Do moldable applications perform better
on failure-prone HPC platforms?

Herault?, Atsushi Hori3, Yves Robert!:2, Jack DongarraZ4

ILaboratoire LIP, Ecole Normale Supérieure de Lyon & Inria, France
2University of Tennessee, Knoxville TN, USA
3RIKEN Center for Computational Science, Japan
4University of Manchester, UK

August 28, 2018

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018

Introduction

system failure
scheduled (job scheduler)
maintenance

5.4%

= Compute rack
= Storage
= Peripheral
5, = offaiures brought abnormal end to jobs

system failure

1.00% /

non-trouble
operation
s 93.0%

Failure rate
g
=

K. Yamamoto et al., “The K computer Operations: Experiences and Statistics”, Elsevier
Procedia Computer Science, Volume 29, 2014, Pages 576-585

o All applications running on large-scale platforms can be subject to
failures.

@ Checkpoint/Restart: default method used by long running HPC
applications to tolerate failures.

@ Jobs request N nodes from a batch scheduler and when a failure
happens, they need a new Allocation and they restart from the last
checkpoint.

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018

How long is the Wait Time?

1-384 nodes 385 - 1024 nodes 1025 - 4096 nodes 4097 - 12288 nodes 12289 - 36864 nodes

Average waiting time (h)

K. Yamamoto et al., “The K computer Operations: Experiences and Statistics”, Elsevier
Procedia Computer Science, Volume 29, 2014, Pages 576-585

@ The Wait Time is a function of the Allocation size, of the platform
occupency, and of the platform policy.

@ In realistic scenarios, applications can wait hours to days before being
scheduled.

@ Even if the policy favors failed applications to restart, allocating new
resources depends on occupency.

Valentin Le Fevre et. al (ENS Lyon) Performance of moldable applications

Alternative to losing the

@ Use Spare Nodes

o Allocation of size N includes F spare nodes. Application uses only
N — F nodes from the beginning

o When a failure occurs, rollback on N — F nodes, mobilizing spare

e Do so until F+ 1 nodes have failed, then relinquish the Allocation

Valentin Le Feévre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 4 /25

Alternative to losing the

@ Use Spare Nodes
o Allocation of size N includes F spare nodes. Application uses only
N — F nodes from the beginning
o When a failure occurs, rollback on N — F nodes, mobilizing spare
e Do so until F+ 1 nodes have failed, then relinquish the Allocation

@ Use a Moldable Application

o The Application spans on the entire Allocation of size N,
o But it is moldable: if a failure occurs, it can restart on N — 1 nodes;
o Continue on a decreasing number of nodes until this is not worth it

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 4 /25

/

Alternative to losing the

@ Use Spare Nodes

o Allocation of size N includes F spare nodes. Application uses only
N — F nodes from the beginning
o When a failure occurs, rollback on N — F nodes, mobilizing spare
e Do so until F+ 1 nodes have failed, then relinquish the Allocation
@ Use a Moldable Application

o The Application spans on the entire Allocation of size N,
o But it is moldable: if a failure occurs, it can restart on N — 1 nodes;
o Continue on a decreasing number of nodes until this is not worth it

How many failures should we tolerate before relinquishing the
Allocation?
How many spare nodes should we keep?

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 4 /25

/

Outline

@ Introduction

© Execution model and application types
© Expected yield

@ Simulations and results

© Conclusion

August 28, 2018

5/ 25

Valentin Le Feévre et. al (ENS Lyon) Performance of moldable applications

Outline

© Execution model and application types

Valentin Le Feévre et. al (ENS Lyon) Performance of moldable applications

Platform Model

@ Mean Time Between Failures (MTBF): failures are 11D, assume an
exponential distribution of mean ;g
_ Min

i .
I

@ Checkpoint duration is function of the number of nodes: applications
use Mem;,: memory and 7j, bandwith, thus

_ Memio;
P I X Tio
@ Checkpoint interval is following the optimal Young/Daly
approximation: an application with i nodes checkpoints every

V2GCip;

@ We assume that recovery time on i/ nodes is equivalent to checkpoint
time on i/ nodes: R; = C;

o Wait Time is supposed constant, D

@ We denote by N the size of an allocation

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 7/25

Applications Models: Rigid

@ A Rigid Application can only use a fixed number of nodes to progress

@ We allocate F nodes as spares, thus there are N — F nodes to
progress the rigid application
@ Checkpoint time, Cy_F, and rollback time, Ry_F, are constants

@ When the (F + 1)* failure strikes, the application has to wait D to
get a new allocation

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 8/25

Applications Models: Moldable

A Moldable Application can use any number of nodes to progress.

Scalability is assumed to be perfect, so if the moldable application
takes a time T, to complete with p nodes, to complete with g nodes,
it would take a time

I

—Ip

p
We allocate N nodes to progress the moldable application at the
beginning, and after each restart this number decreases until we reach
F failures

When the (F + 1)* failure strikes, the application has to await D to
get a new allocation

@ Checkpoint time, C;, and rollback time, R;, are functions of the
number of nodes, i, currently surviving in the allocation

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 9/25

Applications Models: GridShaped

0|1]2[3[4]5
6]|7]8[9[10[11
12[13]14]15]|16|17
18(19]20]21|22|23
24|25|26)27(28|29
30|31|32|33[34|35

(a) Failure happens on
node 20 (p=6)

@ A GridShaped Application can only use a composite number of nodes
to progress

e Assuming N = p? is a square, we allocate NV nodes to progress the
GridShaped application at the beginning

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 10 / 25

Applications Models: GridShaped

o[1]2]3]4]5] [o[1]2]3]4][5
6|7[8]o10[11] [6]7]8]9]10[11
1213[14]15[16[17]_ [12[13]14]15[16[17
18[19]20]21]22]23
24|25]26|27|28]20] [18]19]20]21]22[23
30[31]32[33[3435] [24]25]26]27]28]29
(a) Failure happens on (b) The nodes on the row

node 20 (p=6) including the failure
become spare nodes

o After the first failure, we redistribute the work on (p — 1) x p nodes,
removing the row that includes the failed node.

@ This creates (p — 1) spare nodes (the other surviving nodes of the
row)

@ As long as F is lower than the number of spare nodes, we restart on
the same grid

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 10 / 25

Applications Models: GridShaped

0|1]2[3[4]5 0|1]2|3|4][5 0112|3418
6]|7]8[9[10[11 6(7]8]|9[10[11 718]9]|10/11
12[13[14]15]|16 17_. 12]13/14[15]16)17 |12[13]|14]15/16{17
18(19]20]21|22|23 6
24|25|26)27(28|29 18[19]20]21|22|23 18 20 |34 22|23
30|31|32|33[34|35 24|25|26)|27|28|29 24 3 27 5329

(a) Failure happens on (b) The nodes on the row (¢) More failed nodes are
node 20 (p=6) including the failure substituted by the
become spare nodes spare nodes

e If F is higher, we redistribute on a square grid of (p — 1) x (p — 1)
nodes, creating (p — 2) new spares

@ and so on until the (F + 1)** failure

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 10 / 25

Applications Models: GridShaped

6789 10[11] [6]7[8]o]10]n 7] 89 [10[11
12[13[1a[15[16[17 13[14[15[16[17] [12[13[1a[15[16[17]
18]19[20]21{22[23 F B e
24]25)26|27]28]20 1920[21]22][23| [18]19]20 [22[23
3031[32[33[34[35| [24]25]26|27[28[20] |22 Fs B

o[1]2]s[4]s] [o]1]2]3]4]5 E1234

(a) Failure happens on (b) The nodes on the row (c) More failed nodes are (d) When the spare node
node 20 (p=6) including the failure substituted by the runs out, new column
become spare nodes spare nodes becomes spare nodes

(p=5)

e If F is higher, we redistribute on a square grid of (p — 1) x (p — 1)
nodes, creating (p — 2) new spares

@ and so on until the (F + 1)** failure

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 10 / 25

Applications Models: GridShaped

o[1]2]s[4]s] [o]1]2]3]4]5 E1234

6789 10[11] [6]7[8]o]10]n 7] 89 [10[11
12[13[14[15[16[17| _ [12[13[1a[15[16[17| [12[13[14]15[16[17]|
18|19[20]21(22[23| ~ [Si|S kRN S:]Sa]Ss] |6
24|25|26|27]28]20| [18]19]20]21]22]23| [18]19]20 [22]23
3031[32[33[34[35| [24]25]26|27[28[20] |22 Fs B

(a) Failure happens on (b) The nodes on the row (c) More failed nodes are (d) When the spare node
node 20 (p=6) including the failure substituted by the runs out, new column
become spare nodes spare nodes becomes spare nodes

(p=5)

@ Checkpoint time, C;, and rollback time, R;, are functions of the
number of nodes, /i, currently involved in the application

@ Scalability is assumed to be perfect, so if the
takes a time T, to complete with p nodes, to complete with g nodes,

it would take a time
ar
p'P

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 10 / 25

@ We consider long-lasting applications.

@ Thus we aim at maximizing the Yield: fraction of useful work during
the allocation length plus the wait time.

@ The Yield takes into account the number of spare nodes and the time
lost for the resilience strategy.

@ Example: for an allocation of 8 nodes with 2 spares, with a
checkpoint/restart strategy that represents to 20% of the time spent
computing and with a wait time of 5% the allocation length, the yield
would be: g x 0.8 x ﬁ ~ 0.57.

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 11 /25

Outline

© Expected yield

Valentin Le Feévre et. al (ENS Lyon) Performance of moldable applications gust 28, 2018 12 /25

Rigid Applications - Time

Fail-stop error Fail-stop error

Rl w JelwAar] w Je] w Jewd o Rl w Jc

Time

Let 7r be the time spent between two full restarts:

N—F
Tr = Z Hi
i=N

Valentin Le Feévre et. al (ENS Lyon) Performance of moldable applications August 28, 2018

Rigid Applications - Time

Fail-stop error Fail-stop error

Rl w JelwAar] w Je] w Jewd o Rl w Jc

Time

Let 7r be the time spent between two full restarts:

N—F

TR: Z,U’I+D

i=N

Valentin Le Feévre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 13 /25

Rigid Applications - Work

Fail-stop error Fail-stop error

Rl w JeJwdr] w Je] w Jelwq o Rl w |c

Time

The amount of time spent computing or checkpointing between two full
restarts is:

N—F

T useful = Z Hi

i=N

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 14 / 25

Rigid Applications - Work

Fail-stop error Fail-stop error

Rl w JeJwdr] w Je] w Jelwq o Rl w |c

Time

The amount of time spent computing or checkpointing between two full
restarts is:

L V2CN_FUN-F
Tuseful = Z Hi — (RN—F + —)

- 2
i=N

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 14 / 25

Rigid Applications - Work

Fail-stop error Fail-stop error

Rl w JeJwdr] w Je] w Jelwq o Rl w |c

Time

The amount of time spent computing or checkpointing between two full
restarts is:

p= V2C N—F
N—FIN-F
Tusers = Y | 1 — (Ru—r + 5 ENZEY.

i

i=N

Valentin Le Feévre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 14 / 25

Rigid Applications - Work

Fail-stop error Fail-stop error

Rl w JeJwdr] w Je] w Jelwq o Rl w |c

Time

The amount of time spent computing or checkpointing between two full
restarts is:

p= V2C N—F
N—FIN-F
Tusers = Y | 1 — (Ru—r + 5 ENZEY.

i

i=N
meaning that:
N-—F
WR = 1 Ch_r : Tuseful
4 oNoF
V2CN—FpN—F

Valentin Le Feévre et. al (ENS Lyon) Performance of moldable applications August 28, 2018

Rigid Applications - Yield

Fail-stop error Fail-stop error

Rl w |T|W/2R w |7| w |T|W/2 D Rl w |T

Time

So we can compute the Yield of a Rigid Application, Vg:

Wr

YR= N Ts

Valentin Le Feévre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 15 / 25

Moldable Applications - Time

Fail-stop error Fail-stop error
Ri W; G| % Rv-ft Wnr FN—% Win-F FN—}% D Ry Wi Cn
Time

Let Ty be the time spent between two full restarts:

N—F

TM:ZNi+D:TR

i=N

Valentin Le Feévre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 16 / 25

Moldable Applications - Work

Fail-stop error Fail-stop error
R; w; G| %WRn-g Wn_r FN—} Wy r Cy s D Ry Wy Cn
Time

The amount of work effectively done between two full restarts is

N—F ;
Wy = 11 G : (,Ui
- 1+ aem

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 17 / 25

Moldable Applications - Work

Fail-stop error Fail-stop error

R Wi G| %WRn-g Wn_r FN—} Wn-r Cn- W’;’F

Rn Wiy Cy

Time

The amount of work effectively done between two full restarts is

N-F
WM:ZC,'(M—(R,'+
i=N

V2Cipi

m)>

Valentin Le Févre et. al (ENS Lyon)

Performance of moldable applications

August 28, 2018 17 / 25

Moldable Applications - Yield

Fail-stop error Fail-stop error
Ri W, G| YRn-t Wn-r IENJ[Wn-r En— W’;’F D Ry Wi Cn
Time

So we can compute the Yield of a Moldable Application, YV:

Wm

M= N7

Valentin Le Feévre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 18 / 25

Outline

e Simulations and results

Valentin Le Feévre et. al (ENS Lyon) Performance of moldable applications gust 28, 2018 19 / 25

Main Applicative Scenario

Unless specified otherwise:

e N =22 500 =150 x 150
@ [liing = 20 years

o Cy = 2 minutes = Ry

Values inspired by Titan supercomputer: 18,688 compute nodes, a few failures per day (node
MTBF between 18 and 24 years), checkpointing 30% of the 100TB of platform memory on the
1.4TB/s theoretical 1/O bandwidth would take about 2 minutes.

We compare with No Spare Application, i.e. when we pay D after each
failure.

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018

Optimal yield as function of the wait time

1 T T T T T T T T T
0.9
0.8 0.91 — T T T B
0.905
0.7) B
2 0.9
g 06 > i
> 0.895
05 0.89 B
02 4 6 8101214161820
041 - Wait Time (h) 7
Rigid —
0.3 | Moldable N
’ GridShaped —
0.2 Nqspare 1 I I I 1 I i I
0 2 4 6 8 10 12 14 16 18 20

Wait Time (h)
= the impact of wait time is mitigated.

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 21 /25

Optimal number of failures tolerated between two full

restarts

Recall that N = 22,500

350 T T T T T T T T T

c
kel
8 300
£
Qo
=)
2 250 | R
i
o
Lo 200 [i
Q
Ke)
2]
2 150 7
3
&
= 100 [f 1
3 Rigid ——
€ 50 [Moldable b
3 GridShaped

B A T S S N S NoSpare -

0 2 4 6 8 10 12 14 16 18 20

Wait Time (h)
= less than 2% of total resources.

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018

' of allocations

120 T T T T T T T T T

@)
5e]
=5
3
L
o}
S

100 7

80

Yield-Optimal Length of Allocation (days)
[2]
o
T

40 |
| Rigid —— |
20 Moldable
GridShaped
o i i i i i i NoSpare -
0 2 4 6 8 10 12 14 16 18 20

Wait Time (h)
= major difference between MOLDABLE and RIGID approaches: bigger
chance to complete before end of allocation for MOLDABLE applications.

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 23 /25

Maximum wait time allowed to reach a target yield

3 — Rigid
10° 4 —— Moldable
——— GridShaped
= NoSpare
U 102
£
|_
=
©
; 101_
€
=}
€
>—< 100 4
©
=
10-1 4
0.80 0.82 0.84 0.86 0.88 0.90

Target Yield

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 24 / 25

Conclusion

@ Inclusion of a very small amount of spare nodes in applications yield
tremendous benefits.
= 1% spare nodes allows to keep the yield above 89%, for any kind of
applications, even with a day of wait time.
@ Current strategy tries to reduce the wait time by favoring applications
subject of failures.
= Yet, even with a wait time in minutes, the yield drops extremely fast.
@ Moldable approaches are comparable in efficiency to Rigid
approaches.
= This is a consequence of the small number of optimal spares.
= This is also a consequence of the Rollback/Recovery approach.

Future Work: look at application-specific approaches.

Valentin Le Févre et. al (ENS Lyon) Performance of moldable applications August 28, 2018 25 /25

	Introduction
	Execution model and application types
	Expected yield
	Simulations and results
	Conclusion

