
A soft implementation for
interrupting GPU kernels
Max M. Baird, Christian Fensch, Sven-
Bodo Scholz and Artjoms Šinkarovs

Checkpoint/Restart with GPUs
• GPUs run

asynchronously
• Synchronize with the

GPU
• Wait until GPU

finishes
• PROBLEM: Cannot

interrupt GPU

Checkpoint/Restart Libraries
• 2002. BLCR – No Support for GPUs
• 2009. CheCUDA – Compatible with BLCR
• 2011. NVCR – Similar to CheCUDA
• 2011. FTI – No support for GPUs

Checkpoint/Restart with GPU

Possible Approaches?
• Manually Rewrite kernels

– Can be tricky
• Automated approach?

– No interrupt
– What memory to transfer?

Solution: Soft Interrupt

Key Idea
Conceptually Reality

Key Idea
CUDA model Checks can be inserted

Idea of Soft Interrupt
• GPU • Host

Checkpoint/Restart
Extension

• Kernel executes in loop
• Thread groups check for

permission to continue

Checkpoint/Restart
Extension

• Kernel executes in loop
• Thread groups check for

permission to continue

A library to automate this
• Concise API

– 3 Macros
• Re-write kernel definition
• Re-write kernel launch
• Insert check in kernel

– 2 Wrappers
• Keep track of allocations on GPU
• Keep track of frees on GPU

https://bitbucket.org/maxbaird/cuda_backup/

https://bitbucket.org/maxbaird/cuda_backup/

Sources of Overhead
• Conditional checks in each thread
• Soft interrupts of a kernel
• Memory transfers

Kernel for Evaluating Overhead
__global__ void
kernel(unsigned long long n, unsigned long long
*res)
{
unsigned long long x=0;
for (unsigned long long i=0 ; i<n; i++){

x++;
}
*res = x ;

}

Experiment Environment
CPU AMD Opteron 6376

GPU Nvidia Titan-XP

CPU Memory 512 GB

GPU Memory 12 GB

Driver Version 384.81

CUDA Version 9.0

PCIe x16

Operating System Scientific Linux Release 7.4

Overhead of Conditional Check
kernel config <<<60, 1024>>>

Overhead of Conditional Check
kernel config <<<60, 1024>>>

Overhead of Soft Interrupt
kernel config <<<1320, 1024>>> iterations = 1.6 x 109

Memory Transfers
98.3% (11.9GB) allocated GPU memory, kernel config <<<1320, 1024>>>
iterations = 1.6 x 109

Achievements/Conclusions
• Negligible overhead for the kernel
• Very simple to mechanically transform kernels
• Potential limitations

– Global synchronization
• Should be broken into sepaparte kernels

– Small kernel launch configurations
• Don’t occur in practice with long running kernels

Future Work
• Integrating with the fault tolerance library FTI

from BSC
• Leverage the existing MPI and cluster support

of FTI
• Compiler integration

Questions?

