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Consider the operator £ = L, = (—A)“i/2 — q,
and the equation

Lu=(—A)"2u—qu=¢p in QCR"

u=0 on 092,

where g € L} (©2). We could have Q =R",0 <
a < n, 2 = half-plane, or e.g., {2 = bounded
Lipschitz domain, with 0 < o« < 2.

Remark: Kalton and Verbitsky studied the ex-
iIstence of solutions v > 0 to

(— )20 — qu® = o,

with s > 1. Curiously, their results did not
apply to the linear case s = 1.



Main Equation:

Lu = (—A)&/Qu —qu =

If o = 2, then L is the time-independent Schrodinger
operator —A —gq.

Remark: Case a #= 2 is of interest in proba-
bility, where (—A)“ﬂ/2 corresponds to a-stable
Levy processes in the same way that —A cor-
responds to Brownian motion.

Joint work with Igor Verbitsky



Main Equation

Lu = (—A)Q/Qu —qu=1¢ in QCR"

Let G = G(®) be the Green's operator for (—A)/2
on €2,

GO (f)(x) = /Q G (2, ) F () dy.

and we assume G(™(z,y) > 0. If Q = R"
then G(@) is the Riesz potential I{®) with ker-

nel cp|lx — y|*="; for a =2 and n > 3, G is the
Newtonian potential.

We apply ¢ to both sides of the Main Equation
to obtain



u—Glqu) = G(p) = f
Supposing ¢ > 0, let

I(u)(2) = Glqu)(2) = | Gla,mulm)aly) dy

(if g is not non-negative, we let T'(u) = G(|q|u)
and use this to obtain upper bounds). Then
we have u —T(u) = f, or (I —T)(u) = f, sO
the formal solution is

w=(-T)NH =3 T

j=0



If f € L?(|q(y)|dy) and

1T L2 (lq () o) — L2 (a(w)ldy) < T

then 325, TI f converges in L?(w) to a solu-

tion. Our aoal is pointwise estimates.
So

If(@) = [ G fWlaw)ldy

— /Q G(x,y)f(y)dw(y),
for dw(y) = |q(y)| dy. Then

17f(2) = [ G ) f () do(w).

where

G]_(ZI?, y) — G(ﬂ?, y)~



and, for 3 > 1, inductively define

Gi(z,y) = /

Q2
Let V(z,y) = > 52 G,(xz,y), so that

G(x,2)Gj_1(2.y) dw(2).

() = @)+ 3 T ()
J=1
= f@)+ [ V(@) f () do(w).

Our goal is to estimate V., the minimal Green’s
function for L.



Theorem A (lower bound). Let ¢ > 0. Then
there exist c¢1,c> > 0 such that

Vi, y) > c1G(x, .U)QCQGQ(JHE!)/G(Iry)‘

Remark: Theorem A is relatively easy. The
more interesting result of the paper is that un-
der a certain smallness condition on ¢, we ob-
tain upper bounds of the same form.



Remark: In pretty general circumstances, there
IS a formula

1€
Viz,y) = G(z, U)E; [€§ Jo a(Xs) ds] ’

where X; is Brownian motion, if a = 2, or
an a-stable symmetric process, if 0 < a < 2,
conditioned to start at  and end at y, and ¢

| 1 r¢ .
s its lifetime. The quantity Ej [.92 Jo {?(*Y'S)d*’]

IS called the conditional Feynman-Kac gauge.
Our results give estimates for the conditional

gauge.



T heorem A follows from a general result about
“quasi-metric kernels.” Let (2,w) be a o-finite
measure space. A function

K:QxQ — (0, ]

is a quasi-metric kernelon Q It K(z,y) = K(y,x)
forall z,y € 2, K(z,y) < oo if 2 = vy, and there

exists k > 1/2 such that d(x,y) = 1/K(x,y)

satisfies

d(mﬁ y) i: H‘(d(mﬁ E) _|_ d(z~ y))* r,Y,zc Qa

for some k > 1/2 (we don’'t require d(z,x) =
0).



Theorem A’: Let K be a quasi-metric kernel on
a o-finite measure space (Q,w). Let K1 = K
and inductively define

K;(z,y) = /Q K(z,2)K;_1(z,y) dw(z).

Then there exists ¢, depending only on ~ such
that

|’x_
v(mﬁ y) = Z Krj(mﬁ y) Z JK’(iI; 'Q)QCQRQ(xr'E!)/R (;Ihy)
=1



Sometimes Theorem A’ implies Theorem A di-
rectly, with K = G. E.g.,, for Q =R", 0 < a <
n, then G(x,y) = cplr — y|*~" is quasi-metric.
However, for domains €2, G may not be quasi-
metric. But, for very general domains (includ-
ing all bounded Lipschitz domains), there ex-
ists a function m > 0 on £2 such that

G(z,y)
m(x)m(y)
IS a quasi-metric kernel. To get Theorem A,
apply Theorem A’ with K = H and the mea-
sure dv = m2dw, noting that Hy/H = G»/G.

H(xz,y) =



Now let’s consider the upper estimate for V(x,vy).
To see what is appropriate, recall the equation

u="T(u)

1,

where T'(u)(z) = [o G(z,y)u(y)dw(y). If there

exists f > O such that there is a solution w > 0O

tou="T(u)+ f, then T'(u)(x) < u(x) for all z.
Then, by Schur's Lemma,

HTHLQ(M)_}LQ(M) < 1.
If we test the norm on xg, we obtain

/EXE G(z, y)dw(z)dw(y) < w(E)

for all measurable £ C 2.



The first condition is invariant: if H(x,y) =
G(z,y)/(m(x)m(y)), dv = m2dw, and S(u)(x) =
Jo H(x,y)u(y)dr(y), then

HSHLQ(H)—}LQ(M) — HTHLQ(L;J)—:}LQ(M)'

T he second condition is not invariant. Define
|wl|| to be the smallest constant C' such that

Glx,y)ym(x)m(y) dw( ~<C’/ m2(2) dw(z
[ G yym@m(y) doy) < C [ m?(2) d(2)
for all measurable £ C €2, where m is as above.

We define ||w||x similarly, except that we only
consider balls B instead of general sets £.



Theorem B (upper bound) Let 2 and « be as
above. Then there exists ¢ > 0 such that if
either

() 17 12y —12(0) < &

(i) [lwll < e,
or

(iii) w is a doubling measure and ||w|x < &,

then there exist c3,c4 > 0 such that

V(e y) < eaG(x, _U)e.:-:4G‘2(a:,y)/G(m,y) _



As in Theorem A, the result follows from an
abstract result for quasi-metric kernels.

Remark: There is interest in when ¢q is suffi-
ciently mild that V(z,v) ~ G(x,y). We always
have V(x,y) > G(x,y), and by above, when (i),
(ii), or (iii) holds, we obtain V = G if G> < cG.
T his holds e.g., under the Kato condition.

Probably the main interest in our results is in
the case where V is not equivalent to &.



Example: Let 2 = R"”, 0 < o < n, and let

= |fj|‘a, for some constant A,

A

‘T|CE'

L= (-N)?2_

Then there exists € > 0 such that for 0 < A < ¢,
£

H

max{

Co C4
cq (max{ Y }) < V(ilh'u) < (33( }) ,

for some cq,co,c3,cqa > 0.



Proof: After some elementary computations,
€T

obtain

Apply Theorems A and B. Here w is doubling,
and one can check the condition |w|« < C A2,

Y

N

Go(x,y)/G(x,y) =~ 1+ 109 (max{



Note that we don’t get sharp powers, and we
require the smallness condition on ¢q. However,

our results work for very general €2 and for a
range of «.

In the literature, ¢ is often assumed bounded,
or very nice. From our results, we can see what
singularities of g are feasible, and the general
form of V.

Of course, estimates on V yield solvability re-
sults for the original equation Lou = ¢, be-

cause u(z) = G(p)(z)+[q V(z, y)G (@) (2)q(y) dy.



Comments on proof of abstract theorem on
quasi-metric kernels:

Actually show

dT ~ KFE{G]-I{Q/I{,

o eC(Gi(a)+G(y))
Vi(x,y m/
(2.v) d(z.y) t2

where

Gi(x) = /t w(Br(x)) dr.

O -'r’2



~  C(Gi(z)+G(y))

Viia. m/ dt
SRRl 2

For the lower estimate, prove inductively that

. o Gy(y) 1
Rrj(ﬂﬁﬁy) 2 O}_l./ f(y) P l,
d(zy) (7 — 1)t

using an integration by parts. T hen sum on j,
obtaining eGt(¥) yse symmetry to get eGt(z)
average, and use inequality between arithmetic
and geometric means.




~  C(Gi(z)+G(y))

Viia. m/ dt
SRRl 2

For the upper estimate, inductively prove

dt.

, o\ oo eB(GHE) G W)
Kj(z,y) <c1|— / 5
t 3 d(z.y) 2

Then for 3 large enough, sum on j. For the
induction, need an estimate of the form

BG: g, f ]
e dw < cw(Bn:(2)).

We get this from

/ Gt dw < m!C™||w||Mw(Boi(x)).
By(r)

We need ||w|| < € to sum on m.



Transient Signal Detection

(Daniel Wagner Associates, 1990-1991)

Have noisy environment generating ran-
dom discrete noise signals

n=(n(0),n(1),n(2),...n(N —1)).
Assume n IS a jointly Gaussian random vari-
able.



Want to detect a given prototype signal

s = (5(0),s(1),5(2).....s(N —1)).

Suppose we receive signal

r = (x(0),2(1),2(2),....,2(N — 1)).
There are two possibilities:

Hp : x = n (null hypothesis: s not present in )

Hi.:xr=s+n (sis present in x).

Need: hypothesis test.






A “decision criterion” assigns to each r a
conclusion, either Hy or H;.

There are two types of mistakes:

False alarm: Accept H; when Hg Is true

Detection failure: Accept Hpo when Hq Is
true

Let P, = Prob(False alarm)

and P_ = Prob(Detection failure).



Want to be able to assign P+.

A “test” assigns to each P, c [0, 1] a deci-
sion criterion having that value of F,.

To evaluate a test, plot P_ as a function
of P:

0.8

P_o.6t

0.2

0.2 0.4 0.5 0.8 1
.1-



This is called the ROC (Receiver Oper-
ating Characteristic) curve for the test.
One test iIs clearly superior to another If
Its ROC curve iIs everywhere lower.

A well-known, relatively elementary statis-
tics result states that there is an optimal
test for this problem, i1.e., a test with lower
ROC curve than any other test. This test
IS usually called the “matched filter’ test.



Matched Filter Test

Let R = (R;;); =0123..N—1 be the noise
correlation matrix, i.e.,

R; ; = E(n(i)n(g)).
Let A = (R 1s,2) = ZE\:_OI(R_]'H)(?)J(?)
Matched filter test: Accept H{ <— )\ > 3.

Choice of parameter 5 determines P, hence
a point on the ROC curve.



Problem: May have very large number of
prototype signals s we want to test for.
May not be able to compute all the test
statistics

N-1
A= (R 1s,2) = > (R™1s)()x(d).
=0

in real time.



Plan: Compress the test. Select a subset
M of0,1,2,....N —1, and compute

A=Y (R s)()x(i).
ieM

If most of the information is contained In
a small number of terms, and those terms
are iIncluded in the sum by the choice of
M, we can get a good approximation to
the optimal test with much less compu-
tation. But the information may not be
concentrated in a few terms in the stan-
dard basis.



Idea: change basis for the compressed test.
Apply any orthogonal change of basis to
R.s, and z, to get R. 5, and z. Then can
compute X\ In new basis:

A= (R ls,2) = (R 15 7).

So full test is basis invariant (must be,
since optimal). But compression of op-
timal test Is not basis invariant.



Heuristic: If prototype signal i1s localized
In space (a transient signal) and has def-
inite frequency characteristics, and/or if
the noise has definite frequency charac-
teristics, then a wavelet basis should do
a better job of compressing the optimal

test.



Examples: N = 64, Cardinality of M = 4

1.)
noise

s(n) =

1

8 cos(nm/6)e—(n—31)?/32  white

0.6 0is8 : 4

i 0.2 0.2

0.2 0.4 0.6 0.8

Optimal Test. Compressed Delta Test.

0.2 0.4 0.6 0.8 1 0.2 0.4 0%6 0.8 1

Compressed Wavelet Test. Compressed Fourier Test.

Ezample 1 ROC Curves.



Examples: N = 64, Cardinality of M =4

2.) s(n) = .8e—("=31)%/4 correlated noise

0.2 0.4 0.6 0.8 i
Optimal Test.

0.6
0.4

0.2

0.2 0.4 0.6 0.8 il

Compressed Wavele! Test.

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.2 0.4 0.5 0.8 1

Compressed Delta Test.

0.2 0.4 0.6 0.8 1

Compressed Fourier Test.

Ezample 2ROC Curves.
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Project: Analyze and diagnose car rattles elec-
tronically

Example: Creak ]

Example: Clatter i

What is right representation to allow extrac-
tion of main features from the noise?



(Arb. Units)

phone

B Presented as a Time Series
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B Presented as a Spectral Density

1.0E4

1.0E2

1.0E0

Energy Spectral Density (Arb. Units)
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Frequency Representation (spectrogram): un-
Clear



B Presented as a Scalogram

16 kHz
8 kHz

4 kHz

0.60 7 Q.05 - - 0.10 0.415 0.20 0.25
Time (sec)

Discrete Wavelet Representation (Top): Better

Shift-Invariant Discrete Wavelet Representation (Bottom): Even
Better



If z Is a vector of length N, wavelet transform
of z is a vector of length N, and the wavelet
transform is an invertible linear map. In fact,
the inverse can be computed rapidly via con-
volutions, in O(N) steps.



The Shift-Invariant Discrete Wavelet Trans-
form (SIDWT) of z is obtained (roughly) by
averaging the wavelet transform of z over all
N translations of z. The SIDWT can be com-
puted in O(NlogQN) steps. However, the out-
put is a vector of length Nlogo N. Thus the
SIDWT is a linear map from a lower-dimensional
space into a much larger dimensional space.
Hence it is not invertible.



In linear algebra, in this situation, one learns to
use the pseudoinverse. If 7T : R" — R™ is linear
and 1 — 1, where n < m, define the pseudoin-
verse S : R™ — R™ as follows. For a point w
in R find its orthogonal projection w on the
range of 1", and define S(w) to be the unique
z € R™ such that 1T'(z) = w.

Problem: Formula for S is S = (T*T)~11*
Here 1" is a matrix of size Nlog>, N x N, so 1T
is N x N, where here typically N =~ 10° or 10°.
So the matrix is too large to invert rapidly and
accurately.



My group figured out that the pseudoinverse
of the SIDW'T is also computable fast via con-
volutions, in fact in O(N |092Nr) steps. This
allowed Dave Scholl to continue his examples.
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Windshield Wiper Reversal Thud: Original *ﬂ
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