

A Massively-Parallel, Fault-Tolerant Solver for Time-Dependent PDEs in High Dimensions

Euro-Par 2016: Resilience

Mario Heene², <u>Alfredo Parra</u>¹, Hans-Joachim Bungartz¹, Dirk Pflüger²

¹Technical University of Munich Chair of Cientific Computing

²University of Stuttgart Institute for Parallel and Distributed Systems

August 23, 2016

EXAHD Project

- Goal: (exa)scalable solution of high-dimensional PDEs
- Main challenge: *curse of dimensionality*
	- 2ⁿ discretization points per dimension \rightarrow (2ⁿ)^d total points

Example: *GENE* Code¹

- Plasma simulations
- 5D + time nonlinear PDE (Vlasov equations):

 $u(t; x, y, z, \mu, \nu) \rightarrow 2^{n_x} \times 2^{n_y} \times 2^{n_z} \times 2^{n_{\mu}} \times 2^{n_{\nu}}$

- Production runs: billions of grid points!
- \cdot \sim 10⁷ core-hours; several TB of short-term storage
- Future of clean energy?

Problem 1: Computational resolution limit reached

ASDEX Upgrade

Gyrokinetic Electromagnetic Numerical Experiment

Problem 2: *GENE* is not fault tolerant

- 100,000's lines of Fortran code!
- Replace MPI with ULFM?
- Implement efficient checkpointing
- Redefine communicators
- Implement restart / recovery routines
- 1.5 Post Doc years later $+$ 1,000's lines of code changed $+$ 10's of E-Mails with ULFM devs
	- \rightarrow Little progress...

Goal 1: Increase computational resolution of high-dimensional PDE solvers

Goal 2*:* Resilience

Our approach: New *algorithmic* approaches

 \rightarrow The Sparse Grid Combination Technique

- Extrapolation method to solve high-dimensional problems
- Simple example in 2D

$$
\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0
$$

with $u(x, y, t = 0) = \sin(2\pi x) \sin(2\pi y)$

• Each grid has $(2^{l_1}+1)\times (2^{l_2}+1)$ grid points

 l_1

• Each grid has $(2^{l_1}+1)\times (2^{l_2}+1)$ grid points

 l_1

• A very simple extrapolation scheme

 l_1

• A very simple extrapolation scheme

Alfredo Parra | Euro-Par 2016: Resilience 10 and 10 an

• A very simple extrapolation scheme

Contract Contract

Alfredo Parra | Euro-Par 2016: Resilience 11 and 12 an

• A very simple extrapolation scheme

$$
u_{(4,4)}^{(c)} = u_{(1,4)} + u_{(4,1)} - u_{(1,1)}
$$

• A very simple extrapolation scheme

● The *Classical Combination Technique*

$$
u_{(4,4)}^{(c)} = u_{(1,4)} + u_{(2,3)} + u_{(3,2)} + u_{(4,1)} - u_{(1,3)} - u_{(2,2)} - u_{(3,1)}
$$

ππ

The Sparse Grid Combination Technique

● The *Classical Combination Technique*

$$
u_{(4,4)}^{(c)} = u_{(1,4)} + u_{(2,3)} + u_{(3,2)} + u_{(4,1)} - u_{(1,3)} - u_{(2,2)} - u_{(3,1)}
$$

● The *Classical Combination Technique*

● The *Classical Combination Technique*

Parallelizing the Combination Technique

Manager-Worker Model

Parallelizing the Combination Technique

Basic algorithm:

- 1.Distribute tasks among groups and set initial conditions
- 2.Each group solves N timesteps of each task
- 3.Combine tasks to obtain sparse grid
- 4.Use combined sparse grid solution as initial condition for next N timesteps

Parallelizing the Combination Technique

Basic algorithm:

- 1.Distribute tasks among groups and set initial conditions
- 2.Each group solves N timesteps of each task
- 3.Combine tasks to obtain sparse grid
- 4.Use combined sparse grid solution as initial condition for next N timesteps

Algorithmic approach to fail-stop failures²

Algorithmic approach to fail-stop failures²

Algorithmic approach to fail-stop failures²

• Detect failed group during collective operation (combine)

+

- Detect failed group during collective operation (combine)
- Exclude failed group(s) from communicator

- Detect failed group during collective operation (combine)
- Exclude failed group(s) from communicator
- Compute alternative combination coefficients and perform combination*

 $\overline{}$

 $\frac{1}{1}$

_

 $+$ $-$

+

 $\overline{}$

 $\frac{1}{1}$

_

 $+$ $-$

+

- Detect failed group during collective operation (combine)
- Exclude failed group(s) from communicator
- Compute alternative combination coefficients and perform combination*
- Redistribute lost tasks to living groups for next set of timesteps

- Detect failed group during collective operation (combine)
- Exclude failed group(s) from communicator
- Compute alternative combination coefficients and perform combination*
- Redistribute lost tasks to living groups for next set of timesteps
- Key questions:
	- 1)How good is the solution after faults compared to the solution without faults?
	- 2)What is the overhead of the fault tolerance functions? Does it scale?

 $\overline{}$

 $\frac{1}{1}$

_

 $+$ $-$

+

Simulation scenario

• Solve *d*-dimensional advection-diffusion equation using *DUNE*⁵

$$
\partial_t u - \Delta u + \vec{a} \cdot \nabla u = f \qquad \text{in } \Omega \times [0, T)
$$

$$
u(\cdot, t) = 0 \qquad \text{in } \partial\Omega
$$

with $\Omega = [0, 1]^d$, $\vec{a} = (1, 1, ..., 1)^T$ and $u(\cdot, 0) = e^{-100 \sum_{i=1}^d (x_i - 0.5)^2}$

Simulation scenario

● Supercomputer *Hazel Hen (CRAY XC40)* at the *High-Performance Computing Center,* Stuttgart (#9 in Top 500, 2016)

● 2D and 5D: increase resolution of the Combination Technique and compare to reference full grid solution

- 2D and 5D: increase resolution of the Combination Technique and compare to reference full grid solution
- Compute 1,000 timesteps and combine after every timestep

- 2D and 5D: increase resolution of the Combination Technique and compare to reference full grid solution
- Compute 1,000 timesteps and combine after every timestep
- Choose randomly which group fails (makes little difference)

- 2D and 5D: increase resolution of the Combination Technique and compare to reference full grid solution
- Compute 1,000 timesteps and combine after every timestep
- Choose randomly which group fails (makes little difference)
- Inject fault at first iteration (worst case scenario)

- 2D and 5D: increase resolution of the Combination Technique and compare to reference full grid solution
- Compute 1,000 timesteps and combine after every timestep
- Choose randomly which group fails (makes little difference)
- Inject fault at first iteration (worst case scenario)

Strong scaling experiments

• Compare time to **solve** one timestep vs time to *redistribute* (and reinitialize) tasks vs time to *recompute* some tasks

Strong scaling experiments

• Compare time to **solve** one timestep vs time to *redistribute* (and reinitialize) tasks vs time to *recompute* some tasks

Takeaways

- Combination Technique is attractive for peta-/exascale:
	- 1. Solve PDEs (approximately) with high resolution (impossible with full grids) at the cost of many cheap solves (in parallel!)
	- 2. Offers algorithmic fault tolerance: no checkpoint/restarting, duplication, etc.

Ongoing: detection of silent data corruption 6

Ongoing: detection of silent data corruption ⁶

References

- 1. Jenko, F., et al.: *Electron temperature gradient driven turbulence*. Physics of Plasmas (1994-present) 7(5), 1904–1910 (2000), <http://www.genecode.org/>
- 2. Harding, B., et al.: *Fault tolerant computation with the sparse grid combination technique*. SIAM Journal on Scient. Comp. 37(3), C331–C353 (2015)
- 3. Parra Hinojosa, A., et al.: *Towards a fault-tolerant, scalable implementation of GENE*. In: Proceedings of ICCE 2014. LNCSE, Springer-Verlag (2015)
- 4. Strazdins, P.E., Ali, M.M., Harding, B.: *Highly scalable algorithms for the sparse grid combination technique*. In: Parallel and Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE International. pp. 941–950 (May 2015)
- 5. Bastian, P., et al.: *A generic grid interface for parallel and adaptive scientific computing*. Part I: Abstract framework. Computing 82(2-3), 103–119 (2008)
- 6. A. Parra Hinojosa, B. Harding, H. Markus and H.-J. Bungartz: *Handling Silent Data Corruption with the Sparse Grid Combination Technique*. Proceedings of the SPPEXA Symposium, LLNCSE. Springer-Verlag (February 2016).