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Introduction
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K. Yamamoto et al., “The K computer Operations: Experiences and Statistics”, Elsevier
Procedia Computer Science, Volume 29, 2014, Pages 576-585

o All applications running on large-scale platforms can be subject to
failures.

@ Checkpoint/Restart: default method used by long running HPC
applications to tolerate failures.

@ Jobs request N nodes from a batch scheduler and when a failure
happens, they need a new Allocation and they restart from the last
checkpoint.
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How long is the Wait Time?

1-384 nodes 385 - 1024 nodes 1025 - 4096 nodes 4097 - 12288 nodes 12289 - 36864 nodes

Average waiting time (h)

K. Yamamoto et al., “The K computer Operations: Experiences and Statistics”, Elsevier
Procedia Computer Science, Volume 29, 2014, Pages 576-585

@ The Wait Time is a function of the Allocation size, of the platform
occupency, and of the platform policy.

@ In realistic scenarios, applications can wait hours to days before being
scheduled.

@ Even if the policy favors failed applications to restart, allocating new
resources depends on occupency.
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Alternative to losing the

@ Use Spare Nodes

o Allocation of size N includes F spare nodes. Application uses only
N — F nodes from the beginning

o When a failure occurs, rollback on N — F nodes, mobilizing spare

e Do so until F+ 1 nodes have failed, then relinquish the Allocation
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Alternative to losing the

@ Use Spare Nodes
o Allocation of size N includes F spare nodes. Application uses only
N — F nodes from the beginning
o When a failure occurs, rollback on N — F nodes, mobilizing spare
e Do so until F+ 1 nodes have failed, then relinquish the Allocation

@ Use a Moldable Application

o The Application spans on the entire Allocation of size N,
o But it is moldable: if a failure occurs, it can restart on N — 1 nodes;
o Continue on a decreasing number of nodes until this is not worth it
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Alternative to losing the

@ Use Spare Nodes

o Allocation of size N includes F spare nodes. Application uses only
N — F nodes from the beginning
o When a failure occurs, rollback on N — F nodes, mobilizing spare
e Do so until F+ 1 nodes have failed, then relinquish the Allocation
@ Use a Moldable Application

o The Application spans on the entire Allocation of size N,
o But it is moldable: if a failure occurs, it can restart on N — 1 nodes;
o Continue on a decreasing number of nodes until this is not worth it

How many failures should we tolerate before relinquishing the
Allocation?
How many spare nodes should we keep?
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Outline

© Execution model and application types

Valentin Le Feévre et. al (ENS Lyon) Performance of moldable applications



Platform Model

@ Mean Time Between Failures (MTBF): failures are 11D, assume an
exponential distribution of mean ;g
_ Min

i .
I

@ Checkpoint duration is function of the number of nodes: applications
use Mem;,: memory and 7j, bandwith, thus

_ Memio;
P I X Tio
@ Checkpoint interval is following the optimal Young/Daly
approximation: an application with i nodes checkpoints every

V2GCip;

@ We assume that recovery time on i/ nodes is equivalent to checkpoint
time on i/ nodes: R; = C;

o Wait Time is supposed constant, D

@ We denote by N the size of an allocation
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Applications Models: Rigid

@ A Rigid Application can only use a fixed number of nodes to progress

@ We allocate F nodes as spares, thus there are N — F nodes to
progress the rigid application
@ Checkpoint time, Cy_F, and rollback time, Ry_F, are constants

@ When the (F + 1)* failure strikes, the application has to wait D to
get a new allocation
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Applications Models: Moldable

A Moldable Application can use any number of nodes to progress.

Scalability is assumed to be perfect, so if the moldable application
takes a time T, to complete with p nodes, to complete with g nodes,
it would take a time

I

—Ip

p
We allocate N nodes to progress the moldable application at the
beginning, and after each restart this number decreases until we reach
F failures

When the (F + 1)* failure strikes, the application has to await D to
get a new allocation

@ Checkpoint time, C;, and rollback time, R;, are functions of the
number of nodes, i, currently surviving in the allocation
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Applications Models: GridShaped

0|1]2[3[4]5
6]|7]8[9[10[11
12[13]14]15]|16|17
18(19]20]21|22|23
24|25|26)27(28|29
30|31|32|33[34|35

(a) Failure happens on
node 20 (p=6)

@ A GridShaped Application can only use a composite number of nodes
to progress

e Assuming N = p? is a square, we allocate NV nodes to progress the
GridShaped application at the beginning
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Applications Models: GridShaped

o[1]2]3]4]5] [o[1]2]3]4][5
6|7[8]o10[11] [6]7]8]9]10[11
1213[14]15[16[17]_ [12[13]14]15[16[17
18[19]20]21]22]23
24|25]26|27|28]20] [18]19]20]21]22[23
30[31]32[33[3435] [24]25]26]27]28]29
(a) Failure happens on (b) The nodes on the row

node 20 (p=6) including the failure
become spare nodes

o After the first failure, we redistribute the work on (p — 1) x p nodes,
removing the row that includes the failed node.

@ This creates (p — 1) spare nodes (the other surviving nodes of the
row)

@ As long as F is lower than the number of spare nodes, we restart on
the same grid
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Applications Models: GridShaped

0|1]2[3[4]5 0|1]2|3|4][5 0112|3418
6]|7]8[9[10[11 6(7]8]|9[10[11 718]9]|10/11
12[13[14]15]|16 17_. 12]13/14[15]16)17  |12[13]|14]15/16{17
18(19]20]21|22|23 6
24|25|26)27(28|29 18[19]20]21|22|23 18 20 |34 22|23
30|31|32|33[34|35 24|25|26)|27|28|29 24 3 27 5329

(a) Failure happens on (b) The nodes on the row (¢) More failed nodes are
node 20 (p=6) including the failure substituted by the
become spare nodes spare nodes

e If F is higher, we redistribute on a square grid of (p — 1) x (p — 1)
nodes, creating (p — 2) new spares

@ and so on until the (F + 1)** failure
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Applications Models: GridShaped

6789 10[11] [6]7[8]o]10]n 7] 89 [10[11
12[13[1a[15[16[17 13[14[15[16[17]  [12[13[1a[15[16[17]
18]19[20]21{22[23 F B e
24]25)26|27]28]20 1920[21]22][23|  [18]19]20 [ 22[23
3031[32[33[34[35| [24]25]26|27[28[20] |22 Fs B

o[1]2]s[4]s] [o]1]2]3]4]5 E1234

(a) Failure happens on (b) The nodes on the row (c) More failed nodes are (d) When the spare node
node 20 (p=6) including the failure substituted by the runs out, new column
become spare nodes spare nodes becomes spare nodes

(p=5)

e If F is higher, we redistribute on a square grid of (p — 1) x (p — 1)
nodes, creating (p — 2) new spares

@ and so on until the (F + 1)** failure
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Applications Models: GridShaped

o[1]2]s[4]s] [o]1]2]3]4]5 E1234

6789 10[11] [6]7[8]o]10]n 7] 89 [10[11
12[13[14[15[16[17| _ [12[13[1a[15[16[17|  [12[13[14]15[16[17]|
18|19[20]21(22[23| ~ [Si|S kRN S:]Sa]Ss] |6
24|25|26|27]28]20| [18]19]20]21]22]23|  [18]19]20 [ 22]23
3031[32[33[34[35| [24]25]26|27[28[20] |22 Fs B

(a) Failure happens on (b) The nodes on the row (c) More failed nodes are (d) When the spare node
node 20 (p=6) including the failure substituted by the runs out, new column
become spare nodes spare nodes becomes spare nodes

(p=5)

@ Checkpoint time, C;, and rollback time, R;, are functions of the
number of nodes, /i, currently involved in the application

@ Scalability is assumed to be perfect, so if the
takes a time T, to complete with p nodes, to complete with g nodes,

it would take a time
ar
p'P
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@ We consider long-lasting applications.

@ Thus we aim at maximizing the Yield: fraction of useful work during
the allocation length plus the wait time.

@ The Yield takes into account the number of spare nodes and the time
lost for the resilience strategy.

@ Example: for an allocation of 8 nodes with 2 spares, with a
checkpoint/restart strategy that represents to 20% of the time spent
computing and with a wait time of 5% the allocation length, the yield
would be: g x 0.8 x ﬁ ~ 0.57.
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Outline

© Expected yield
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Rigid Applications - Time

Fail-stop error Fail-stop error

Rl w JelwAar] w Je] w Jewd o Rl w Jc

Time

Let 7r be the time spent between two full restarts:

N—F
Tr = Z Hi
i=N
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Rigid Applications - Time

Fail-stop error Fail-stop error

Rl w JelwAar] w Je] w Jewd o Rl w Jc

Time

Let 7r be the time spent between two full restarts:

N—F

TR: Z,U’I+D

i=N
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Rigid Applications - Work

Fail-stop error Fail-stop error

Rl w JeJwdr] w Je] w Jelwq o Rl w |c

Time

The amount of time spent computing or checkpointing between two full
restarts is:

N—F

T useful = Z Hi

i=N
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Rigid Applications - Work

Fail-stop error Fail-stop error

Rl w JeJwdr] w Je] w Jelwq o Rl w |c

Time

The amount of time spent computing or checkpointing between two full
restarts is:

L V2CN_FUN-F
Tuseful = Z Hi — (RN—F + —)

- 2
i=N
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Rigid Applications - Work

Fail-stop error Fail-stop error

Rl w JeJwdr] w Je] w Jelwq o Rl w |c

Time

The amount of time spent computing or checkpointing between two full
restarts is:

p= V2C N—F
N—FIN-F
Tusers = Y | 1 — (Ru—r + 5 ENZEY.

i

i=N
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Rigid Applications - Work

Fail-stop error Fail-stop error

Rl w JeJwdr] w Je] w Jelwq o Rl w |c

Time

The amount of time spent computing or checkpointing between two full
restarts is:

p= V2C N—F
N—FIN-F
Tusers = Y | 1 — (Ru—r + 5 ENZEY.

i

i=N
meaning that:
N-—F
WR = 1 Ch_r : Tuseful
4 oNoF
V2CN—FpN—F
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Rigid Applications - Yield

Fail-stop error Fail-stop error

Rl w |T|W/2R w |7| w |T|W/2 D Rl w |T

Time

So we can compute the Yield of a Rigid Application, Vg:

Wr

YR= N Ts
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Moldable Applications - Time

Fail-stop error Fail-stop error
Ri W; G| % Rv-ft Wnr FN—% Win-F FN—}% D Ry Wi Cn
Time

Let Ty be the time spent between two full restarts:

N—F

TM:ZNi+D:TR

i=N
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Moldable Applications - Work

Fail-stop error Fail-stop error
R; w; G| %WRn-g Wn_r FN—} Wy r  Cy s D Ry Wy Cn
Time

The amount of work effectively done between two full restarts is

N—F ;
Wy = 11 G : (,Ui
- 1+ aem
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Moldable Applications - Work

Fail-stop error Fail-stop error

R Wi G| %WRn-g Wn_r FN—} Wn-r Cn- W’;’F

Rn Wiy Cy

Time

The amount of work effectively done between two full restarts is

N-F
WM:ZC,'(M—(R,'+
i=N

V2Cipi

m)>
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Moldable Applications - Yield

Fail-stop error Fail-stop error
Ri W, G| YRn-t Wn-r IENJ[ Wn-r En— W’;’F D Ry Wi Cn
Time

So we can compute the Yield of a Moldable Application, YV:

Wm

M= N7
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Outline

e Simulations and results
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Main Applicative Scenario

Unless specified otherwise:

e N =22 500 =150 x 150
@ [liing = 20 years

o Cy = 2 minutes = Ry

Values inspired by Titan supercomputer: 18,688 compute nodes, a few failures per day (node
MTBF between 18 and 24 years), checkpointing 30% of the 100TB of platform memory on the
1.4TB/s theoretical 1/O bandwidth would take about 2 minutes.

We compare with No Spare Application, i.e. when we pay D after each
failure.

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018



Optimal yield as function of the wait time
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Wait Time (h)
= the impact of wait time is mitigated.
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Optimal number of failures tolerated between two full

restarts

Recall that N = 22,500
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Wait Time (h)
= less than 2% of total resources.
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' of allocations
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Wait Time (h)
= major difference between MOLDABLE and RIGID approaches: bigger
chance to complete before end of allocation for MOLDABLE applications.
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Maximum wait time allowed to reach a target yield
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Target Yield
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Conclusion

@ Inclusion of a very small amount of spare nodes in applications yield
tremendous benefits.
= 1% spare nodes allows to keep the yield above 89%, for any kind of
applications, even with a day of wait time.
@ Current strategy tries to reduce the wait time by favoring applications
subject of failures.
= Yet, even with a wait time in minutes, the yield drops extremely fast.
@ Moldable approaches are comparable in efficiency to Rigid
approaches.
= This is a consequence of the small number of optimal spares.
= This is also a consequence of the Rollback/Recovery approach.

Future Work: look at application-specific approaches.
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