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Parallel Application Communication Patterns 

 
Achievement: Developed an approach for auto- 
matically recognizing and concisely representing the 
communication patterns of parallel applications that 
use the Message Passing Interface   (MPI). 

Significance and Impact: Characterizing parallel 
application communication patterns requires consid- 
erable expertise but greatly simplifies tasks such as 
proxy application validation, performance problem 
diagnosis, and debugging. Our automated approach 
significantly reduces the expertise necessary for ef- 
fective characterization. 

 
 
 
 
 
 
 
 

Figure 1: Recognizing and removing the contribution of a 
2D nearest neighbor pattern in a synthetic communication 
matrix. This represents one step in our automated search- 
based approach. 

Research Details: 
Developed an approach that uses automated 
search and a communication pattern library to 
automatically recognize unknown communication 
patterns in MPI-based applications. 
Developed a concise representation of the par- 
allel application communication patterns recog- 
nized by our characterization approach. 
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Overview: To enable characterization of parallel 
application communication patterns by non-experts, 
we developed an approach for automatically recog- 
nizing and parameterizing communication patterns 
in MPI-based applications.  Beginning with a com- 

 
 
 
 

Figure 2: Results tree produced by search-based auto- 
mated pattern characterization. Nodes are labeled with the 
amount of communication yet to be explained, and edges 
are labeled with the recognized pattern. The path in red 
indicates the patterns that best explain the original com- 
munication behavior. 

 
CLAMMPS = 13354 · Broadcast(root : 0)+ 

700 · Reduce(root : 0)+ 
19318888 · 3DNearestNeighbor( 

dims : (4, 4, 6), 
periodic : T rue) 

Figure 3: Concise representation of recognized communi- 
cation patterns for a LAMMPS run with 96   processes. 

munication matrix that indicates how much data each process transferred to every other process during the 
application’s run, we use an automated search to recognize communication patterns within this matrix.  At  
each search step, we recognize patterns from a pattern library in the communication matrix. Using a tech-  
nique similar to astronomy’s “sky subtraction,” when we recognize a pattern we  remove it from the matrix  
and apply our recognition approach recursively to the resulting matrix.   Because more than one pattern     
might be recognized at each search step, the search produces a search results tree whose paths between root 
and leaves represent collections of patterns recognized in the original matrix.  The path that accounts for        
the most of the original communication matrix’s traffic corresponds to the collection of patterns that best 
explains the application’s communication behavior.  We  implemented our approach in a tool called AChax  
that was highly effective in recognizing the communication patterns in a synthetic communication matrix     
and the regular communication patterns in matrices obtained from the LAMMPS molecular dynamics and 
LULESH shock hydrodynamics  applications. 
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