ule, SB and rack (sensor, PCI interface, etc.). The storage group includes the failures of hard
disk drives (HDD) and HDD controllers. The peripheral group includes the failures of parts
other than compute rack and storage components such as network switches and servers. Fig-
ure 4 shows the failure rate of each group. The solid line denotes the number of failures that
resulted in abnormal termination of jobs.

Compute rack system failure were caused by failures in the CPU, ICC, memory module,
SB, system disk, etc. Among them, failures affecting running jobs are the failures of the CPU,
ICC, and SB. The number of failures was less than 25 each month. It is obvious that the
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Figure 6: The K computer operation time between October 2012 and September 2013

RAS facilities of the K computer have resulted in a small number of failures. Storage and
peripheral failures do not result in serious system down because of the duplication of servers
and connection paths, and do not affect running jobs.In addition, the failure rate of compute
racks is much less than that of the storage and the peripherals group.

Figure 5 shows the number of software failures. The number of failures for the first five
months of official operation was relatively high. However, the number of software failures
decreased after some modifications and improvements were applied in March 2013. Major
software failures were caused in the system and operating software such as the file system and
the job manager.

Figure 6 shows the rate of trouble-free operation time (93.0%), scheduled maintenance time
(5.4%), and system failure time (1.6%) for 8,817 hours between October 2012 and September
2013. As can be seen, the system failure time is very short. The pie chart on the right shows a
breakdown of system failures that were found in file systems, the job scheduler, MPI libraries,
and others. As can be seen, the majority of system failures are caused by the file system. Some
file system failures are caused by original bugs in the Lustre file system; the bugs have been
reported to the Lustre community.

4 Job statistics

4.1 Job queues and job types

The current scheduling policy gives uses a fair chance for job execution. First-come and first-
serve (FCFS) and back-filling scheduling are adopted. Submitted jobs are placed at an appro-
priate space in node-time scheduling space by the job manager. Compute nodes are divided into
resource groups as job queues, and there are three groups, i.e., Small for jobs with 1–384 nodes,
Large for jobs with 385–36,864 nodes, and Huge for jobs with 36,865–82,944 nodes. During
normal operation, Small and Large resource groups are available and Huge is disabled. The
jobs in Huge are processed during a designated period (contiguous three days per month).

Depending on the execution pattern, four job types are available: normal jobs, step jobs,
bulk jobs, and interactive jobs. A normal job is a general batch job. A step job is a batch
job that applies an execution sequence or dependency to jobs. A bulk job is a set of multiple
normal jobs that are submitted simultaneously and executed with the different bulk numbers
provided. An interactive job is a job that is executed interactively.
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All applications running on large-scale platforms can be subject to
failures.
Checkpoint/Restart: default method used by long running HPC
applications to tolerate failures.
Jobs request N nodes from a batch scheduler and when a failure
happens, they need a new Allocation and they restart from the last
checkpoint.
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How long is the Wait Time?

Figure 10: Average waiting time

compiler options specified by users, and linked libraries. In addition, information for each
executed job was recorded.

Our final goal was to obtain knowledge on how choice of programming languages and par-
allelization methods affect the execution performance of programs; however, the information
recorded was insufficient for this goal. Thus, we plan to extend the content of the information
we collect. In this section, we show some of the results of the analysis based on the existing
information.

5.1 Languages

Three programming languages, Fortran, C, and C++, are available on the K computer. Fig-
ure 11 shows the rate of invocations for each compiler. It can be seen that Fortran was dominant,
although C and even C++ become quite popular in the area of HPC.

5.2 Thread parallelization

The advantage of intra-node thread parallelization can be taken with either OpenMP or a
compiler’s automatic parallelization. The OpenMP parallelization is invoked with a compiler
option “-Kopenmp,” and automatic parallelization is invoked with either “-Kparallel” or “-
Kvisimpact.” The proportions of invocations of each type of thread parallelization are shown
in Fig. 12.

Pure OpenMP parallelization is invoked three times more frequently than pure automatic
parallelization. Note that it is possible to mix OpenMP and automatic parallelization in a
program, and that mixed parallelization is used more frequently than pure automatic paral-
lelization. On the other hand, the case in which no thread-level parallelization is specified is
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The Wait Time is a function of the Allocation size, of the platform
occupency, and of the platform policy.

In realistic scenarios, applications can wait hours to days before being
scheduled.

Even if the policy favors failed applications to restart, allocating new
resources depends on occupency.
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Alternative to losing the Allocation

Use Spare Nodes

Allocation of size N includes F spare nodes. Application uses only
N − F nodes from the beginning
When a failure occurs, rollback on N − F nodes, mobilizing spare
Do so until F + 1 nodes have failed, then relinquish the Allocation

Use a Moldable Application

The Application spans on the entire Allocation of size N;
But it is moldable: if a failure occurs, it can restart on N − 1 nodes;
Continue on a decreasing number of nodes until this is not worth it

How many failures should we tolerate before relinquishing the
Allocation?

How many spare nodes should we keep?
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Platform Model

Mean Time Between Failures (MTBF): failures are IID, assume an
exponential distribution of mean µind

µi =
µind
i

Checkpoint duration is function of the number of nodes: applications
use Memtot memory and τio bandwith, thus

Ci =
Memtot

i × τio
Checkpoint interval is following the optimal Young/Daly
approximation: an application with i nodes checkpoints every√

2Ciµi

We assume that recovery time on i nodes is equivalent to checkpoint
time on i nodes: Ri = Ci

Wait Time is supposed constant, D
We denote by N the size of an allocation
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Applications Models: Rigid

A Rigid Application can only use a fixed number of nodes to progress

We allocate F nodes as spares, thus there are N − F nodes to
progress the rigid application

Checkpoint time, CN−F , and rollback time, RN−F , are constants

When the (F + 1)st failure strikes, the application has to wait D to
get a new allocation
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Applications Models: Moldable

A Moldable Application can use any number of nodes to progress.

Scalability is assumed to be perfect, so if the moldable application
takes a time Tp to complete with p nodes, to complete with q nodes,
it would take a time

q

p
Tp

We allocate N nodes to progress the moldable application at the
beginning, and after each restart this number decreases until we reach
F failures

When the (F + 1)st failure strikes, the application has to await D to
get a new allocation

Checkpoint time, Ci , and rollback time, Ri , are functions of the
number of nodes, i , currently surviving in the allocation
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Applications Models: GridShaped

A GridShaped Application can only use a composite number of nodes
to progress

Assuming N = p2 is a square, we allocate N nodes to progress the
GridShaped application at the beginning
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Applications Models: GridShaped

After the first failure, we redistribute the work on (p − 1)× p nodes,
removing the row that includes the failed node.

This creates (p − 1) spare nodes (the other surviving nodes of the
row)

As long as F is lower than the number of spare nodes, we restart on
the same grid
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Applications Models: GridShaped

If F is higher, we redistribute on a square grid of (p − 1)× (p − 1)
nodes, creating (p − 2) new spares

and so on until the (F + 1)st failure
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Valentin Le Fèvre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 10 / 25



Applications Models: GridShaped

Checkpoint time, Ci , and rollback time, Ri , are functions of the
number of nodes, i , currently involved in the application

Scalability is assumed to be perfect, so if the GridShaped application
takes a time Tp to complete with p nodes, to complete with q nodes,
it would take a time

q

p
Tp
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Objective

We consider long-lasting applications.

Thus we aim at maximizing the Yield : fraction of useful work during
the allocation length plus the wait time.

The Yield takes into account the number of spare nodes and the time
lost for the resilience strategy.

Example: for an allocation of 8 nodes with 2 spares, with a
checkpoint/restart strategy that represents to 20% of the time spent
computing and with a wait time of 5% the allocation length, the yield
would be: 6

8 × 0.8× 1
1.05 ≈ 0.57.
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Rigid Applications - Time

Time

R W C W /2 R W C W C W /2 D R W C

Fail-stop error Fail-stop error

Let TR be the time spent between two full restarts:

TR =
N−F∑
i=N

µi

+ D
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Valentin Le Fèvre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 13 / 25



Rigid Applications - Work

Time

R W C W /2 R W C W C W /2 D R W C

Fail-stop error Fail-stop error

The amount of time spent computing or checkpointing between two full
restarts is:

Tuseful =
N−F∑
i=N

(
µi

− (RN−F +

√
2CN−FµN−F

2
) · N − F

i

)

meaning that:

WR =
N − F

1 +
CN−F√

2CN−FµN−F

· Tuseful
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Rigid Applications - Yield

Time

R W C W /2 R W C W C W /2 D R W C

Fail-stop error Fail-stop error

So we can compute the Yield of a Rigid Application, YR :

YR =
WR

N · TR

Valentin Le Fèvre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 15 / 25



Moldable Applications - Time

Time

Ri Wi Ci
Wi
2
RN−F WN−F CN−F WN−F CN−F

WN−F

2 D RN WN CN

Fail-stop error Fail-stop error

Let TM be the time spent between two full restarts:

TM =
N−F∑
i=N

µi + D = TR
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Moldable Applications - Work

Time

Ri Wi Ci
Wi
2
RN−F WN−F CN−F WN−F CN−F

WN−F

2 D RN WN CN

Fail-stop error Fail-stop error

The amount of work effectively done between two full restarts is

WM =
N−F∑
i=N

i

1 + Ci√
2Ciµi

·
(
µi

− (Ri +

√
2Ciµi

2
)

)
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Moldable Applications - Yield

Time

Ri Wi Ci
Wi
2
RN−F WN−F CN−F WN−F CN−F

WN−F

2 D RN WN CN

Fail-stop error Fail-stop error

So we can compute the Yield of a Moldable Application, YM :

YM =
WM

N · TM
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Main Applicative Scenario

Unless specified otherwise:

N = 22, 500 = 150× 150

µind = 20 years

CN = 2 minutes = RN

Values inspired by Titan supercomputer: 18,688 compute nodes, a few failures per day (node

MTBF between 18 and 24 years), checkpointing 30% of the 100TB of platform memory on the

1.4TB/s theoretical I/O bandwidth would take about 2 minutes.

We compare with No Spare Application, i.e. when we pay D after each
failure.
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Optimal yield as function of the wait time
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⇒ the impact of wait time is mitigated.
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Optimal number of failures tolerated between two full
restarts

Recall that N = 22, 500
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⇒ less than 2% of total resources.
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Optimal length of allocations
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⇒ major difference between Moldable and Rigid approaches: bigger
chance to complete before end of allocation for Moldable applications.
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Maximum wait time allowed to reach a target yield
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Conclusion

Inclusion of a very small amount of spare nodes in applications yield
tremendous benefits.

⇒ 1% spare nodes allows to keep the yield above 89%, for any kind of
applications, even with a day of wait time.

Current strategy tries to reduce the wait time by favoring applications
subject of failures.

⇒ Yet, even with a wait time in minutes, the yield drops extremely fast.

Moldable approaches are comparable in efficiency to Rigid
approaches.

⇒ This is a consequence of the small number of optimal spares.
⇒ This is also a consequence of the Rollback/Recovery approach.

Future Work: look at application-specific approaches.

Valentin Le Fèvre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 25 / 25


	Introduction
	Execution model and application types
	Expected yield
	Simulations and results
	Conclusion

