
Pragma-controlled Source-to-Source Code
Transformations for Robust Application

Execution

Pedro C. Diniz, Chunhua Liao, Dan Quinlan and Bob Lucas

Presentation at the 9th Workshop on Resiliency in High Performance
Computing (Resilience) in Clusters, Clouds, and Grids

in conjunction with the 22th Intl. European Conf. on Parallel and Distributed Computing
(Euro-Par 2016)

August 23, 2016

Copyright USC/ISI. All rights reserved.

Mo#va#on:	Trends	&	Projec#ons	
2009	 2012	 2016	 2020	

System	Peak	
Performance	

2	Petaflops	 20	Petaflops	 ~200	Petaflops	 1	Exaflops	

System	Memory	 0.3	PB	 1.5	PB	 ~5	PB	 ~30	PB	

System	Node	Count	 8,000	 18,000	 ~50,000	 ~100,000	

Total	Core	Count	 300,000	 1,500,000	 ~	50	million	 ~	1	billion	

Mean	Time	To	Interrupt	
(MTTI)	

1	day	 20	hours	 40	–	50	minutes	 20	minutes	

Power	 7MW	 8.2MW	 ~15MW	 20MW	

Petascale	systems	today	already	experience1:		
•  ~20	faults/hour	
•  1	double-bit	DRAM	error	every	24	hours	
•  Constant	stream	of	single	bit	memory	errors	
[1]	Al	Geist,	“What	is	the	monster	in	the	closet?”	Talk	at	Workshop	on	Architectures	I:	Exascale	and	Beyond:	Gaps	in	Research,	Gaps	in	our	
Thinking	

2	

Check-Pointing and Restart

Not	a	Scalable	Approach	

3	

Reference:	
		Oldfield	et	al.,	Modeling	the	Impact	of	Checkpoints	on	Next-Genera:on	
Systems.		MSST,	2007	

(Courtesy of Lucy Nowell & Sonia Sachs, at DoE)

Reference:		
Schroeder	and	Gibson,	Understanding	Failures	in	
Petascale	Computers.		Journal	of	Physics,	2007	
(assuming	that	the	number	of	cores	per	socket	grows	
by	a	factor	of	2	every	18,	24	and	30	months)	

4

Observations

!  Many Algorithms are Inherently Resilient to Errors
!  Programmers may have fault tolerance knowledge
!  ... but no convenient mechanisms to convey this

knowledge to system
!  System Layers are Inflexible
!  Programming Abstractions Very Rigid

5

Our Approach
Resiliency Oriented Programming Model Extensions
Evolutionary Approach: Based on current, familiar language
constructs

Cross Layer Resilience
Can involve Compiler and Operating System
Introspection System to Manage State of Machine

Fault Model
Multi-bit memory errors uncorrectable by ECC schemes

6

Programming Extensions for Resilience

!  Previous Work
!  Type Declarations
!  Dynamic Memory Allocation

!  This Work
!  #pragma directives
!  Source-to-source Code Transformations

7

Programming Model Extensions

#pragma failsafe tolerant (exp1 : exp2)
 ...

!  Indicates:
–  Maximum number of tolerated errors (exp1 , default: any)
–  Preferable (optional) storage assignment (exp2 , default: none)

!  Code Translation:
–  None
–  Auxiliary Storage and Resilience Map

Tolerant Storage Declaration

•  Tolerant Regions of Code

8

Programming Model Extensions

!  #pragma failsafe assert (predicate) error (function handler)
 ...

!  Indicates:
–  Predicate (simple, first order) to be Evaluated
–  Handler Function to be executed if Predicate Does not Hold True

Sentinel Value of Silent Data Corruption (SDC)

•  Tolerant Regions of Code

9

Programming Model Extensions

!  Code Translation:

if(predicate(...) == 0){
 if(function handler (...) != 0){
 failsafe error++;
 FAILSAFEREPORTERROR(0,failsafe error);
 failsafe error flag = 0;
 } else {
 FAILSAFEREPORTCORRECTION(0,failsafe error);
 }
}

Sentinel Value of Silent Data Corruption (SDC)

•  Tolerant Regions of Code

10

Programming Model Extensions

!  #pragma failsafe save restore (var list) retry (exp)
 {/* code block */ }

 ...

!  Indicates:
–  Set of Variables to be Saved/Restore at Each Iterations
–  Implicit Error Checking via Detected (uncorrected) Memory Error
–  Maximum Retry

User-Controlled State Saving and Restoring with Retry

•  Tolerant Regions of Code

11

Programming Model Extensions

!  Code Translation (for retry = 2):
int fs num tries;
volatile int fs num errors ;
fs num tries = 0;
fs num errors = 0;
<code for saving data objects>
do {
 if (fs num tries != 0){
 <code for restore data objects>
 }
 fs num errors = 0;
 <original code block here>
 fs num tries++;
} while ((fs num errors != 0) && (fs num tries < 2));
if (fs num errors != 0){
 FAIL SAFE EXCEPTION ()
}

User-Controlled State Saving and Restoring with Retry

12

Programming Model Extensions

!  #pragma failsafe dual redundancy save restore (var list1)
compare (var list2) retry (exp)
 {/* code block */ }
 ...

!  Indicates:
–  Set of Variables to be Saved/Restore at Each Iteration
–  Error Checking/Correction via Matching/Voting
–  Maximum Retry

Redundancy-based Fault Detection and Recovery

•  Tolerant Regions of Code

13

Programming Model Extensions

!  Code Translation (for retry = 2):
int fs num tries ;
volatile int fs num errors ;
< declaration of duplicated of variables in var list2>
...
fs num tries = 0; fs num errors = 0;
<code for saving data in var list1> do
if (fs num tries != 0){
<code for restore data in var list1>
}
fs num errors = 0;
#omp parallel num threads(2)
{
<original code relabeling variables in var list2> }
<compare variables in var list2 for each thread>
if (mismatch(var list2)) fs num errors++;
fs num tries++;
} while ((fs num errors != 0) && (fs num tries < 2));
if(fs num errors != 0){ FAIL SAFE EXCEPTION () ;
}

Redundancy-based Fault Detection and Recovery

14

Preliminary Results : CG kernel
•  Simple Iterative Algorithm for Solving Ax = b (40 x 32)
•  Main Matrix A is 4 MB and various vectors 0.23 MB
•  Error Amelioration

•  in A, fixed using checksum (ABFT)
•  in vectors x, b and others, fixed by reloading saved

state
•  Errors

•  Restart of the previous iteration using saved state
•  Use of #pragma save_restore directive with retry (2)

•  Total of 21 iterations (0.5 secs/iteration on Desktop)

15

System Workflow

ROSE
Compiler

16

Preliminary Results : CG kernel

specific error rates, leading to approximately a single memory error per algorithm
iteration to one error per 20 iterations (or a single error per system solve cycle).
In these experiments we do not inject errors in the code section of the application
address space.

For the errors impinging on data section we opt from two di↵erent amelio-
ration strategies. When the error impinging on A we recover by executing the
error correction using the column- and row-wise checksums and restart the solver
iteration. When the memory error impinges on the auxiliary vectors, we restart
the iteration of the algorithm using the previous iterations values of the x vector
only as all the other vectors used are temporaries7

The table 1 below present the numerical results showing the overhead of the
use of the #pragma failsafe save restore directive for this example. In the
absence of any error of software copy overhead, the specific linear system requires
21 iterations to converge for a preselected numerical convergence tolerance over
10.680 secs for a sequential execution on a desktop computing system.

Error Checksum Iteration Restart Algorithm Execution Execution
Internal (secs) Recovery Recovery Iterations Time (secs) Overhead

2 12 1 34 23.761 122.5%
4 5 1 27 20.537 92.3%
5 4 1 26 18.569 73.9%
10 1 1 23 15.368 4.5%
20 1 0 22 11.310 0.6%

Table 1. Execution times vs. injected memory rates for CG simple solver.

A couple of simple observations are in order. First, in this controlled experi-
ments, all executions are survivable as the error rate is not high enough that the
maximum number of retries (set at 2) for the same iteration of the algorithm
is ever exceeded. Second, as the storage size of the matrix A dwarfs the storage
space of the auxiliary vectors it was thus expected that the number of errors
impinging on the matrix A. As such the retries with checksum correctness and
copy of previous state are more numerous (and also computationally more ex-
pensive) that simple retries where the only the vector x and a couple of integer
control variables need to be restated.

4 Implementation Status

We have implemented the parsing and the corresponding source-to-source code
transformations of the #pragma directives described here in the ROSE compiler
infrastructure [16] and tested them for simple C programs. Still, the current im-
plementation has some limitations. First, the code generation for the directives

7 In the parlance of the compiler analysis, there vectors can be privatizable as no data
flows across iterations of the loop through them.

•  Methodology:
•  Force Memory Errors in Address Space
•  Restart iteration based on which data structure afflicted
•  Maximum Restart set to 2; additional storage for vectors

•  All “Injected” Errors were Corrected
•  Majority of Errors in A, checksum Correction
•  Overhead not Excessive

17

Summary

•  Approach highlights the benefits of programmer interfaces
to express fault tolerance knowledge to the lower levels of
system abstraction

Future Directions and Ongoing Work
•  Richer set of opportunities for cross-layer resilience
•  Interface to Indicating “dead regions” for data

Acknowledgment		

Partial support for this work was provided by the US Army Research Office
(Award W911NF-13-1-0219) and through the Scientific Discovery through
Advanced Computing (SciDAC) program funded by U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research under award
number DE-SC0006844.

This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344.

