

A Massively-Parallel, Fault-Tolerant Solver for Time-Dependent PDEs in High Dimensions

Euro-Par 2016: Resilience

Mario Heene², <u>Alfredo Parra¹</u>, Hans-Joachim Bungartz¹, Dirk Pflüger²

¹Technical University of Munich Chair of Cientific Computing

²University of Stuttgart Institute for Parallel and Distributed Systems

August 23, 2016

EXAHD Project

- Goal: (exa)scalable solution of high-dimensional PDEs
- Main challenge: curse of dimensionality
 - 2^n discretization points per dimension $\rightarrow (2^n)^d$ total points

Example: *GENE* Code ¹

- Plasma simulations
- 5D + time nonlinear PDE (Vlasov equations):

 $u(t;x,y,z,\mu,\nu) \rightarrow 2^{n_x} \times 2^{n_y} \times 2^{n_z} \times 2^{n_\mu} \times 2^{n_\nu}$

- Production runs: billions of grid points!
- ~10⁷ core-hours; several TB of short-term storage
- Future of clean energy?

Problem 1: Computational resolution limit reached

ASDEX Upgrade

Gyrokinetic Electromagnetic Numerical Experiment

ТЛП

Problem 2: GENE is not fault tolerant

- 100,000's lines of Fortran code!
- Replace MPI with ULFM?
- Implement efficient checkpointing
- Redefine communicators
- Implement restart / recovery routines
- 1.5 Post Doc years later + 1,000's lines of code changed + 10's of E-Mails with ULFM devs
 - \rightarrow Little progress...

Goal 1: Increase computational resolution of high-dimensional PDE solvers

Goal 2: Resilience

Our approach: New *algorithmic* approaches

→ The Sparse Grid Combination Technique

- Extrapolation method to solve high-dimensional problems
- Simple example in 2D

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$$

with $u(x, y, t = 0) = \sin(2\pi x) \sin(2\pi y)$

• Each grid has $(2^{l_1}+1) \times (2^{l_2}+1)$ grid points

 l_1

- Each grid has $(2^{l_1}+1) \times (2^{l_2}+1)$ grid points

 l_1

• A very simple extrapolation scheme

 l_1

ПΠ

The Sparse Grid Combination Technique

• A very simple extrapolation scheme

•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•
•								•							
•								•							
•								•							
								•							
•								•							
٠								•							
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•								•							
•								•							
٠								•							
								•							
•								•							
•								•							

.

ТШ

The Sparse Grid Combination Technique

• A very simple extrapolation scheme

• • • • •	• • • • • •	• • • • •	• •
•	•		•
•	•		•
•	•		•
•	•		•
•	•		•
•	•		•
•	•		•
••••	• • • • • •	• • • •	• •
•	•		•
•	•		•
•	•		•
•	•		•
•	•		•
•	•		•
•	•		•
			• •

ТЛП

The Sparse Grid Combination Technique

• A very simple extrapolation scheme

$$u_{(4,4)}^{(c)} = u_{(1,4)} + u_{(4,1)} - u_{(1,1)}$$

• A very simple extrapolation scheme

ТШП

The Sparse Grid Combination Technique

• The Classical Combination Technique

$$u_{(4,4)}^{(c)} = u_{(1,4)} + u_{(2,3)} + u_{(3,2)} + u_{(4,1)} - u_{(1,3)} - u_{(2,2)} - u_{(3,1)}$$

ТШ

The Sparse Grid Combination Technique

• The Classical Combination Technique

$$u_{(4,4)}^{(c)} = u_{(1,4)} + u_{(2,3)} + u_{(3,2)} + u_{(4,1)} - u_{(1,3)} - u_{(2,2)} - u_{(3,1)}$$

• The Classical Combination Technique

• The Classical Combination Technique

Dimension	# points per dimension	# points full grid	# points Combination Technique
6	2 ¹⁰	> 1018	4,096 × 249,000
10	2 ¹²	> 10 ³⁷	352,705 × 80,641,000

Parallelizing the Combination Technique

Manager-Worker Model

Parallelizing the Combination Technique

Basic algorithm:

- 1. Distribute tasks among groups and set initial conditions
- 2. Each group solves N timesteps of each task
- 3. Combine tasks to obtain sparse grid
- 4. Use combined sparse grid solution as initial condition for next N timesteps

Parallelizing the Combination Technique

Basic algorithm:

- 1. Distribute tasks among groups and set initial conditions
- 2. Each group solves N timesteps of each task
- 3. Combine tasks to obtain sparse grid
- 4. Use combined sparse grid solution as initial condition for next N timesteps

Algorithmic approach to fail-stop failures²

Algorithmic approach to fail-stop failures²

• • • •	••••	• • • •	••••
•	•	•	
•			
•	. :		:
•			•
• • • •	•••••	••••	••••
•	•	•	:
••	• • •	• •	• •
•	. :		. :
•			• • • •

Algorithmic approach to fail-stop failures²

•••	•••	••••	• •	•••	••••
•					
•	•	•	•	•	•
•					
••••	•••	•••	••	• • •	•••
•		:			:
•	•	. :	•	•	. :
•		:			:
•			• •		

 Detect failed group during collective operation (combine)

- Detect failed group during collective operation (combine)
- Exclude failed group(s) from communicator

- Detect failed group during collective operation (combine)
- Exclude failed group(s) from communicator
- Compute alternative combination coefficients and perform combination*

- Detect failed group during collective operation (combine)
- Exclude failed group(s) from communicator
- Compute alternative combination coefficients and perform combination*
- Redistribute lost tasks to living groups for next set of timesteps

- Detect failed group during collective operation (combine)
- Exclude failed group(s) from communicator
- Compute alternative combination coefficients and perform combination*
- Redistribute lost tasks to living groups for next set of timesteps
- Key questions:
 - 1)How good is the solution after faults compared to the solution without faults?
 - 2)What is the overhead of the fault tolerance functions? Does it scale?

Simulation scenario

Solve d-dimensional advection-diffusion equation using DUNE⁵

$$\partial_t u - \Delta u + \vec{a} \cdot \nabla u = f$$
 in $\Omega \times [0, T)$
 $u(\cdot, t) = 0$ in $\partial \Omega$

with $\Omega = [0,1]^d$, $\vec{a} = (1,1,...,1)^T$ and $u(\cdot,0) = e^{-100\sum_{i=1}^d (x_i - 0.5)^2}$

Simulation scenario

• Supercomputer *Hazel Hen (CRAY XC40)* at the *High-Performance Computing Center,* Stuttgart (#9 in Top 500, 2016)

• 2D and 5D: increase resolution of the Combination Technique and compare to reference full grid solution

- 2D and 5D: increase resolution of the Combination Technique and compare to reference full grid solution
- Compute 1,000 timesteps and combine after every timestep

- 2D and 5D: increase resolution of the Combination Technique and compare to reference full grid solution
- Compute 1,000 timesteps and combine after every timestep
- Choose randomly which group fails (makes little difference)

- 2D and 5D: increase resolution of the Combination Technique and compare to reference full grid solution
- Compute 1,000 timesteps and combine after every timestep
- Choose randomly which group fails (makes little difference)
- Inject fault at first iteration (worst case scenario)

- 2D and 5D: increase resolution of the Combination Technique and compare to reference full grid solution
- Compute 1,000 timesteps and combine after every timestep
- Choose randomly which group fails (makes little difference)
- Inject fault at first iteration (worst case scenario)

Strong scaling experiments

 Compare time to *solve* one timestep vs time to *redistribute* (and reinitialize) tasks vs time to *recompute* some tasks

Strong scaling experiments

 Compare time to solve one timestep vs time to redistribute (and reinitialize) tasks vs time to recompute some tasks

Takeaways

- Combination Technique is attractive for peta-/exascale:
 - 1. Solve PDEs (approximately) with high resolution (impossible with full grids) at the cost of many cheap solves (in parallel!)
 - 2. Offers algorithmic fault tolerance: no checkpoint/restarting, duplication, etc.

Ongoing: detection of silent data corruption ⁶

Ongoing: detection of silent data corruption ⁶

References

- 1. Jenko, F., et al.: *Electron temperature gradient driven turbulence*. Physics of Plasmas (1994-present) 7(5), 1904–1910 (2000), http://www.genecode.org/
- 2. Harding, B., et al.: *Fault tolerant computation with the sparse grid combination technique*. SIAM Journal on Scient. Comp. 37(3), C331–C353 (2015)
- 3. Parra Hinojosa, A., et al.: *Towards a fault-tolerant, scalable implementation of GENE*. In: Proceedings of ICCE 2014. LNCSE, Springer-Verlag (2015)
- Strazdins, P.E., Ali, M.M., Harding, B.: *Highly scalable algorithms for the sparse grid combination technique*. In: Parallel and Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE International. pp. 941–950 (May 2015)
- 5. Bastian, P., et al.: A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework. Computing 82(2-3), 103–119 (2008)
- 6. A. Parra Hinojosa, B. Harding, H. Markus and H.-J. Bungartz: *Handling Silent Data Corruption with the Sparse Grid Combination Technique*. Proceedings of the SPPEXA Symposium, LLNCSE. Springer-Verlag (February 2016).