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Motivation

This work starts with the question “How resilient is multigrid to node
failures, and how do the recovery strategies used influence its
resilience?”

We use multigrid to solve a problem defined by a positive semidefinite
matrix. We use the conjugate gradient method as a reference.

Multigrid is optimal for some problems, while CG is the solver of
choice for positive-definite matrices

Carlos Pachajoa, Wilfried Gansterer August 28, 2017 4 / 32



Objectives

Understand the influence of the of the location of the node failure, its
size, the initial guess for the solution and the kind of interpolation
used for the reconstruction of the vectors on the cost of recovery for
multigrid and conjugate gradient.

Evaluate the preconditioned conjugate gradient method also for more
general problems taken from the SuitSparse Matrix Collection (Davis
and Hu 2011).
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Previous work I

Silent data corruption

(Mishra and Banerjee 2003)

Application of Algorithm-Based Fault Tolerance to the detection of
faults introduced in the interpolation and restriction operations of MG

Two dimensional Poisson

(Casas et al. 2012)

Impact of silent data corruption in an algebraic MG solver

(Ainsworth and Glusa 2017)

Two-grid model that takes silent data corruption into account

(Altenbernd and Göddeke 2017)

Detection and correction of soft failures for MG (Full approximation
scheme) by exploiting invariants in the maps between levels
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Previous work II

Node failures

(Langou et al. 2007; Agullo et al. 2013; Agullo et al. 2016)

Interpolation strategies to accelerate the recovery of Krylov solvers
from node failures

The strategies are costly but the reconstructed approximation has a
smaller error norm than the approximation before the node failure

We want to examine the impact of some of these interpolation
strategies on MG
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Problem description

A replacement node
takes over the affected 

part of the problem

Problem Reconstruct with linear interpolation

Reconstruct by filling with zeros
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Evaluation constellation

Different scenarios are considered for investigating the influence of the
following parameters:

Location of the node failure (Edge or center)

Size of the set affected by the node failure

Reconstruction strategy to be used (Linear interpolation or zero)

Initial guess (Zero or uniformly distributed random numbers)
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Parallel model

We assume that different nodes of a parallel machine work on
contiguous, non overlapping sets of indices

A node failure is represented as the loss of the information for the
corresponding set of indices in all vectors

We assume that the matrix and the right-hand side vector can be
recovered from safe storage after a node failure
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Data distribution among nodes

Poisson problem

2k + 1 grid points

2m nodes, m < k

The colors represent assignment to a node

SuitSparse matrices

Vector size N is fixed

b2−mNc

i b2−mNc
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Algorithms

Geometric multigrid

Worker 1 Worker 2 Worker 3 Worker 4

Worker 1 Worker 2
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Faster solution by mapping the
error between levels

Conjugate gradient

Taken from the lecture notes for Numerical Methods in Engi-
neering (e176) of the harvey Mudd College. Nikos Drakos and
Ross More. http://fourier.eng.hmc.edu/e176/lectures/

NM/node29.html

Solver of choice for SPD
matrices
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Test problems: Poisson problem

A one-dimensional linear diffusion problem.

x : [0, 1]→ R, ∆x = f , x(0) = x(1) = 0. (1)

Discretized with the three-point stencil 1
h2

[
1 −2 1

]
Problem size fixed at 216 + 1 grid points

Right-hand side is a vector of ones

Starting vector set to zero or drawn from a uniform probability
distribution in the interval [−0.5, 0.5]

Parallel workers with a set of grid points of size 26, 210 and 214

Terminate when the relative residual is below 10−5

Using MG, coarser grids are not reconstructed

Also using non-preconditioned CG
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Test problems: SuitSparse Matrix Collection

Name bcsstk28 mhd4800b
Nickname Wide-band Narrow-band

Application Solid mechanics Magnetohydrodynamics
Rows × columns 4410 × 4410 4800 × 4800

Non-zeros 219024 27520

These matrices were selected because

they represent one dimensional problems

are positive definite
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Test problems: SuitSparse Matrix Collection

Solved with preconditioned CG

Jacobi preconditioner
Gauss-Seidel preconditioner

Right-hand side is a vector of ones

Starting vector set to zero or drawn from a uniform probability
distribution in the interval [−0.5, 0.5]

Lost set of grid points have a size of 1/4, 1/8 or 1/16 of the number
of grid points of the vector

Terminate when the relative residual is below 10−5

Solved using PETSc
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Metric

Solver sta
rts

Solver converges

Solver converges

Node failure

i0

if ir

Unperturbed solver

Node failure introduced

Number of iterations
or V-cycles

Relative overhead due to a node failure = if +ir−i0
i0

Independent of the runtime
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Example: Results for the Poisson problem

0 2 4 6 8 10 12 14 16 18
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In MG, node failures are introduced at fixed times

In CG, node failures are introduced when the relative residual reaches
the value that MG had at the time of a failure
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Results for the Poisson problem:
Initialization with zeros
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Results for the Poisson problem:
Initialization with random values
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Independence of the location of the node failure in some
circumstances

Under the following conditions:
Solving the one-dimensional Poisson problem with a constant
right-hand side
A single node failure occurs
Reconstructing information of a lost node using linear interpolation
The solver is close to the solution

one can show that the increase in the residual due to a node failure is
independent of the location of the node failure
Because of the almost constant rate of convergence of MG, the
location of a node failure consequently has very little influence on the
overhead
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Results for the sparse matrices:
Wide-band matrix

No preconditioner
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These plots correspond to a randomized initial guess. The results are roughly the same for the

zero-initialized vector
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Results for the sparse matrices:
Narrow-band matrix
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These plots correspond to a randomized initial guess. The results are roughly the same for the

zero-initialized vector
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Conclusions for the Poisson problem

Proximity to the solution strongly influences MG

Relative overhead is smaller for random initial guesses

For the reconstruction with linear interpolation and MG, the location
of the node does not influence the overhead
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Conclusions for the SuitSparse matrices

Smaller overheads than for Poisson. The relative overhead is below
one for all cases
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Future work

Examination of algebraic multigrid for SPD matrices

Reconstruction of the state of the CG solver after a node failure

Carlos Pachajoa, Wilfried Gansterer August 28, 2017 30 / 32



References I

[1] Emmanuel Agullo et al. “Numerical recovery strategies for parallel resilient Krylov linear
solvers”. In: Numer Lin Algebra Appl 23.5 (2016), pp. 888–905.

[2] Emmanuel Agullo et al. Towards resilient parallel linear Krylov solvers: recover-restart
strategies. Research Report RR-8324. INRIA, 2013, p. 36.

[3] Mark Ainsworth and Christian Glusa. “Is the Multigrid Method Fault Tolerant? The
Two-Grid Case”. In: SIAM J. Sci. Comput. 39.2 (2017), pp. C116–C143. eprint:
https://doi.org/10.1137/16M1100691.

[4] Mirco Altenbernd and Dominik Göddeke. “Soft fault detection and correction for
multigrid”. In: The International Journal of High Performance Computing Applications
0.0 (2017), p. 1094342016684006. eprint:
http://dx.doi.org/10.1177/1094342016684006.

[5] Marc Casas et al. “Fault Resilience of the Algebraic Multi-grid Solver”. In: Proceedings of
the 26th ACM International Conference on Supercomputing. 2012, pp. 91–100.

[6] Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix Collection”.
In: ACM Trans. Math. Softw. 38.1 (2011), 1:1–1:25.

[7] Kuang-Hua Huang and J. A. Abraham. “Algorithm-Based Fault Tolerance for Matrix
Operations”. In: IEEE Trans. Comput. 33.6 (1984), pp. 518–528.

[8] J. Langou et al. “Recovery Patterns for Iterative Methods in a Parallel Unstable
Environment”. In: SIAM J. Sci. Comput. 30.1 (2007), pp. 102–116.

Carlos Pachajoa, Wilfried Gansterer August 28, 2017 31 / 32

https://doi.org/10.1137/16M1100691
http://dx.doi.org/10.1177/1094342016684006


References II

[9] A. Mishra and P. Banerjee. “An algorithm-based error detection scheme for the multigrid
method”. In: IEEE Trans. Comput. 52.9 (2003), pp. 1089–1099.

[10] U. Trottenberg, C. W. Oosterlee, and Anton Schüller. Multigrid. 2001.

Carlos Pachajoa, Wilfried Gansterer August 28, 2017 32 / 32



Backup slides: Geometric multigrid

Using Jacobi as a solver

High-frequency error
components can be quickly
reduced

Low-frequency error
components take a long time to
be reduced

Low-frequency components can
be transfered to a coarser grid,
where they have a relatively
higher frequency

Worker 1 Worker 2 Worker 3 Worker 4

Worker 1 Worker 2

Worker 1
R

e
strictio

n

In
te

rp
o
la

ti
o
n

Carlos Pachajoa, Wilfried Gansterer August 28, 2017 33 / 32



Backup slides: Results for wide-band matrix
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Backup slides: Results for narrow-band matrix
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