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Agenda

• Motivation and defining trust
• Building trust and why existing techniques 

only help partially
• What strategies?
• This is just a beginning
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Scientific Computing
from Petascale to Exascale

Scientists need:
•More complex physical models to account for more aspects of the physical 
phenomena being modeled (multi-physics)

•Increases in the resolution of the system variables to improve simulation accuracy

Climate Biology

Fusion Energy Brain 
simulation

Cosmology Material 
science

Modeling  at  multiple 
scales: atomic, 
genomic , cellular, 
ecosystems

Many scientific and engineering domains rely on numerical simulations
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NSF BlueWaters (1.5 PB of memory) is close to Titan in terms of architecture

BG/Q

Current Extreme Scale Systems
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• More cores (some times: fat/assistant cores)

• Deeper memory hierarchy

• Non volatile memory

• Fast I/O interface (network) on the chip

• Relatively higher cost for communications 
and I/O (lower bandwidth to file system)

• Higher disruption (fault, error, failure) rate

Future systems: even more complex
Cores + NOC:

Stacked memory on chip:

Silicon Photonics:
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Failures in the field and their techniques

Outcomes:
• Execution crashes
• Corrupted results 

Rollback recovery
Checkpoint/restart

Open problem:
some research 
results but not
use in production

Relate to the scientific data integrity problem
Relate to result trustworthiness
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What is Trust (briefly)?
• Trust research aims to improve the confidence (with some 

quantification if possible) on the results (of numerical simulations and data 
analytics)

• Trust focuses on the product of the execution 
 direct connection to the applications and users
 defines required execution properties based on the result expectations

• What could impair trust on scientific results: corruptions

• Trust is not a simple problem!
– Involves techniques for Validation and Verification, Uncertainty 

quantification, etc.
– Caused by Errors + Bugs + Attacks
– Involves users and their expectations!
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Why Trust research is important?
• There are many examples of execution producing bad results 

due to some form of result corruption.
• Let’s start with an example in the space industry:

– Ariane 5 launch (501), 4th of June 1996 (just 20 years back)

Explosion of Ariane 5
Loss of more than US$370 million

+population evacuation 
+ loss of scientific results
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Why Trust research is important?
• Other examples with catastrophic consequences:

– See http://ta.twi.tudelft.nl/users/vuik/wi211/disasters.html for list of num. Errors
– See https://en.wikipedia.org/wiki/List_of_software_bugs for list of bugs
– See http://www5.in.tum.de/~huckle/bugse.html for an even longer list of bugs.

• Consequences can be significant in the context of scientific simulations 
and data analytics
– Wrong decisions may have been taken
– Large no. of executions may be corrupted before discovery
– Post-mortem verification requires heavy checking
– Leads also to significant productivity losses. 

The sinking of the 
Sleipner A offshore 

platform (inaccurate 
finite element 

approximation)

• In numerical analysis and scientific data analytics, 
there is a lack of trust metrics that can be used to 
quantitatively compute and express the 
trustworthiness of the execution results
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Corruption classification
 Not all corruptions are equal!

 Some corruptions are expected, controlled and accepted (discritization, 
round-off errors truncation) → intrinsic to methods/algorithms. V&V 
quantify them

 And then there are unexpected corruptions that stay undetected.  

• A harmful corruption is manifested as a silent alteration of one of more data 
elements.

• Nonsystematic corruptions affect data in a unique way; probability of repetition 
of the exact same corruption in another execution --> very low. 
– Sources: radiations (cosmic ray, alpha particles from package decay), bugs in 

some paths of nondeterministic executions, attacks targeting executions 
individually and other potential sources. 

• Systematic corruptions affect data the same way at each execution. Executions do 
not need to be identical to produce the same corruptions.
– Sources: (1) bugs or defects (hardware or software) that are exercised the 

same way by executions and (2) attacks that will consistently affect executions 
the same way. 



Sources of corruption
Hardware Issues (usually called SDCs)
•Hard error: permanent damage to one or more 
elements of a device or circuit (e.g., gate oxide 
rupture, etc.).

•Soft error (transient errors): An erroneous output 
signal from a latch or memory cell that can be 
corrected by performing one or more normal 
functions of the device containing the latch or 
memory cell:
Cause: Alpha particles from package decay, Cosmic 
rays creating energetic neutrons
Soft errors can occur on transmission lines, in digital 
logic, processor pipeline, etc.

Bugs
Hardware 
1994: Bug of the FDIV instruction of the Pentium 
P5 processor. 
2014: Opteron’s random jump/branch into code.
Libraries
2014: cuBLAS DGEMM (CUDA 5.5) on Blue Waters’ 
Kepler GPUs: silent error: results of the cuBLAS 
DGEMM matrix-matrix multiplication are incorrect
Compilers
2012: IntelFortran: bugs affecting numerical results 
(in particular, in OpenMP vectorization and): “Loop 
vectorization causes incorrect results”.
Frameworks
2008: Bug in Nmag micromagnetic simulation 
package leading to: “Calculation of energy 
(exchange , demag, Zeeman, total) energies, had 
wrong result” 

•Detection time and notification time is a major 
issue:



Attacks (example)
2014 (ISCA) a group of Carnegy Mellon and Intel show how to flip bits
without accessing the victim DRAM row.
Observation: Toggling a row accelerates charge leakage in  

adjacent rows, because of row-to-row coupling

Technique: 
•DRAM is refreshed every 64ms
•Accelerate charge leakage by
writing on the same data at
high frequency
•Flush caches to hit DRAM
•Victim rows will be corrupted
before the next refresh

All modules manufactured in the past two years (2012 and 2013) were vulnerable
As many as 4 errors per cache line: simple ECC (SECDED) cannot prevent all errors
2015 Googleprojectzero published a Linux attack based on row hammer
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
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Lessons
• Hardware issues (defect, radiation induced bit flips) happen (usual SDCs)
• Bugs are reported everywhere in the stack from the hardware to the users
• Software upgrades often introduce new functionalities that bring new sets of 

bugs and potential corruptions. 
• Attacks exploiting technology weaknesses

• We run simulations and data analytics
over very complicated, evolving and 
fragile stacks

• What can we do to improve the trust
in scientific computing results?



14

Agenda

• Motivation and defining trust
• Building trust and why existing techniques 

only help partially
• What strategies?
• This is just a beginning
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Building trust in application results

• Trust in numerical analysis and data analytics related 
to two notions
1. Correctness of computation
2. Integrity of execution stack

• Neither can be proven formally, resulting in users 
developing a process to build trust in their execution 
results
– Build trust in smallest scale, simplest problem  scale to 

larger complexity and size
– Any odd error is scrutinized and assumed to be an error 

until demonstrated otherwise
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Expected result accuracy 

• “Expected result accuracy” helps evaluate correctness of 
computation
– Defined “if the corruption of data does not result in  any measurable 

changes to any meaningful statistic of an application between two 
executions (corruption-containing  vs. not), it means users expectation 
of accuracy has been satisfied ”

– Application dependent (some applications are sensitive to details of 
calculation; some follow trajectory)

– Typical expected accuracies: 10 -6 for HACC and 10-8 for Nek5K

Research: focus on detecting corruptions that make the end results 
diverge from the expected user accuracy
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V&V and why they help only partially

• Validation compares the output of a simulation with experimental data. 
Determines faithfulness of mathematical/computational models to the read 
world

• Verification checks that the simulation code respects its specification or 
models (solution verification, code verification, unit and regression testing,…)

• Validation and verification attempt, though incompletely, that the 
process/code is a truthful implementation of the algorithms themselves

Limitations:
– Formal validation and verification presuppose a correct reference solution.
– Formal methods are limited to simpler or smaller subsystems than the apps.
– No solution for complex simulations performed for DOE. 
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Why replication and  ABFT helps only 
partially 

Harmful nonsystematic corruptions: 
•Replication works but is too expensive to be applied on all executions, 
•ABFT covers only the data protected by the ABFT scheme: other application data are not 
protected. 

Harmful systematic corruptions: 
•Replication does not work because it detects corruptions by comparing identical (or 
comparable) executions. 
•ABFT may not detect corruptions affecting the ABFT calculation itself. ABFT is also not a 
solution for attacks because a sophisticated attack could target data sets not protected by 
ABFT or alter the ABFT calculation itself. 
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Why Multi-version does not help
• N-version programming was proposed almost three decades ago. 
• It was proposed to detect bugs (systematic corruptions).
• Similar to the notion of “alternates” in “recovery blocks”, 
• Principle: compare the results of the executions of multiple different code versions 

responding to the same specification. 
• The higher the diversity of the versions (from hardware to application), the higher is the 

chance of detecting corruptions. 
• This approach does not seem applicable 

in our domain because of the cost of 
developing multiple versions of all levels 
of the stacks, from the hardware to the 
application. 

• Moreover, it has been demonstrated 
experimentally that different versions 
may suffer the same bugs (and lead to 
the same corruptions).
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2 complementary directions
The Trust problem:  
•spans over all layers between 
hardware and users.
•Is related to many aspects of 
numerical simulation and data 
analytics (modeling, initial 
conditions, numerical accuracy,
parametric settings, etc.).

Only a holistic approach has
a chance of succeeding.

External Algorithmic
Observer (on-line Verification) Trust Relations

 A least 2 directions:
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External Algorithmic Observer Concept

Lui Sha (UIUC), Using Simplicity to Control Complexity -– EEE Software, Jan 2001 

Main idea follows Lui Sha’s proposal for “using simplicity to control 
complexity” architecture for critical systems. Separate critical 
requirements from desirable properties.
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External Algorithmic Observer Principles
External Algorithmic Observer for scientific applications:
•Executes a surrogate function that models the data transformation performed by 
the application.
•Approximately compares the result of the application and the surrogate function

Composite
Results

R

R

Scientific 
Application

(SA)

Surrogate
Functions

(SF)

R Valid?
(+list of
potential
detected
SDCs and 
proposed 
corrections)

Approximate
Comparison

(AC)

Execution Comparison

R

On-line  Detection/correction Framework 
(External Algorithmic Observer)

R’=R±e’

Spatial or temporal 
trajectory of a simulation 

variable

App

Surrogate Envelop 
bounds

Approx. comp.

Envelop 
bounds
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External Algorithmic Observer : Current Research

• Very few published research results (3 known groups) 

• Two models so far (all for time stepping simulations):
• Auxiliary numerical method: 

• Benson, Schmit, Schreiber 2014
• Guhur, Zhang, Peterka, 

Constantinescu, Cappello

• Prediction based method:
• Gomez, Di, Berrocal, Cappello, 2014, 2015, 2016
• Sharma, Bronevetski,  Gopalakrishnan, 2015
• Di, Cappello 2016
• Subasi, Di, Gomez, Balaprakash, Unsal, Cristal,

Labarta, Cappello 2016

Higher order 
method

Lower order 
method

Please
Read cited papers

for details!
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External Algorithmic Observer : Research directions
Composite

Results

R

R

Scientific 
Application

(SA)

Surrogate
Functions

(SF)

R Valid?
(+list of
potential
detected
SDCs and 
proposed 
corrections)

Approximate
Comparison

(AC)

Execution Comparison

•Surrogate function 
selection
•Surrogate function
  verification

•Cannot compare exactly
•Should minimize False 
Negatives and avoid False 
Positives
•Should consider a range
•Should be lower than 
user expected accuracy 

R

On-line  Detection/correction Framework 
(External Algorithmic Observer)

R’=R±e’

Observations

1) SF cannot replace SA. SF’s 
predictions are valid only from 
one step to the next one. 

2) Low-complexity SF models 
implement trade-offs between 
complexity, accuracy, and other 
properties:

3) Important advantage: model is 
easier to verify and to protect 
than the application.  
Amenable to formal verification, 
multi-version programming and 
execution on a secure processor 
(FPGA for example).
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Coverage of the Algorithmic Observer

Why does it cover (partially) non-systematic corruptions:
•Very unlikely to have the same non-systematic corruptions twice in the simulation 
and in the model

Why does it cover (partially) systematic corruptions:
•The simulation and model do not perform the same computations
•However data is very close. 
•Low probability that a same operation (FPADD, FPMUL, etc.) is executed with close 
data in both the simulation and model Recommendation: execute the model in a 
different hardware (CPU+GPU)

  More study is needed on the coverage
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Trust Relations 
More mature: a large body of research in computer science

DOE report on Cybersecurity for Scientific Computing Integrity [pic on last slide] 
covers issues and approaches.  

“Object” → any software of hardware that needs to be trusted. 

Trust relation supposes at least: 
• a way to certify that each used object is actually 
the object it is supposed to be, 
• a method to evaluate a level of trust for each object
 involved in the execution (reputation for example)
• a metric of the level of trust, and 
• a way to protect the trust level acquired by an object 
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Trust Relations (Potential Research) 
Certification and protection of trust level:
Trust Computing Group produced Trusted Platform Module (TPM) specification 
Specifies Embedded crypto capability for user, apps., machine authentication

• More than 500 million PCs have shipped with TPM. 
• Vulnerable to sophisticated attacks + TPM circuits showed vulnerability 

Trust evaluation:
Trust level could rely on verification and validation of that object by a combination of 
formal verification when applicable and empirical methods. 
In principle, external observer approach can be applied for each object. 

Trust Metrics:
Not a new problem in security and networking domains (solutions)
Metrics with multiple dimensions: time since first trusted, time since last verification, 
number of independent verifications, , etc
Trust metric should compute trust level for entire execution (function based on individual 
object trust – combinations of which user can explore based on needs) 

All these precautions will not avoid corruptions from a highly trusted object. More 
research needed! 

http://www.trustedcomputinggroup.org/

http://www.trustedcomputinggroup.org/
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Comparing the 2 approaches
  External Observer Trust Relations

Detection Approach Simulation and observer are checking 
each other Checking object results

Detection Assumptions External observer is correct (should 
be verified, validated)

All verifications and reputation 
calculations are correct

Detection Latency Short (depends on sampling rate, 
typically 1 application iteration) 

Long (actual detection could be 
long: months)

Timeliness of Notification 
after Detection Short (from one iteration to the next) Short (immediate upper layer)

Time to build trust Low (trust depends on accuracy of 
results not on components)

High (hard and soft components 
need to acquire trust level)

Targeted Level of Trust User-expected accuracy Machine precision (modulo 
round-off errors)

Development Time and 
Cost

Low (requires only to develop the 
observer)

High (affects all layers of the 
stack)

Tolerance
High (corruptions of the application 
data lower than user-expected accuracy 
are tolerated)

Low (any corruption at object 
level is suspicious since the 
consequence on application data 
is unknown)



30

Conclusion
 Trust in results of numerical simulation and data analytics is 

serious and insufficiently recognized problem in our community
  Lack of no trust metrics : Different domains have different definitions 

of trust : example: ecommerce has “reputation” as metric which wont work 
for us! 

 Lack of research and results in this domain. 
 Two directions (identified so far, more probably exist): (1) 

Algorithmic external observer and (2) Trust relation (much 
more mature in other domains)

 it’s a fascinating and pretty open research problem!
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Questions?


