
FINJ: A Fault Injection Tool for 

HPC Systems
A. Netti, Z. Kiziltan, O. Babaoglu, A. Sirbu, A. Bartolini 

and A. Borghesi
Department of Computer Science and Engineering (DISI), University of Bologna

11° Resilience Workshop, 28/08/2018



Introduction

• Exascale systems are the current goal of the 

HPC community

• Will be attained through sheer parallelism

– Increased power consumption

– Excessively-high failure rates

• More intelligent and effective resiliency

techniques must be developed



Introduction

• Fault injection: the deliberate triggering of faults 

in a system to research resiliency techniques

• Most available frameworks are very specific

• Our contribution, the FINJ framework

– Integration of different fault types

– Workload support for complex experiments

– Ease of use and customizability



Outline

• Overview of FINJ

• Implementation

• Usage Example

• Live Demo

• Conclusions



Overview of FINJ

• FINJ is based on tasks

– Fault-triggering programs or HPC applications

– Can be any executable file

– Can be pinned to specific cores

– Tied to a specific duration and starting time

• A set of task specifications makes a workload

– Workloads are in CSV format

– A specific run of a workload is an injection session



Overview of FINJ

FINJ Task Injector

Coordination

Application-level

anomalies

OS and Kernel-level

fault injection

Hardware-level

fault injection

Task scheduling

Management of 

subprocesses

Output collection

Execution of HPC 

applications

Fault triggering

Restoring healthy

system state



Overview of FINJ

• FINJ Engine

– Starts and terminates tasks on target hosts

– Communicates all output to controllers

• FINJ Controller

– Orchestrates injection sessions with task commands

– Can control multiple engines

– Stores all output collected by engines

• TCP-based message protocol for communication



Implementation

• FINJ is written in Python

• Modular architecture, easy to customize 

• Extremely low overhead

• Main components

– Thread pool

– TCP-based client and server

– I/O readers and writers 



Implementation

• Additional components are supplied with FINJ

– A workload generator, to create large workloads with 

specific statistical features

– A collection of anomalies and fault-triggering

programs ready to be used

• Currently available on GitHub

• Open-source under the MIT license

https://github.com/AlessioNetti/fault_injector



Implementation

Target Node[s]Controller Node

Workload File

Benchmark and 

Fault Programs

Benchmark

Processes

Fault

Processes

Children Processes

<<injection commands>>

<<status messages>>

Execution Record

Fault Injection Controller Fault Injection Engine

Injection

Controller

Network 

Client
Injection

Engine

Network 

Server

Workload Generator

Configuration

Input Output

Configuration

Thread Pool



Implementation

Injection

Engine

Worker Thread

T
as

k
 Q

u
eu

e

p
u

sh
()

pop()

! "

!#

!$

!%

!&

! '
Wait for ! (
start time

Start task

! (

Wait for

termination

Collect

output

Thread Pool



Usage Example

• Usage example on a real HPC node

– 2x Intel E5-2630v3 CPUs, 128GB RAM, CentOS 7.3

• Intel HPL benchmark used to load the system

• Two faults in the workload

– leak: causes a memory leak

– cpufreq: reduces maximum allowed CPU frequency

• LDMS used to collect performance metrics



Usage Example

• Format of the workload

• Commands to instantiate FINJ locally

timestamp;duration;seqNum;isFault;cores;args
0;1723;1;False;0-7;./hpl lininput
355;244;2;True;6;sudo ./cpufreq 258
914;291;3;True;4;./leak 316

python finj_engine -p 30000 &
python finj_controller -w sample.csv -a localhost:30000



Usage Example

• Output of the injection session

timestamp;type;args;seqNum;duration;isFault;cores;error
1529172604;command_session_s;None;None;None;None;None;None
1529172624;status_start;./hpl lininput;1;1723;False;0-7;None
1529172979;status_start;sudo ./cpufreq 258;2;258;True;6;None
1529173237;status_end;sudo ./cpufreq 258;2;258;True;6;None
1529173538;status_start;./leak 316;3;316;True;4;None
1529173855;status_end;./leak 316;3;316;True;4;None
1529174347;status_end;./hpl lininput;1;1723;False;0-7;None
1529174348;command_session_e;None;None;None;None;None;None



Usage Example



Usage Example

Presentation continues with a 

live demo of the FINJ tool



Conclusions

• FINJ is a flexible fault injection framework

– Can be integrated with any other fault injector

– Can control complex experiments

• Future work

– Testing at scale

– Integration with other transport methods

– Implementation of alternative task triggers


