
Approach Developed for Automatically Characterizing
Parallel Application Communication Patterns

Achievement: Developed an approach for auto-
matically recognizing and concisely representing the
communication patterns of parallel applications that
use the Message Passing Interface (MPI).

Significance and Impact: Characterizing parallel
application communication patterns requires consid-
erable expertise but greatly simplifies tasks such as
proxy application validation, performance problem
diagnosis, and debugging. Our automated approach
significantly reduces the expertise necessary for ef-
fective characterization.

Figure 1: Recognizing and removing the contribution of a
2D nearest neighbor pattern in a synthetic communication
matrix. This represents one step in our automated search-
based approach.

Research Details:
Developed an approach that uses automated
search and a communication pattern library to
automatically recognize unknown communication
patterns in MPI-based applications.
Developed a concise representation of the par-
allel application communication patterns recog-
nized by our characterization approach.

Sponsor/Facility: Funding for this work was pro-
vided by the Office of Advanced Scientific Comput-
ing Research, U.S. Department of Energy. The work
was performed at Oak Ridge National Laboratory
(ORNL).

PI and Affiliation: Philip C. Roth, ORNL

Publication: P.C. Roth, J.S. Meredith, J.S. Vet-
ter, “Automated Characterization of Parallel Ap-
plication Communication Patterns,” 24th Inter-
national ACM Symposium on High-Performance
Parallel and Distributed Computing (HPDC-2015),
Portland, Oregon, June 2015.

Overview: To enable characterization of parallel
application communication patterns by non-experts,
we developed an approach for automatically recog-
nizing and parameterizing communication patterns
in MPI-based applications. Beginning with a com-

Figure 2: Results tree produced by search-based auto-
mated pattern characterization. Nodes are labeled with the
amount of communication yet to be explained, and edges
are labeled with the recognized pattern. The path in red
indicates the patterns that best explain the original com-
munication behavior.

CLAMMPS = 13354 · Broadcast(root : 0)+

700 · Reduce(root : 0)+
19318888 · 3DNearestNeighbor(

dims : (4, 4, 6),
periodic : T rue)

Figure 3: Concise representation of recognized communi-
cation patterns for a LAMMPS run with 96 processes.

munication matrix that indicates how much data each process transferred to every other process during the
application’s run, we use an automated search to recognize communication patterns within this matrix. At
each search step, we recognize patterns from a pattern library in the communication matrix. Using a tech-
nique similar to astronomy’s “sky subtraction,” when we recognize a pattern we remove it from the matrix
and apply our recognition approach recursively to the resulting matrix. Because more than one pattern
might be recognized at each search step, the search produces a search results tree whose paths between root
and leaves represent collections of patterns recognized in the original matrix. The path that accounts for
the most of the original communication matrix’s traffic corresponds to the collection of patterns that best
explains the application’s communication behavior. We implemented our approach in a tool called AChax
that was highly effective in recognizing the communication patterns in a synthetic communication matrix
and the regular communication patterns in matrices obtained from the LAMMPS molecular dynamics and
LULESH shock hydrodynamics applications.

6938568

many-to-many collective
{' scale': 1024}

2809800

broadcast reduce 3D nearest neighbor 2D nearest neighbor 3D sweep
{' scale': 4096, {' scale': 16, {' dims': (8, 2, 4), {' dims': (8, 8), {' dims': (8, 2, 4),

'root': 0} 'root': 3} 'scale': 1024, 'scale': 8192, 'scale': 1024,
'periodic': [False, False, False]} 'periodic': [True, True]} 'corner': (0, 0, 0)}

2551752

broadcast reduce 3D nearest neighbor 2D nearest neighbor 3D sweep

{' scale': 512, {' scale': 16, {' dims': (8, 2, 4), {' dims': (8, 8), {' dims': (8, 2, 4),
'scale': 1024, 'scale': 8192, 'scale': 1024, 'root': 6} 'root': 3} 'periodic': [False, False, False]} 'periodic': [True, True]} 'corner': (0, 0, 0)}

2519496

3D nearest neighbor 2D nearest neighbor reduce

{' scale': 16,
'root': 3}

{' dims': (8, 2, 4), {' dims': (8, 8),
'scale': 1024, 'scale': 8192,

'periodic': [False, False, False]} 'periodic': [True, True]}

3D sweep
{' dims': (8, 2, 4),

'scale': 1024,
'corner': (0, 0, 0)}

2518488

3D nearest neighbor 2D nearest neighbor 3D sweep
{' dims': (8, 2, 4), {' dims': (8, 8), {' dims': (8, 2, 4),

'scale': 1024, 'scale': 8192, 'scale': 1024,
'periodic': [False, False, False]} 'periodic': [True, True]} 'corner': (0, 0, 0)}

2239960 421336 2379224

2D nearest neighbor 2D nearest neighbor 2D nearest neighbor 3D sweep
{' dims': (8, 8), {' dims': (16, 4), {' dims': (8, 8), {' dims': (8, 2, 4),
'scale': 7168, 'scale': 1024, 'scale': 7168, 'scale': 1024,

'periodic': [True, True]} 'periodic': [False, False]} 'periodic': [True, True]} 'corner': (0, 1, 0)}

404952 200152 544216 2239960

3D sweep 2D nearest neighbor
{' dims': (8, 2, 4), {' dims': (8, 8),

'scale': 1024, 'scale': 6144,
'corner': (1, 1, 0)} 'periodic': [True, True]}

404952 667096

•

•

